Current monitoring relay CM-SFS.2 For single-phase AC/DC currents

The CM-SFS.2 is an electronic current monitoring relay that protects single-phase mains (DC or AC) from over- and undercurrent from 3 mA to 15 A. All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (Push-in terminals).

Characteristics

- Monitoring of DC and AC currents (3 mA to 15 A)
- TRMS measuring principle
- One device includes 3 measuring ranges
- Over- and undercurrent monitoring
- ON- or OFF-delay configurable
- Open- or closed-circuit principle configurable
- Latching function configurable
- Threshold values for >I and <I adjustable
- Fixed hysteresis (5 %)
- Start-up delay T_S adjustable (0 s; 0.1-30 s)
- Tripping delay T_V adjustable (0 s; 0.1-30 s)
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 1x2 c/o (SPDT) contacts (common signal) or
 2x1 c/o (SPDT) contact (separate signals for >I and <I) configurable
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals

(1) UL 508, CAN/CSA C22.2 No.14

⑥ GL

(pending)

© GOST

CB CB Scheme

© CCC

RMRS

Marks

CE CE

C C-Tick

Order data

Current monitoring relays

Туре	Rated control supply voltage	Connection technology	Measuring ranges	Order code
CM-SFS.21P	24-240 V AC/DC	Push-in terminals	3-30 mA, 10-100 mA, 0.1-1 A	1SVR 740 760 R0400
CM-SFS.21S		Screw type terminals		1SVR 730 760 R0400
CM-SFS.22S			0.3-1.5 A, 1-5 A, 3-15 A	1SVR 730 760 R0500

Accessories

Type	Description	Order code
ADP.01	Adapter for screw mounting	1SVR 430 029 R0100
MAR.12	Marker label for devices with DIP switches	1SVR 730 006 R0000
COV.11	Sealable transparent cover	1SVR 730 005 R0100

Connection technology

Maintenance free Easy Connect Technology with Push-in terminals

Type designation CM-xxS.yyP

Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
 - Wire size: 2 x 0.5-1.5 mm², (2 x 20 16 AWG)
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals

Type designation CM-xxS.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: 1 x 0.5-2.5 mm² (2 x 20 14 AWG), 2 x 0.5-1.5 mm² (2 x 20 16 AWG) rigid:
 - 1 x 0.5-4 mm² (1 x 20 12 AWG), 2 x 0.5-2.5 mm² (2 x 20 - 14 AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with Push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Adjustment of the threshold value >I for overcurrent
- 2 Adjustment of the threshold value <I for undercurrent
- 3 Indication of operational states

U/T: green LED - control supply voltage/timing

R: yellow LED - relay status

U: red LED - over- / undercurrent

- 4 Adjustment of the tripping delay T_V
- 5 Adjustment of the start-up delay T_s
- 6 DIP switches (see DIP switch functions)

Application

The current monitoring relays CM-SFS.2 are designed for use in single-phase AC and/or DC systems for the simultaneous monitoring of over- or undercurrents. Depending on the configuration, one c/o (SPDT) contact each or both c/o (SPDT) contacts in parallel can be used for the over- and undercurrent monitoring. The devices operate over an universal range of supply voltages and provide an adjustable start-up as well as tripping delay. Open or closed-circuit principle as well as ON of OFF delay tripping are configurable.

Operating mode

The CM-SFS.2 with 2 c/o (SPDT) contacts is available in 2 versions with 3 measuring ranges: 3-30 mA, 10-100 mA, 0.1-1 A (CM-SFS.21) and 0.3-1.5 A, 1-5 A, 3-15 A (CM-SFS.22). The measuring range is selected by connecting the monitored wire to the corresponding terminal B1/B2/B3-C.

The units are adjusted with front-face operating controls. The selection of: ON-delay or OFF-delay, open- or closed-circuit principle , latching function ON or OFF and 2x1 c/o or 1x2 c/o (SPDT) contacts with or overcurrent, switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold valuemax (>I) for overcurrent, the threshold valuemin (<I) for undercurrent, the tripping delay T_v and the start-up delay T_s . The tripping delay T_v and the start-up delay T_s are adjustable over a range of instantaneous to a 30 s delay. The hysteresis is fixed at 5 %. Timing is displayed by a flashing green LED labelled U/T.

Function diagrams

Current window monitoring 1x2 c/o (SPDT) contacts № ON-delayed without latching

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays re-energize, the yellow LED glows and the red LED turns off. If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring 1x2 c/o (SPDT) contacts OFF-delayed without latching

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays energize, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete, the output relays de-energize and the yellow LED (relay energized) turns off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays de-energize, the yellow LED turns off and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing T_V green LED. When T_V is complete, the output relays energize and the yellow LED (relay energized) glows.

If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes $\square \square \square$ respectively. Timing of T_V is displayed by the flashing $\square \square \square$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) flashes ILILIL.

