# MIC4742 



## 2 MHz Dual 2A Integrated Switch Buck Regulator

## General Description

The Micrel MIC4742 is a high efficiency dual PWM buck (step-down) regulator that provides dual 2A current output. The MIC4742 operates at 2 MHz . A proprietary internal compensation technique allows a closed loop bandwidth of over 200kHz.

The low on-resistance internal P-Channel MOSFET of the MIC4742 allows efficiencies over 92\%, reduces external components count and eliminates the need for an expensive current sense resistor.

The MIC4742 operates from 2.9 V to 5.5 V input and the output can be adjusted down to 0.6 V . The device can operate with a maximum duty cycle of $100 \%$ for use in lowdropout conditions.

The MIC4742 is available in the exposed pad 16-pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ MLF $^{\circledR}$ and EPAD TSSOP-16 packages with a junction operating range from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

All support documentation can be found on Micrel's web site at: www.micrel.com.

## Features

- 2.9 to 5.5 V supply voltage
- 2MHz PWM mode
- 2A Dual output
- Greater than 92\% efficiency
- 100\% maximum duty cycle
- Adjustable output voltage option down to 0.6 V
- Ultra-fast transient response
- Ultra-small external components Stable with a $1 \mu \mathrm{H}$ inductor and a $4.7 \mu \mathrm{~F}$ output capacitor
- Fully integrated 2A MOSFET switches
- Micro-power shutdown
- Thermal shutdown and current limit protection
- Available in a $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ 16-pin MLF $^{\circledR}$ and 16-pin TSSOP
- $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ junction temperature range


## Applications

- Broadband: xDSL modems
- Automotive satellite radios
- HD STB, DVD/TV recorder
- Computer peripherals: printers and graphic cards
- FPGA/ASIC
- General point of load


## Typical Application



## 2A 2MHz Dual Buck Regulator

MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

## Ordering Information

| Part Number | Voltage | Junction Temp. Range | Package | Lead Finish |
| :--- | :---: | :---: | :---: | :---: |
| MIC4742YML | Adj. | $-40^{\circ}$ to $+125^{\circ} \mathrm{C}$ | $16-$ Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm} \mathrm{MLF}^{\circledR}$ | Pb-Free |
| MIC4742YTSE | Adj. | $-40^{\circ}$ to $+125^{\circ} \mathrm{C}$ | $16-$ Pin EPAD TSSOP | Pb-Free |

Note:
$\mathrm{MLF}^{\circledR}$ is a GREEN RoHS-compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.

## Pin Configuration



16-Pin $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ MLF $^{\circledR}$ (YML)


16-Pin EPAD-TSSOP (YTSE)

## Pin Description

| Pin Number <br> $\left(\right.$ MLF $^{\text {® }}$ ) | Pin Number <br> (EPAD-TSSOP) | Pin Name | Pin Function |
| :---: | :---: | :---: | :--- |
| 1 | 7 | FB2 | Feedback for output 2 (Input). Input to the error amplifier, connect to the <br> external resistor divider network to set the output voltage. |
| $2^{(1)}$ | $8^{(1)}$ | EN2 | Enable for output 2 (Input). Logic level low, will shutdown the device, reducing <br> the current draw to less than 5 5A (both EN1 and EN2 are low). |
| 3,4 | 9,10 | SW2 | Switch for output 2 (Output): Internal power P-Channel MOSFET output switch |
| 5 | 11 | PGND2 | Power Ground for output 2. Provides the ground return path for the high-side <br> drive current. <br> PGND1 pin and PGND2 pin are internally connected by anti-parallel diodes. |
| 6,15 | 5,12 | VIN2 | Supply Voltage for output 2 (Input): Supply voltage for the source of the <br> internal P-channel MOSFET and driver. Requires bypass capacitor to GND. <br> VIN1 pins and VIN2 pins are internally connected by anti-parallel diodes. |
| 7,14 | 4,13 | VIN1 | Supply Voltage for output 1 (Input): Supply voltage for the source of the <br> internal P-channel MOSFET and driver. Requires bypass capacitor to GND. <br> VIN1 pins and VIN2 pins are internally connected by anti-parallel diodes. |
| 8 | 14 | PGND1 | Power Ground for output 1. Provides the ground return path for the <br> high-side drive current. <br> PGND1 pin and PGND2 pin are internally connected by anti-parallel diodes. |
| 9,10 | 15,16 | $1^{(1)}$ | SW1 |
| $11^{(1)}$ | 2 | EN1 | Switch for output 1 (Output): Internal power P-Channel MOSFET output switch |
| 12 | Enable for output 1 (Input). Logic level low, will shutdown the device, reducing |  |  |
| the current draw to less than 5 5A (both EN1 and EN2 are low). |  |  |  |