If the measured value decreases below the threshold value $_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold value $_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function). If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays energize, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overcurrent), or flashes $\Pi\Pi\Pi\Pi$ (undercurrent) respectively.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value $_{max}$ (>I) or drops below the threshold value $_{min}$ (<I) when T_S is complete, the output relays de-energize, the yellow LED (relays energized) flashes ILILIL and the red LED glows (overcurrent), or flashes ILILIL (undercurrent) respectively.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Current window monitoring 2x1 c/o (SPDT) contact ^{2x1} oo ON-delayed ✓ without latching ✓

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows (overcurrent), or flashes Γ (undercurrent) respectively. Timing of T_V is displayed by the flashing Γ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows (overcurrent), or flashes $\square \square \square$ (undercurrent) respectively. Timing of T_V is displayed by the flashing $\square \square \square$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, re-energizes, the yellow LED glows and the red LED turns off.

If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing Π green LED. When T_V is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relay energized) turns off.

If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes, the yellow LED turns off and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing $T_V = 12_{16}/14_{18}$ (>I), or $21_{25}-22_{26}/24_{28}$ (<I) respectively, energizes and the yellow LED (relay energized) glows.

If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring 2x1 c/o (SPDT) contact ON-delayed with latching

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes $\square \square \square$ respectively. Timing of T_V is displayed by the flashing $\square \square \square$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, deenergizes and the yellow and green LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relays energized) flashes ILILL.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

C	color of occur.	managed to allow as Over	-/-	(CDDT)	0 0 10 d 0 0 d 0/0	OFF-delayed		ومورا والمقول والقار	
Current	WILLUOW	monitorina /x	L C/O	1961111	CONTACT Extend	OFF-delayed	W	viin jaiching i	
0 0 0		mornioning Ex	. 0, 0	(0. 2.)	00	0.1. 0.0.0.0.			

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overcurrent), or flashes $\Pi\Pi\Pi\Pi$ (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes, the yellow LED (relays energized) flashes ILLLL and the red LED glows (overcurrent), or flashes ILLL (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Electrical connection

Connection diagram

DIP switches

Position	4	3	2	1		1	ON	OFF-delay
ON †	2x1 c/o		closed		5000:		OFF	ON-delay
ONT	2X1 C/0				274 F	2	ON	Closed-circuit principle
OFF	1x2 c/o				2CDC 252 274 F0005		OFF	Open-circuit principle
Orr	12 6/0		open		2CD(3	ON	Latching function activated
							OFF	Latching function not activated
						4	ON	2x1 c/o (SPDT) contact
							OFF	1x2 c/o (SPDT) contacts
						OFI	F = Defau	ult

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuits

Supply circuit	A1-A2					
Rated control supply voltage U _s	24-240	V AC				
Rated control supply voltage U _s tolerance	-15+10%					
Rated frequency	50/60 H	z or DC				
Typical current / power consumption 24 V DC	30 mA /	0.75 W				
115 V AC	17 mA /	1.9 VA				
230 V AC	11 mA /	2.6 VA				
Power failure buffering time	20 ms					
Transient overvoltage protection	varistors	:				
Measuring circuit	B1/B2/E	33-C				
Monitoring function	over- an	d undercu	ırrent mo	nitoring		
Measuring method	TRMS m	neasuring	principle			
Measuring inputs	CM-SFS	.21	•	CM-SFS	3.22	
terminal connection	B1-C	B2-C	В3-С	B1-C	B2-C	В3-С
measuring range	3-30 mA	10-100 mA	0.1-1 A	0.3-1.5 A	1-5 A	3-15 A
input resistance	3.3 Ω	1Ω	0.1 Ω	0.05 Ω	0.01 Ω	0.0025 Ω
pulse overload capacity t < 1 s	500 mA	1 A	10 A	15 A	50 A	100 A
continuous capacity	50 mA	150 mA	1.5 A	2 A	7 A	17 A
Threshold value	>I and <	I adjustab	le within	the indica	ted	
	measuring range					
Tolerance of the adjusted threshold value	10 % of the range end value					
Hysteresis related to the threshold value	5 % fixed					
Measuring signal frequency range	DC / 15 Hz - 2 kHz					
Rated measuring signal frequency range	DC / 50-60 Hz					
Maximum response time AC	80 ms					
DC	120 ms					
Accuracy within the rated control supply voltage tolerance		ΔU ≤ 0.5 %				
Accuracy within the temperature range	$\Delta U \leq 0.0$	06 % / °C				
Timing circuit						
Start-up delay T _S	0 s or 0.1-30 s adjustable					
Time delay T _V	0 s or 0.1-30 s adjustable					
Repeat accuracy (constant parameters)	±0.07 %	of full sca	ale		••••	
Tolerance of the adjusted time delay	-		•		••••	
Accuracy within the rated control supply voltage tolerance	Δ t ≤ 0.5	%	•		••••	
Accuracy within temperature range	Δ t ≤ 0.0	6%/°C				