## Note:

1. Do not float Enable Input.

## Absolute Maximum Ratings ${ }^{(1)}$

Supply Voltage ( $\mathrm{V}_{\mathrm{IN}}$ ) -0.3 V to +6 V
Output Switch Voltage $\left(\mathrm{V}_{\mathrm{SW} 1}, \mathrm{~V}_{\mathrm{SW} 2}\right) \ldots . . . . . . . . . . . . .-0.3 \mathrm{~V}$ to +6 V
Output Switch Current ( $\left.\mathrm{I}_{\mathrm{SW} 1}, \mathrm{I}_{\mathrm{SW} 2}\right) \ldots \ldots . . . .$. Internally Limited
Input Voltage $\left(\mathrm{V}_{\mathrm{EN}}\right)$, $\left(\mathrm{V}_{\mathrm{FB}}\right)$, $\left(\mathrm{V}_{\mathrm{BIAS}}\right) \ldots \ldots . . . . . . . . . . . . . . .0 .3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{IN}}$
Storage Temperature $\left(T_{s}\right) \ldots \ldots . . . . . . . . . . . . . . . .-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature ................................................ $150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10sec.)....................... $260^{\circ} \mathrm{C}$
ESD Rating ${ }^{(3)}$................................................................. 2KV

## Operating Ratings ${ }^{(2)}$



## Electrical Characteristics ${ }^{(4)}$

$V_{\text {IN }}=V_{E N}=3.6 \mathrm{~V} ; \mathrm{L}=1.0 \mu \mathrm{H} ; \mathrm{C}_{\text {OUT }}=4.7 \mu \mathrm{~F} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless noted. Bold values indicate $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{J}} \leq+125^{\circ} \mathrm{C}$.

| Parameter | Condition | Min | Typ | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage Range |  | 2.9 |  | 5.5 | V |
| Under-Voltage Lockout Threshold | Turn-on | 2.45 | 2.6 | 2.7 | V |
| UVLO Hysteresis |  |  | 100 |  | mV |
| Quiescent Current | $\mathrm{V}_{\mathrm{FB}}=0.9 * \mathrm{~V}_{\text {NOM }}$ (not switching); $\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ |  | 1.4 | 3.0 | mA |
|  | $\mathrm{V}_{\mathrm{FB}}=0.9 * \mathrm{~V}_{\text {NOM }}$ (not switching); $\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ |  | 1.0 |  | mA |
| Shutdown Current | $\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$ |  | 1.6 | 10 | $\mu \mathrm{A}$ |
| [Adjustable] Feedback Voltage | $\pm 2 \%$ (over temperature) $\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$ | 0.588 | 0.6 | 0.612 | V |
| FB pin input current |  |  | 1 |  | nA |
| Current Limit | $\mathrm{V}_{\mathrm{FB}}=0.9$ * $\mathrm{V}_{\mathrm{NOM}}$ | 2.5 | 4.3 |  | A |
| Output Voltage Line Regulation | $\mathrm{V}_{\mathrm{IN}}=2.9 \mathrm{~V}$ to 5.5 V ; $\mathrm{I}_{\text {LOAD }}=100 \mu \mathrm{~A}$ |  | 0.07 |  | \% |
| Output Voltage Load Regulation | 20 mA < $\mathrm{I}_{\text {LOAD }}<2 \mathrm{~A}$ |  | 0.2 |  | \% |
| Maximum Duty Cycle | $\mathrm{V}_{\mathrm{FB}} \leq 0.9$ * $\mathrm{V}_{\text {NOM }}$ | 100 |  |  | \% |
| Switch ON-Resistance | $\mathrm{I}_{\mathrm{SW}}=50 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{FB}}=\mathrm{GND}$ |  | 155 |  | $\mathrm{m} \Omega$ |
| Oscillator Frequency |  | 1.5 | 2 | 2.3 | MHz |
| Switching Phase |  |  | 180 |  | Deg |
| Enable Threshold |  | 0.5 | 0.9 | 1.3 | V |
| Enable Hysteresis |  |  | 55 |  | mV |
| Enable Input Current |  |  | 0.1 | 2 | $\mu \mathrm{A}$ |
| Over-Temperature Shutdown |  |  | 153 |  | ${ }^{\circ} \mathrm{C}$ |
| Over-Temperature Hysteresis |  |  | 18 |  | ${ }^{\circ} \mathrm{C}$ |

## Notes:

1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k in series with 100 pF .
4. Specification for packaged product only.

## Typical Characteristics



3.3Vin 1.8Vout Efficiency



3.3Vin 1.5Vout Efficiency

5.0Vin 1.8Vout Efficiency


3.3Vin 1.2Vout Efficiency





## Typical Characteristics (continue)




Quiescent Current
vs. Supply Voltage


Enable Threshold
vs. Supply Voltage


Frequency
vs. Temperature


Rdson
vs. Supply Voltage


Enable Threshold


## Functional Characteristics







## Functional Diagram



MIC4742 Block Diagram

## Pin Description

## VIN1/VIN2

VIN pins (two pins for VIN1 and two pins for VIN2) provide power to the source of the internal P-channel MOSFET along with the current limiting sensing. VIN1 pins and VIN2 pins are internally connected by antiparallel diodes. The VIN operating voltage range is from 2.9 V to 5.5 V . Due to the high switching speeds, a $10 \mu \mathrm{~F}$ capacitor is recommended close to VIN and the power ground (PGND) for each pin for bypassing. Please refer to layout recommendations for more details.

## BIAS

The bias (BIAS) provides power to the internal reference and control sections of the MIC4742. A $10 \Omega$ resistor from VIN to BIAS and a $0.1 \mu \mathrm{~F}$ from BIAS to SGND are required for clean operation.

## EN1/EN2

The enable pins (EN1 and EN2) provides a logic level control of the outputs 1 and 2 . In the off state, supply current of the device is greatly reduced (typically $<2 \mu \mathrm{~A}$ ). Do not drive the enable pin above the supply voltage.

## FB1/FB2

The feedback pins (FB1 and FB2) provides the control path to control the outputs 1 and 2. A resistor divider connecting the feedback to the output is used to adjust the desired output voltage. The output voltage is calculated as follows:

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{REF}} \times\left(\frac{\mathrm{R} 1}{\mathrm{R} 2}+1\right)
$$

where $\mathrm{V}_{\mathrm{REF}}$ is equal to 0.6 V .
A feed-forward capacitor is recommended for most designs. To reduce current draw, 10K feedback resistors are recommended from the outputs to the FB pins (R1 in the equation). Also, feed-forward capacitors should be connected between the outputs and feedback pins (across R1). The large resistor value and the parasitic capacitance of the FB pin can cause a high frequency pole that can reduce the overall system phase margin. By placing a feed-forward capacitor, these effects can be significantly reduced. Feed-forward capacitance ( $\mathrm{C}_{\mathrm{FF}}$ ) can be calculated as follows:

$$
\mathrm{C}_{\mathrm{FF}}=\frac{1}{2 \pi \times \mathrm{R} 1 \times 200 \mathrm{kHz}}
$$

## SW1/SW2

The switch pins (SW1 and SW2) connect directly to the inductor and provide the switching current necessary to operate in PWM mode. Due to the high speed switching on these pins, the switch nodes should be routed away from sensitive nodes. These pins also connect to the cathodes of the free-wheeling diodes.

## PGND1/PGND2

Power ground pins (PGND1 and PGND2) are the ground paths for the MOSFET drive current. PGND1 pin and PGND2 pin are internally connected by anti-parallel diodes. The current loop for the power ground should be as small as possible and separate from the Signal ground (SGND) loop. Refer to the layout recommendation for more details.

## SGND

Signal ground (SGND) is the ground path for the biasing and control circuitry. The current loop for the signal ground should be separate from the power ground (PGND) loop. Refer to the layout recommendation for more details.

## EPAD

The exposed pad on the bottom of the part must be connected to ground.

## Application Information

The MIC4742 is a dual 2A PWM non-synchronous buck regulator. By switching an input voltage supply, and filtering the switched voltage through an inductor and capacitor, a regulated DC voltage is obtained. Figure 1 shows a simplified example of a non-synchronous buck converter.


Figure 1. Example of Non-synchronous Buck Converter
For a non-synchronous buck converter, there are two modes of operation; continuous and discontinuous. Continuous or discontinuous refer to the inductor current. If current is continuously flowing through the inductor throughout the switching cycle, it is in continuous operation. If the inductor current drops to zero during the off time, it is in discontinuous operation. Critically continuous is the point where any decrease in output current will cause it to enter discontinuous operation. The critically continuous load current can be calculated as follows;

$$
\mathrm{I}_{\mathrm{OUT}}=\frac{\left[\mathrm{V}_{\mathrm{OUT}}-\frac{\mathrm{V}_{\mathrm{OUT}}{ }^{2}}{\mathrm{~V}_{\mathrm{IN}}}\right]}{\mathrm{fsw} \times 2 \times \mathrm{L}}
$$

Continuous or discontinuous operation determines how we calculate peak inductor current.

## Continuous Operation

Figure 2 illustrates the switch voltage and inductor current during continuous operation.