User interface

Indication of operational states		
Control supply voltage	U/T: green LED	: control supply voltage applied : start-up delay T _S active : tripping delay T _V active
Measured value	U: red LED	: overcurrent : undercurrent
Relay status	R: yellow LED	l: output relay energized, no latching function IIII: output relay energized, active latching function LILL: output relay de-energized, active latching function

Output circuits

Kind of output	11-12/14	relay, 1st c/o (SPDT) contact
	21-22/24	relay, 2nd c/o (SPDT) contact
		1 x 2 c/o (SPDT) contacts (common signal) or
		2 x 1 c/o (SPDT) contact (separate signal for >I and <i)< td=""></i)<>
		configurable
Operating principle		open- or closed-circuit principle configurable (open-
		circuit principle: output relays energize if the measured
		value exceeds 🛨 / falls below 🔁 the adjusted
		threshold value, closed-circuit principle: output relays
		de-energize if measured value exceeds / falls
		below the adjusted threshold value)
Contact material		AgNi
Rated operational voltage $U_{\rm e}$ (VDE 0110	, IEC/EN 60947-1)	250 V
Minimum switching voltage / Minimum s	witching current	24 V / 10 mA
Maximum switching voltage / Maximum	switching current	250 V AC / 4 A AC
Rated operational current $I_{\rm e}$	AC12 (resistive) at 230 V	4 A
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V	3 A
	DC12 (resistive) at 24 V	4 A
	DC13 (inductive) at 24 V	2 A
AC rating (UL 508)	utilization category (Control Circuit Rating Code)	B 300
	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking	3600/360 VA
	apparent power at B 300	
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime	AC12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles
Maximum fuse rating to achieve	n/c contact	6 A fast-acting
short-circuit protection	n/o contact	10 A fast-acting

General data

MTBF			on request		
Duty time		100 %			
Dimensions (W x H x D)		product dimensions	22.5 x 85.6 x 103.7 mm (0.89 x 3.37 x 4.08 in		
			97 x 109 x 30 mm (3.82 x 4.29 x 1.18 in)		
Weight			Screw connection technology	Easy Connect Technology (Push-in)	
	net weight	CM-SFS.21	0.150 kg (0.331 lb)	0.139 kg (0.306 lb)	
		CM-SFS.22	0.158 kg (0.348 lb)	-	
	gross weight	CM-SFS.21	0.173 kg (0.381 lb)	0.162 kg (0.371 lb)	
		CM-SFS.22	0.180 kg (0.397 lb)	-	
Mounting	•	•••••	DIN rail (IEC/EN 60715)	,	
			snap-on mounting with	out any tool	
Mounting position			any		
Minimum distance to other units			10 mm (0.39 in) at measured current > 10 A		
Material of housing		UL 94 V-0			
Degree of protection		housing	IP50		
		terminals	IP20		

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Wire size	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 20-14 AWG)	(2 x 20-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 20-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(5.31 - 7.08 lb.in)	

Environmental data

Ambient temperature ranges	'	-20+60 °C
	storage	-40+85 °C
Damp heat, cyclic (IEC 60068-2-30)		55 °C, 6 cycle
Vibration, sinusoidal (IEC/EN 60255-21-1)		Class 2
Shock (IEC/EN 60255-21-2)		Class 2

Isolation data

Rated insulation voltage U _i	supply / measuring circuit / output	600 V
(VDE 0110, IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	
Rated impulse withstand voltage U _{imp}	supply / measuring circuit / output	6 kV 1.2/50 μs
(IEC/EN 60947-1, IEC/EN 60255-5)	supply / output 1 / output 2	
Test voltage between all isolated circuits	rated insulation voltage 250 V	2.0 kV, 50 Hz
(type test)	rated insulation voltage 600 V	
Pollution degree (VDE 0110, IEC/EN 60664, IEC/E	3	
Overcurrent category (VDE 0110, IEC/EN 60664, IEC/EN 60255-5)		III

Standards

Product standard	IEC/EN 60255-6
Low Voltage Directive	2006/95/EC
EMC Directive	2004/108/EC
RoHS Directive	2002/95/EC

Electromagnetic compatibility

Interference immunity to		IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level 3
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	
electrical fast transient / burst	IEC/EN 61000-4-4	
surge	IEC/EN 61000-4-5	
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

Technical diagrams

Load limit curves

AC load (resistive)

Derating factor F for inductive AC load

Contact lifetime

Dimensions

in **mm** and *inches*

Accessories

in mm and inches

ADP.01 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	3	2CDC 110 004 C020x
CM-SFS.2		1SVC 730 580 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Single Phase Monitors

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2011 ABB All rights reserved

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for General Purpose Relays category:

Click to view products by ABB manufacturer:

Other Similar products are found below:

APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 61423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 61616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 61617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8