Figure 2. Continuous Operation

The output voltage is regulated by pulse width modulating (PWM) the switch voltage to the average required output voltage. The switching can be broken up into two cycles; On and Off.
During the On-Time, Figure 3 illustrates the high side switch is turned on, current flows from the input supply through the inductor and to the output. The inductor current is charged at the rate;


Figure 3. On-Time
To determine the total on-time, or time at which the inductor charges, the duty cycle needs to be calculated. The duty cycle can be calculated as;

$$
\mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}
$$

and the On time is;

$$
\mathrm{T}_{\mathrm{ON}}=\frac{\mathrm{D}}{\mathrm{fsw}}
$$

Therefore, peak to peak ripple current is;

$$
\mathrm{I}_{\mathrm{pk}-\mathrm{pk}}=\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}}{\mathrm{fsw} \times \mathrm{L}}
$$

Since the average peak to peak current is equal to the load current. The actual peak (or highest current the inductor will see in a steady-state condition) is equal to the output current plus $1 / 2$ the peak-to-peak current.

$$
\mathrm{I}_{\mathrm{pk}}=\mathrm{I}_{\mathrm{OUT}}+\frac{\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right) \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}}{2 \times \mathrm{fsw} \times \mathrm{L}}
$$

Figure 4 demonstrates the off-time. During the off-time, the high-side internal P-channel MOSFET turns off. Since the current in the inductor has to discharge, the current flows through the free-wheeling Schottky diode to the output. In this case, the inductor discharge rate is (where $\mathrm{V}_{\mathrm{D}}$ is the diode forward voltage);

$$
-\frac{\left(\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}\right)}{\mathrm{L}}
$$

The total off time can be calculated as;

$$
\mathrm{T}_{\mathrm{OFF}}=\frac{1-\mathrm{D}}{\mathrm{fsw}}
$$



Figure 4. Off-Time

## Discontinuous Operation

Discontinuous operation is when the inductor current discharges to zero during the off cycle. Figure 5 demonstrates the switch voltage and inductor currents during discontinuous operation.


Figure 5. Discontinuous Operation
When the inductor current (IL) has completely discharged, the voltage on the switch node rings at the frequency determined by the parasitic capacitance and the inductor value. In Figure 5, it is drawn as a DC voltage, but to see actual operation (with ringing) refer to the functional characteristics.
Discontinuous mode of operation has the advantage over full PWM in that at light loads, the MIC4742 will skip pulses as necessary, reducing gate drive losses, drastically improving light load efficiency.

## Efficiency Considerations

Calculating the efficiency is as simple as measuring power out and dividing it by the power in;

$$
\text { Efficiency }=\frac{P_{\text {OUT }}}{P_{\text {IN }}} \times 100
$$

Where input power ( $\mathrm{P}_{\mathrm{IN}}$ ) is;

$$
\mathrm{P}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IN}} \times \mathrm{I}_{\mathrm{IN}}
$$

and output power ( $\mathrm{P}_{\text {out }}$ ) is calculated as;

$$
\text { POUT }=\mathrm{V}_{\text {OUT }} \times \mathrm{I}_{\text {OUT }}
$$

The Efficiency of the MIC4742 is determined by several factors.

- Rdson (Internal P-channel Resistance)
- Diode conduction losses
- Inductor Conduction losses
- Switching losses

Rdson losses are caused by the current flowing through the high side P-channel MOSFET. The amount of power loss can be approximated by;

$$
\mathrm{P}_{\mathrm{SW}}=\mathrm{R}_{\mathrm{DSON}} \times \mathrm{I}_{\mathrm{OUT}}{ }^{2} \times \mathrm{D}
$$

Where $D$ is the duty cycle.
Since the MIC4742 uses an internal P-channel MOSFET, Rdson losses are inversely proportional to supply voltage. Higher supply voltage yields a higher gate to source voltage, reducing the Rdson, reducing the MOSFET conduction losses. A graph showing typical Rdson vs input supply voltage can be found in the typical characteristics section of this datasheet.
Diode conduction losses occur due to the forward voltage drop ( $\mathrm{V}_{\mathrm{F}}$ ) and the output current. Diode power losses can be approximated as follows;

$$
P_{D}=V_{F} \times I_{\text {OUT }} \times(1-D)
$$

For this reason, the Schottky diode is the rectifier of choice. Using the lowest forward voltage drop will help reduce diode conduction losses, and improve efficiency.
Duty cycle, or the ratio of output voltage to input voltage, determines whether the dominant factor in conduction losses will be the internal MOSFET or the Schottky diode. Higher duty cycles place the power losses on the high side switch, and lower duty cycles place the power losses on the Schottky diode.
Inductor conduction losses ( $\mathrm{P}_{\mathrm{L}}$ ) can be calculated by multiplying the $D C$ resistance (DCR) times the square of the output current;

$$
\mathrm{P}_{\mathrm{L}}=\mathrm{DCR} \times \mathrm{I}_{\mathrm{OUT}}{ }^{2}
$$

Also, be aware that there are additional core losses associated with switching current in an inductor. Since most inductor manufacturers do not give data on the type of material used, approximating core losses becomes very difficult, so verify inductor temperature rise.

Switching losses occur twice each cycle, when the switch turns on and when the switch turns off. This is caused by a non-ideal world where switching transitions are not instantaneous, and neither are currents. Figure 6 demonstrates how switching losses due to the transitions dissipate power in the switch.


Figure 6. Switching Transition Losses
Normally, when the switch is on, the voltage across the switch is low (virtually zero) and the current through the switch is high. This equates to low power dissipation. When the switch is off, voltage across the switch is high and the current is zero, again with power dissipation being low. During the transitions, the voltage across the switch $\left(\mathrm{V}_{\mathrm{S}-\mathrm{D}}\right)$ and the current through the switch ( $\mathrm{I}_{\mathrm{S}-\mathrm{D}}$ ) are at middle, causing the transition to be the highest instantaneous power point. During continuous mode, these losses are the highest. Also, with higher load currents, these losses are higher. For discontinuous operation, the transition losses only occur during the "off" transition since the "on" transitions there is no current flow through the inductor.

## Component Selection

## Input Capacitor

A $10 \mu \mathrm{~F}$ ceramic is recommended on each VIN pin for bypassing. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended. Also, tantalum and electrolytic capacitors alone are not recommended due to their reduced RMS current handling, reliability, and ESR increases.
An additional $0.1 \mu \mathrm{~F}$ is recommended close to the VIN and PGND pins for high frequency filtering. Smaller case size capacitors are recommended due to their lower ESR and ESL. Please refer to layout recommendation for proper layout of the input capacitor.

## Output Capacitor

The MIC4742 is designed for a $4.7 \mu \mathrm{~F}$ output capacitor. X5R or X7R dielectrics are recommended for the output capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore not recommended.
In addition to a $4.7 \mu \mathrm{~F}$, a small $0.1 \mu \mathrm{~F}$ is recommended close to the load for high frequency filtering. Smaller case size capacitors are recommended due to there lower equivalent series ESR and ESL.
The MIC4742 utilizes type III voltage mode internal compensation and utilizes an internal zero to compensate for the double pole roll off of the LC filter. For this reason, larger output capacitors can create instabilities. In cases where a $4.7 \mu \mathrm{~F}$ output capacitor is not sufficient, other values of capacitance can be used but the original LC filter pole frequency determined by $C_{\text {out }}=4.7 \mu \mathrm{~F}$ and $\mathrm{L}=1 \mu \mathrm{H}$ (which is approximately 73.4 KHz ) must remain fixed. Increasing $\mathrm{C}_{\text {out }}$ forces L to decrease and vice versa.

## Inductor Selection

The MIC4742 is designed for use with a $1 \mu \mathrm{H}$ inductor. Proper selection should ensure the inductor can handle the maximum average and peak currents required by the load. Maximum current ratings of the inductor are generally given in two methods; permissible DC current and saturation current. Permissible DC current can be rated either for a $40^{\circ} \mathrm{C}$ temperature rise or a $10 \%$ to $20 \%$ loss in inductance. Ensure the inductor selected can handle the maximum operating current. When saturation current is specified, make sure that there is enough margin that the peak current will not saturate the inductor.

## Diode Selection

Since the MIC4742 is non-synchronous, a free-wheeling diode is required for proper operation. A Schottky diode is recommended due to the low forward voltage drop and their fast reverse recovery time. The diode should be rated to be able to handle the average output current. Also, the reverse voltage rating of the diode should exceed the maximum input voltage. The lower the forward voltage drop of the diode the better the efficiency. Please refer to the layout recommendation to minimize switching noise.

## Feedback Resistors

The feedback resistor set the output voltage by dividing down the output and sending it to the feedback pin. The feedback voltage is 0.6 V . Calculating the set output voltage is as follows;

$$
\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{FB}}\left(\frac{\mathrm{R} 1}{\mathrm{R} 2}+1\right)
$$

Where R 1 is the resistor from $\mathrm{V}_{\text {Out }}$ to FB and R 2 is the resistor from FB to GND. The recommended feedback resistor values for common output voltages are available in the bill of materials on page 17. Although the range of resistance for the FB resistors is very wide, R1 is recommended to be 10K. This minimizes the effect the parasitic capacitance of the FB node.

## Feedforward Capacitor ( $\mathrm{C}_{\mathrm{FF}}$ )

A capacitor across the resistor from the output to the feedback pin (R1) is recommended for most designs. This capacitor can give a boost to phase margin and increase the bandwidth for transient response. Also, large values of feedforward capacitance can slow down the turn-on characteristics, reducing inrush current. For maximum phase boost, $\mathrm{C}_{\text {FF }}$ can be calculated as follows;

$$
C_{F F}=\frac{1}{2 \pi \times 200 \mathrm{kHz} \times \mathrm{R} 1}
$$

Large values of feedforward capacitance may introduce negative FB pin voltage during load shorting, which will cause latch-off. In that case, a Schottky diode from FB pin to the ground is recommended.

## Bias Filter

A small $10 \Omega$ resistor is recommended from the input supply to the bias pin along with a small $0.1 \mu \mathrm{~F}$ ceramic capacitor from bias to ground. This will bypass the high frequency noise generated by the violent switching of high currents from reaching the internal reference and control circuitry. Tantalum and electrolytic capacitors are not recommended for the bias, these types of capacitors lose their ability to filter at high frequencies.

## Loop Stability and Bode Analysis

Bode analysis is an excellent way to measure small signal stability and loop response in power supply designs. Bode analysis monitors gain and phase of a control loop. This is done by breaking the feedback loop and injecting a signal into the feedback node and comparing the injected signal to the output signal of the control loop. This will require a network analyzer to sweep the frequency and compare the injected signal to the output signal. The most common method of injection is the use of transformer. Figure 7 demonstrates how a transformer is used to inject a signal into the feedback network.


Figure 7. Transformer Injection
A $50 \Omega$ resistor allows impedance matching from the network analyzer source. This method allows the DC loop to maintain regulation and allow the network analyzer to insert an AC signal on top of the DC voltage. The network analyzer will then sweep the source while monitoring $A$ and $R$ for an $A / R$ measurement.
The following Bode analysis show the small signal loop stability of the MIC4742, it utilizes type III compensation. This is a dominant low frequency pole, followed by 2 zeros and finally the double pole of the inductor capacitor filter, creating a final $20 \mathrm{~dB} /$ decade roll off. Bode analysis gives us a few important data points; speed of response (Gain Bandwidth or GBW) and loop stability. Loop speed or GBW determines the response time to a load transient. Faster response times yield smaller voltage deviations to load steps.
Instability in a control loop occurs when there is gain and positive feedback. Phase margin is the measure of how stable the given system is. It is measured by determining how far the phase is from crossing zero when the gain is equal to 1 (OdB).


Typically for 3.6 Vin and 1.8 Vout at 2A;

- Phase Margin=77.8 Degrees
- GBW $=229 \mathrm{KHz}$

Being that the MIC4742 is non-synchronous; the regulator only has the ability to source current. This means that the regulator has to rely on the load to be able to sink current. This causes a non-linear response at light loads. The following plot shows the effects of the pole created by the nonlinearity of the output drive during light load (discontinuous) conditions.

3.6Vin, 1.8Vout lout=0.1A;

- Phase Margin=89.9 Degrees
- $\quad \mathbf{G B W}=43.7 \mathrm{kHz}$


## Feed Forward Capacitor

The feedback resistors are a gain reduction block in the overall system response of the regulator. By placing a capacitor from the output to the feedback pin, high frequency signal can bypass the resistor divider, causing a gain increase up to unity gain.


The graph above shows the effects on the gain and phase of the system caused by feedback resistors and a feedforward capacitor. The maximum amount of phase boost achievable with a feedforward capacitor is graphed below.


By looking at the graph, phase margin can be affected to a greater degree with higher output voltages.

## Ripple Measurements

To properly measure ripple on either input or output of a switching regulator, a proper ring in tip measurement is required. Standard oscilloscope probes come with a grounding clip, or a long wire with an alligator clip. Unfortunately, for high frequency measurements, this ground clip can pick-up high frequency noise and erroneously inject it into the measured output ripple.
The standard evaluation board accommodates a home made version by providing probe points for both the input and output supplies and their respective grounds. This requires the removing of the oscilloscope probe sheath and ground clip from a standard oscilloscope probe and wrapping a non-shielded bus wire around the oscilloscope probe. If there does not happen to be any non-shielded bus wire immediately available, the leads from axial resistors will work. By maintaining the shortest possible ground lengths on the oscilloscope probe, true ripple measurements can be obtained.

## Bill of Materials



MIC4742YML Schematic for 2A Output

| Item | Part Number | Manufacturer | Description | Qty |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{C} 11, \mathrm{C} 12 \\ & \mathrm{C} 21, \mathrm{C} 22 \end{aligned}$ | GRM188R60J106M | Murata ${ }^{(1)}$ | 10رF Ceramic Capacitor X5R 0603 6.3V | 4 |
|  | C1608X5R0J106M | TDK ${ }^{(2)}$ |  |  |
|  | 06036D106KMAT2A | AVX ${ }^{(3)}$ |  |  |
| C13*, C23* | VJ0603A681KXXCW | Vishay ${ }^{(4)}$ | 680pF Ceramic Capacitor NPO 0603 6.3V | 2 |
| C14,C24 | VJ0603A820KXXCW | Vishay ${ }^{(4)}$ | 82pF Ceramic Capacitor NPO 0603 10V | 2 |
| C15, 225 | GRM188R60J475K | Murata ${ }^{(1)}$ | 4.7 $\mu$ F Ceramic Capacitor X5R 0603 6.3V | 2 |
|  | C1608 X5R0J475M | TDK ${ }^{(2)}$ |  |  |
|  | 0603D475MAT | AVX ${ }^{(3)}$ |  |  |
| $\begin{aligned} & \mathrm{C} 16, \mathrm{C} 26, \mathrm{C} 7 \\ & \mathrm{C} 18, \mathrm{C} 28 \end{aligned}$ | VJ0603Y104KXXAT | Vishay ${ }^{(4)}$ | 0.1洮 Ceramic Capacitor X7R 0603 25V | 5 |
| D1,D2 | SS2P3L | Vishay ${ }^{(4)}$ | 2A Schottky 30V | 2 |
|  | SSA23L | Vishay ${ }^{(4)}$ |  |  |
|  | B230A | Diodes ${ }^{(5)}$ |  |  |
| L1,L2 | IHLP2525AH-01 1R0 | Vishay ${ }^{(4)}$ | $1 \mu \mathrm{H}$ Inductor $17.5 \mathrm{~m} \Omega 6.86 \mathrm{~mm}(\mathrm{~L}) \times 6.47 \mathrm{~mm}(\mathrm{~W}) \times 1.8 \mathrm{~mm}(\mathrm{H})$ | 2 |
|  | RLF7030-1R0 N | TDK ${ }^{(2)}$ | $1 \mu \mathrm{H}$ Inductor $8.8 \mathrm{~m} \Omega 7.3 \mathrm{~mm}(\mathrm{~L}) \times 6.8 \mathrm{~mm}(\mathrm{~W}) \times 3.2 \mathrm{~mm}(\mathrm{H})$ |  |
|  | HCP0703-1R0 | COOPER ${ }^{(6)}$ | $1 \mu \mathrm{H}$ Inductor $10 \mathrm{~m} \Omega 7.3 \mathrm{~mm}(\mathrm{~L}) \times 7.0 \mathrm{~mm}(\mathrm{~W}) \times 3.0 \mathrm{~mm}(\mathrm{H})$ |  |
| R11,R12 | CRCW060310K0FKXX | Vishay ${ }^{(4)}$ | 10K $1 \% 0603$ resistor | 2 |
| R12,R22 | CRCW06033K16FKXX | Vishay ${ }^{(4)}$ | $3.16 \mathrm{k} \Omega 1 \% 0603$ For $2.5 \mathrm{~V}_{\text {Out }}$ | 2 |
|  | CRCW06034K99FKXX |  | $4.99 \mathrm{k} \Omega 1 \% 0603$ For $1.8 \mathrm{~V}_{\text {OUt }}$ |  |
|  | CRCW06036K65FKXX |  | $6.65 \mathrm{k} \Omega 1 \% 0603$ For $1.5 \mathrm{~V}_{\text {OUt }}$ |  |
|  | CRCW060310K0FKXX |  | $10 \mathrm{k} \Omega 1 \% 0603$ For 1.2 Vout |  |
|  | CRCW060315K0FKXX |  | $15 \mathrm{k} \Omega 1 \% 0603$ For 1.0 V VOUT |  |

* only for ultra-low noise applications.

| Item | Part Number | Manufacturer | Description | Qty |
| :--- | :--- | :---: | :--- | :---: |
| R13*, R23* | CRCW06032R70FKXX | Vishay ${ }^{(4)}$ | $2.7 \Omega 1 \% 0603$ resistor | 2 |
| R14, R24 | CRCW060349K9FKXX | Vishay ${ }^{(4)}$ | $49.9 \mathrm{k} \Omega 1 \% 0603$ resistor | 2 |
| R5 | CRCW060310R0FKXX | Vishay $^{(4)}$ | $10 \Omega 1 \% 0603$ resistor | 1 |
| U1 | MIC4742YML | Micrel, Inc. $^{(7)}$ | Dual 2A 2MHz Integrated Switch Buck Regulator | 1 |

Notes:

1. Murata: www.murata.com
2. TDK: www.tdk.com
3. AVX: www.avx.com
4. Vishay: www.vishay.com
5. Cooper: www.cooperbussmann.com
6. Diode: www.diodes.com
7. Micrel, Inc: www.micrel.com

* only for ultra-low noise applications.


## MIC4742YML Layout Recommendation: 2A Evaluation Board



## Recommended TOP Layout



Recommended Bottom Layout


Recommended Mid-Layer 1 Layout


Recommended Mid-Layer 2 Layout

## Package Information



TIP VIEW


SIDE VIEW


## BロTTロM VIEW

NDTE:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.
2. MAX PACKAGE WARPAGE IS 0.05 mm .
3. MAXIMUM ALLDWABE BURRS IS 0.076 mm IN ALL DIRECTIDNS.
4. PIN \#1 ID ON TOP WILL BE LASER/INK MARKED.

A APPLIED ONLY FOR TERMINALS
A APPLIED FIR EXPISED PAD AND TERMINALS.

16-Pin 3mm x 3mm MLF ${ }^{\circledR}$ (ML)


## TOP VIEW



EXPISED PAD


END VIEW

## BOTTOM VIEW

| $\sum_{i}^{\frac{1}{m}}$ | 14L TSSDP <br> Thermally Enhanced |  |  | 16 LSSDP <br> Thermally Enhanced |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | NDM. | MAX | MIN | NDM. | MAX |
| A |  | - | 1.20 |  | - | 1.20 |
| A1 | 0.025 | - | 0.100 | 0.025 |  | 0.100 |
| AS | 0.80 | 0.90 | 1.05 | 0.80 | 0.90 | 1.05 |
| D | 4.9 | 5.0 | 5.1 | 4.9 | 5.0 | 5.1 |
| E1 | 4.3 | 4.4 | 4.5 | 4.3 | 4.4 | 4.5 |
| E | 6.2 | 6.4 | 6.6 | 6.2 | 6.4 | 6.6 |
|  | 0.45 | 0.60 | 0.75 | 0.45 | 0.60 | 0.75 |
| R | 0.09 |  |  | 0.09 |  |  |
| R1 | 0.09 | - | - | 0.09 | - |  |
| b | 0.19 | - | 0.30 | 0.19 | - | 0.30 |
| b1 | 0.19 | 0.22 | 0.25 | 0.19 | 0.22 | 0.25 |
| c | 0.09 |  | 0.20 | 0.09 |  | 0.20 |
| c1 | 0.09 | - | 0.16 | 0.09 | - | 0.16 |
| $\theta 1$ | $0^{\circ}$ | - | $8^{\circ}$ | $0^{\circ}$ | - | $8^{\circ}$ |
| L1 | 1.0 REF |  |  | 1.0 REF |  |  |
| e | 0.65 BSC |  |  | 0.65 BSC |  |  |
| N | 0.65 |  |  | 16 |  |  |
| Ref. | Jedec MD-153 Issue C Variation ABT-1 |  |  | Jedec MD-153 Issue CVariation ABT Variation ABT |  |  |
| EP | $\frac{\mathrm{Pad} \text { Size }}{\text { Op } 1}$ | ¢ ${ }_{\text {x }}^{\text {x }}$ | $\frac{Y}{} 3.200$ | $\frac{\text { Pad Siz }}{0 p 1}$ |  | 2.997 |

Notes

1. All dimensians are in millimeters (angles in degrees).
2. DIMENSIIDNING AND TOLERANCING PER ANSI Y14.5M-1982.

A DIMENSION 'D' DQES NDT INCLUDE MOLD FLASH ,PROTRUSIONS GR GATE BURRS.
4 DIMENSION 'E1' DOES NDT INCLUDE INTERNAL FLASH OR PROTRUSION.
A DIMENSIDN ' $b$ ' DOES NDT INCLUDE DAMBAR PROTRUSIDN.
A ' $N$ ' IS THE MAXIMUM NUMBER GF LEAD TERMINAL POSITIONS FOR THE SPECIFIED PACKAGE LENGTH.
$\triangle$ CROSS SECTIUN B-B TO BE DETERMINED AT 0.10 TO $0.25 M M$ FROM THE LEAD TIP.
8. EXPOSED PAD WILL BE DEPEND aN THE PAD SIZE aF THE L/F.

## 16-Pin ETSSOP

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2008 Micrel, Incorporated.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Voltage Regulators - Switching Regulators category:
Click to view products by Microchip manufacturer:

Other Similar products are found below :
LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG NCV890203MWTXG LX7176A ISL8018IRAJZ MP2162AGQH-Z MAX17544ATP+T EN6360QI MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB

