The CM-SFS. 2 is an electronic current monitoring relay that protects single-phase mains (DC or AC) from over- and undercurrent from 3 mA to 15 A . All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (Push-in terminals).

Characteristics

- Monitoring of DC and AC currents (3 mA to 15 A)
- TRMS measuring principle
- One device includes 3 measuring ranges
- Over- and undercurrent monitoring
- ON- or OFF-delay configurable
- Open- or closed-circuit principle configurable
- Latching function configurable
- Threshold values for >l and <l adjustable
- Fixed hysteresis (5 \%)
- Start-up delay T_{S} adjustable ($0 \mathrm{~s} ; 0.1-30 \mathrm{~s}$)
- Tripping delay T_{V} adjustable ($0 \mathrm{~s} ; 0.1-30 \mathrm{~s}$)
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 1x2 c/o (SPDT) contacts (common signal) or $2 \times 1 \mathrm{c} / \mathrm{o}$ (SPDT) contact (separate signals for >1 and <1) configurable
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals

(M) UL 508, CAN/CSA C22.2 No. 14
(•) GL
(pending)
(BC) GOST
CB CB Scheme
(cc) CCC
(2) RMRS

Marks

CE CE
C C-Tick

Order data

Current monitoring relays

Type	Rated control supply voltage	Connection technology	Measuring ranges	Order code
CM-SFS.21P	24-240 V AC/DC	Push-in terminals	3-30 mA, 10-100 mA, 0.1-1 A	1SVR 740760 R0400
CM-SFS. 21 S		Screw type terminals		1SVR 730760 R0400
CM-SFS. 22 S			0.3-1.5 A, 1-5 A, 3-15 A	1SVR 730760 R0500

Accessories

Type	Description	Order code
ADP. 01	Adapter for screw mounting	1SVR 430029 R0100
MAR. 12	Marker label for devices with DIP switches	1SVR 730006 R0000
COV. 11	Sealable transparent cover	1SVR 730005 R0100

Maintenance free Easy Connect Technology with Push-in terminals

Type designation CM-xxS.yyP

Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
Wire size: $2 \times 0.5-1.5 \mathrm{~mm}^{2},(2 \times 20-16 \mathrm{AWG})$
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A $0.8 \times 4 \mathrm{~mm}(0.0315 \times 0.157$ in), DIN ISO 8764-1 PZ1 ø $4.5 \mathrm{~mm}(0.177 \mathrm{in})$)
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals Type designation CM-xxS.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: $1 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14 \mathrm{AWG})$, $2 \times 0.5-1.5 \mathrm{~mm}^{2}(2 \times 20-16$ AWG) rigid:
$1 \times 0.5-4 \mathrm{~mm}^{2}(1 \times 20-12$ AWG), $2 \times 0.5-2.5 \mathrm{~mm}^{2}(2 \times 20-14$ AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A $0.8 \times 4 \mathrm{~mm}$ ($0.0315 \times 0.157 \mathrm{in}$), DIN ISO $8764-1$ PZ1 ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with Push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Operating controls

1 Adjustment of the threshold value $>$ I for overcurrent
2 Adjustment of the threshold value <l for undercurrent
3 Indication of operational states
U/T: green LED - control supply voltage/timing
R: yellow LED - relay status
U: red LED - over- / undercurrent

4 Adjustment of the tripping delay T_{V}
5 Adjustment of the start-up delay T_{S}
6 DIP switches (see DIP switch functions)

Application

The current monitoring relays CM-SFS. 2 are designed for use in single-phase AC and/or DC systems for the simultaneous monitoring of over- or undercurrents. Depending on the configuration, one c/o (SPDT) contact each or both c/o (SPDT) contacts in parallel can be used for the over- and undercurrent monitoring. The devices operate over an universal range of supply voltages and provide an adjustable start-up as well as tripping delay. Open or closed-circuit principle as well as ON of OFF delay tripping are configurable.

Operating mode

The CM-SFS. 2 with $2 \mathrm{c} / \mathrm{o}$ (SPDT) contacts is available in 2 versions with 3 measuring ranges: $3-30 \mathrm{~mA}, 10-100 \mathrm{~mA}$, 0.1-1 A (CM-SFS.21) and 0.3-1.5 A, 1-5 A, 3-15 A (CM-SFS.22). The measuring range is selected by connecting the monitored wire to the corresponding terminal B1/B2/B3-C.
The units are adjusted with front-face operating controls. The selection of: ON-delay \boxtimes or OFF-delay $\mathbb{\square}$, open- ■
 made with DIP switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold valuemax (>l) for overcurrent, the threshold valuemin (<l) for undercurrent, the tripping delay T_{V} and the start-up delay T_{s}. The tripping delay T_{V} and the start-up delay T_{S} are adjustable over a range of instantaneous to a 30 s delay. The hysteresis is fixed at 5%. Timing is displayed by a flashing green LED labelled U/T.

Function diagrams

Current window monitoring $1 \times 2 \mathrm{c} / \mathrm{o}$ (SPDT) contacts $\times 2000$ ON-delayed \triangle without latching Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \zeta$ luring the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing
\qquad (undercurrent) of the red LED.

If the measured value exceeds the threshold value $\max ^{(>l)}$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{v} starts and the red LED glows, or flashes $\curvearrowleft _$respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \swarrow$ green LED.

When T_{v} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value \min plus the fixed hysteresis (5 \%), the output relays energize and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value \max minus the fixed hysteresis (5 \%) or exceeds the threshold $v^{v a l u e_{\min }}$ plus the fixed hysteresis (5 \%), the output relays de-energize and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.
Closed-circuit principle
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes ЛЛЛ〕 during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing \nearrow (undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows, or flashes $\curvearrowleft \square$ respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \swarrow$ green LED.

When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value ${ }_{\text {min }}$ plus the fixed hysteresis (5 \%), the output relays de-energize and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value ${ }_{\max }$ minus the fixed hysteresis (5 \%) or exceeds the threshold value $_{\text {min }}$ plus the fixed hysteresis (5 \%), the output relays re-energize, the yellow LED glows and the red LED turns off. If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring $1 \times 2 \mathrm{c} / \mathrm{o}$ (SPDT) contacts $1 \times 2 c 00$ OFF-delayed \square without latching
Open-circuit principle 다
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \zeta \swarrow$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing几(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>l)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relays energize, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes $\longleftarrow \square$ (undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold value $\min _{\text {m }}$ plus the fixed hysteresis (5%), the tripping delay T_{V} starts and the red LED turns off.
Timing of T_{V} is displayed by the flashing $\curvearrowleft \square \square$ green LED. When T_{V} is complete, the output relays de-energize and the yellow LED (relay energized) turns off.
If control supply voltage is interrupted, the green LED turns off.
Closed-circuit principle
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows.
The green LED flashes $\Omega \nearrow \nearrow \swarrow$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\nearrow \square$ (undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max ^{(>l)}$) or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relays de-energize, the yellow LED turns off and the red LED glows (overcurrent), or flashes $\swarrow \square _$(undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold $v_{\text {value }}^{\min }$ plus the fixed hysteresis (5 \%), the tripping delay T_{V} starts and the red LED turns off. Timing of T_{V} is displayed by the flashing $\curvearrowleft \square$ green LED. When T_{V} is complete, the output relays energize and the yellow LED (relay energized) glows.
If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring $1 \times 2 \mathrm{c} / \mathrm{o}$ (SPDT) contacts $\$ 20 \mathrm{col}$ ON-delayed \boxtimes with latching \square
Open-circuit principle 다
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \zeta \swarrow$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing \curvearrowleft(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>l)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows, or flashes $\square \square$ respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \swarrow$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value ${ }_{\min }$ plus the fixed hysteresis (5 \%), the output relays energize and the yellow LED (relay energized) flashes $\urcorner \square$.

If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold $v^{v a l u e_{\text {min }}}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relays remain energized (latching function).
If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.
Closed-circuit principle \square
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\nearrow \nearrow \nearrow \swarrow$ during the start-up delay T_{s} and then turns steady. During the start-up delay T_{s} under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\curvearrowleft \square$ (undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max ^{(>l)}$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows, or flashes $\curvearrowleft \square$ respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \square$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value min plus the fixed hysteresis (5 \%), the output relays de-energize and the yellow LED (relays energized) flashes Лـபـ几.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold $v_{\text {value }}^{\text {min }}$ plus the fixed hysteresis (5%), the red LED turns off. The output relays remain de-energized (latching function).
If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \Omega<$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{s} under- or overcurrent is only displayed by glowing (overcurrent) or flashing凸(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max ^{(>l)}$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relays energize, the yellow LED (relays energized) flashes $\Omega \longrightarrow \longrightarrow$ and the red LED glows (overcurrent), or flashes(undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold $v^{v a l u e_{\text {min }}}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relays remain energized (latching function). If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.

Closed-circuit principle
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows.
 overcurrent is only displayed by glowing (overcurrent) or flashing(undercurrent) of the red LED.

If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<1)$ when T_{S} is complete, the output relays de-energize, the yellow LED (relays energized) flashes Лــــ and the red LED glows (overcurrent), or flashes 」(undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold $v^{2}{ }^{\text {min }}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relays remain de-energized (latching function). If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Current window monitoring $2 \times 1 \mathrm{c} / \mathrm{o}$ (SPDT) contact $\times x+000 \mathrm{ON}$-delayed \triangle without latching \triangle

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \Omega<$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{s} under- or overcurrent is only displayed by glowing (overcurrent) or flashing凸(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>l)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows (overcurrent), or flashes $\curvearrowleft \square$ (undercurrent) respectively. Timing of T_{V} is displayed by the flashing $\nearrow \square$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value min plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, energizes and the yellow LED (relay energized) glows.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold value $_{\text {min }}$ plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<l)$ respectively, de-energizes and the red and yellow LEDs turn off.
If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $Л \zeta \swarrow$, during the start-up delay T_{s} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\rfloor \square$ (undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>1)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows (overcurrent), or flashes $\curvearrowleft \square$ (undercurrent) respectively. Timing of T_{V} is displayed by the flashing $\nearrow \square$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5 \%) or is still below the threshold value min plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, de-energizes and the yellow LED (relays energized) turns off.
If the measured value decreases below the threshold value \max minus the fixed hysteresis (5 \%) or exceeds the threshold value $_{\text {min }}$ plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<l)$ respectively, re-energizes, the yellow LED glows and the red LED turns off.
If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring $2 \times 1 \mathrm{c} / \mathrm{o}$ (SPDT) contact 2×1000 OFF-delayed \square without latching

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \Omega<$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<l)$ respectively, energizes, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes $\square \square$ (undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold value \min plus the fixed hysteresis (5 \%), the tripping delay T_{V} starts and the red LED turns off. Timing of T_{V} is displayed by the flashing $\curvearrowleft \square$ green LED. When T_{v} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, de-energizes and the yellow LED (relay energized) turns off.
If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows.
 overcurrent is only displayed by glowing (overcurrent) or flashing $\curvearrowleft \square$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>\mid)$, or $21_{25}-22_{26} / 24_{28}(<\mid)$ respectively, de-energizes, the yellow LED turns off and the red LED glows (overcurrent), or flashes $\square \square$ _ (undercurrent) respectively.

If the measured value decreases below the threshold value max minus the fixed hysteresis (5 \%) or exceeds the threshold value ${ }_{\text {min }}$ plus the fixed hysteresis (5 \%), the tripping delay T_{V} starts and the red LED turns off. Timing of T_{V} is displayed by the flashing $\curvearrowleft \square _$green LED. When T_{V} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, energizes and the yellow LED (relay energized) glows.

If control supply voltage is interrupted, the output relays de-energize and the yellow and green LEDs turn off.

Current window monitoring $2 \times 1 \mathrm{c} / \mathrm{o}$ (SPDT) contact 2×1000 ON-delayed \triangle with latching \square
Open-circuit principle ㄹ.m
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins. The green LED flashes $\Omega \Omega \zeta \swarrow$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing
\qquad(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max ^{(>l)}$) or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows, or flashes $\square \square$ respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \swarrow$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5%) or is still below the threshold value min plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, energizes and the yellow LED (relay energized) flashes $\Omega \longrightarrow \longrightarrow$.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold value ${ }_{\text {min }}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relay $11_{15}-12_{16} / 14_{18}$ (>1), or $21_{25}-22_{26} / 24_{28}$ (<l) respectively, remains energized (latching function).
If control supply voltage is interrupted (reset), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<$ l) respectively, deenergizes and the yellow and green LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay $T_{\text {s }}$ begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $Л \Omega \swarrow$ during the start-up delay T_{S} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\urcorner \square$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value $\max ^{(>l)}$) or drops below the threshold value $\min (<l)$ when T_{S} is complete, the tripping delay T_{V} starts and the red LED glows, or flashes $\rfloor \square$ respectively. Timing of T_{V} is displayed by the flashing $\curvearrowleft \swarrow$ green LED.
When T_{V} is complete and the measured value still exceeds the threshold value \max minus the fixed hysteresis (5%) or is still below the threshold value min plus the fixed hysteresis (5 \%), the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, de-energizes and the yellow LED (relays energized) flashes ЛЦЦЦ几.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold value ${ }_{\text {min }}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relay $11_{15}-12_{16} / 14_{18}$ (>1), or $21_{25}-22_{26} / 24_{28}$ (<l) respectively, remains de-energized (latching function).
If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Current window monitoring $2 \times 1 \mathrm{c} / \mathrm{O}$ (SPDT) contact $\times \times 1$ co OFF-delayed \square with latching \square
Open-circuit principle
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{s} begins. The green LED flashes $\Omega \nearrow \Omega \swarrow$ during the start-up delay T_{s} and then turns steady. During the start-up delay T_{S} under- or overcurrent is only displayed by glowing (overcurrent) or flashing \curvearrowleft(undercurrent) of the red LED.
If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<1)$ when T_{S} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, energizes, the yellow LED (relays energized) flashes $\curvearrowleft \Omega \Omega$ and the red LED glows (overcurrent), or flashes $\urcorner \square$ (undercurrent) respectively.
If the measured value decreases below the threshold value max minus the fixed hysteresis (5%) or exceeds the threshold $v_{\text {value }}^{\text {min }}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, remains energized (latching function).
If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.
Closed-circuit principle \square
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_{S} begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\nearrow \nearrow \preceq$ _ during the start-up delay T_{s} and then turns steady. During the start-up delay T_{s} under- or overcurrent is only displayed by glowing (overcurrent) or flashing \nearrow \qquad _ (undercurrent) of the red LED.

If the measured value exceeds the threshold value $\max (>\mid)$ or drops below the threshold value $\min (<l)$ when T_{S} is complete, the output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<l)$ respectively, de-energizes, the yellow LED (relays energized) flashes』ЦЦட and the red LED glows (overcurrent), or flashes $\square \square \square$ (undercurrent) respectively.

If the measured value decreases below the threshold value ${ }_{\max }$ minus the fixed hysteresis (5%) or exceeds the threshold $v_{\text {value }}^{\text {min }}$ plus the fixed hysteresis (5 \%), the red LED turns off. The output relay $11_{15}-12_{16} / 14_{18}(>1)$, or $21_{25}-22_{26} / 24_{28}(<1)$ respectively, remains de-energized (latching function).
If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

A1-A2	Rated control supply voltage	
B1-C	Measuring range 1:	CM-SFS.21: 3-30 mA
		CM-SFS.22: 0.3-1.5 A
B2-C	Measuring range 2 :	CM-SFS.21: 10-100 mA
		CM-SFS.22: 1-5 A
B3-C	Measuring range 3 :	CM-SFS.21: 0.1-1 A
		CM-SFS.22: 3-15 A

$11_{15}-12_{16} / 14_{18}$ Output contacts - open- or closed-circuit principle $21_{25}-22_{26} / 24_{28}$

Connection diagram

DIP switches

Technical data

Data at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ and rated values, unless otherwise indicated
Input circuits

Supply circuit	A1-A2					
Rated control supply voltage $U_{\text {s }}$	24-240 V AC					
Rated control supply voltage U_{s} tolerance	$-15 \ldots+10 \%$					
Rated frequency	$50 / 60 \mathrm{~Hz}$ or DC					
Typical current / power consumption 24 V DC	$30 \mathrm{~mA} / 0.75 \mathrm{~W}$					
115 V AC	$17 \mathrm{~mA} / 1.9 \mathrm{VA}$					
230 V AC	$11 \mathrm{~mA} / 2.6 \mathrm{VA}$					
Power failure buffering time	20 ms					
Transient overvoltage protection	varistors					
Measuring circuit	B1/B2/B3-C					
Monitoring function	over- and undercurrent monitoring					
Measuring method	TRMS measuring principle					
Measuring inputs	CM-SFS. 21			CM-SFS. 22		
terminal connection	B1-C	B2-C	B3-C	B1-C	B2-C	B3-C
measuring range	3-30 mA	10-100 mA	$0.1-1 \mathrm{~A}$	0.3-1.5 A	1-5 A	3-15A
input resistance	3.3Ω	1Ω	0.1Ω	0.05Ω	0.01Ω	0.0025Ω
pulse overload capacity $\mathrm{t}<1 \mathrm{~s}$	500 mA	1 A	10 A	15 A	50 A	100 A
continuous capacity	50 mA	150 mA	1.5 A	2 A	7 A	17 A
Threshold value	$>$ I and <l adjustable within the indicated measuring range					
Tolerance of the adjusted threshold value	10% of the range end value					
Hysteresis related to the threshold value	5 \% fixed					
Measuring signal frequency range	DC / $15 \mathrm{~Hz}-2 \mathrm{kHz}$					
Rated measuring signal frequency range	DC / 50-60 Hz					
Maximum response time	80 ms					
	120 ms					
Accuracy within the rated control supply voltage tolerance	$\Delta U \leq 0.5 \%$					
Accuracy within the temperature range	$\Delta \mathrm{U} \leq 0.06 \% /{ }^{\circ} \mathrm{C}$					
Timing circuit						
Start-up delay T_{S}	0 s or 0.1-30 s adjustable					
Time delay T_{v}	0 s or $0.1-30$ s adjustable					
Repeat accuracy (constant parameters)	$\pm 0.07 \%$ of full scale					
Tolerance of the adjusted time delay	-					
Accuracy within the rated control supply voltage tolerance	$\Delta \mathrm{t} \leq 0.5 \%$					
Accuracy within temperature range	$\Delta \mathrm{t} \leq 0.06 \% /{ }^{\circ} \mathrm{C}$					

User interface

Indication of operational states		
Control supply voltage	U/T: green LED	\square : control supply voltage applied ЛЛЩЩ: start-up delay T_{s} active \square : tripping delay T_{V} active
Measured value	U: red LED	
Relay status	R: yellow LED	\square : output relay energized, no latching function $\neg \sqcap \neg$: output relay energized, active latching function \square : output relay de-energized, active latching function

General data

| MTBF |
| :--- | :--- |
| Duty time |
| Dimensions (W x H x D |

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Wire size	fine-strand with(out) wire end ferrule	$\begin{aligned} & 1 \times 0.5-2.5 \mathrm{~mm}^{2} \\ & (1 \times 20-14 \mathrm{AWG}) \\ & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 \mathrm{AWG}) \end{aligned}$
	rigid	$\begin{aligned} & 1 \times 0.5-4 \mathrm{~mm}^{2} \\ & (1 \times 20-12 \mathrm{AWG}) \\ & 2 \times 0.5-2.5 \mathrm{~mm}^{2} \\ & (2 \times 20-14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2 \times 0.5-1.5 \mathrm{~mm}^{2} \\ & (2 \times 20-16 \mathrm{AWG}) \end{aligned}$
Stripping length		8 mm (0.32 in)	
Tightening torque		$\begin{aligned} & 0.6-0.8 \mathrm{Nm} \\ & (5.31-7.08 \mathrm{lb} . \mathrm{in}) \end{aligned}$	-

Environmental data

Ambient temperature ranges	operation	$-20 \ldots+60{ }^{\circ} \mathrm{C}$
	storage	$-40 \ldots+85^{\circ} \mathrm{C}$
Damp heat, cyclic (IEC 60068-2-30)		$55^{\circ} \mathrm{C}, 6$ cycle
Vibration, sinusoidal (IEC/EN 60255-21-1)		Class 2
Shock (IEC/EN 60255-21-2)		Class 2

Isolation data

Rated insulation voltage U_{i} (VDE 0110, IEC/EN 60947-1, IEC/EN 60255-5)	supply / measuring circuit / output	600 V
	supply / output 1 / output 2	250 V
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$ (IEC/EN 60947-1, IEC/EN 60255-5)	supply / measuring circuit / output	$6 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$
	supply / output 1 / output 2	$4 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$
Test voltage between all isolated circuits (type test)	rated insulation voltage 250 V	$2.0 \mathrm{kV}, 50 \mathrm{~Hz}$
	rated insulation voltage 600 V	$2.5 \mathrm{kV}, 50 \mathrm{~Hz}$
Pollution degree (VDE 0110, IEC/EN 60664, IEC/EN 60255-5)		3
Overcurrent category (VDE 0110, IEC/EN 60664, IEC/EN 60255-5)		III

Standards

Product standard
Low Voltage Directive
EMC Directive

Electromagnetic compatibility

Interference immunity to		IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level 3
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3
electrical fast transient / burst	IEC/EN 61000-4-4	Level 3
surge	IEC/EN 61000-4-5	Level 3
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

Load limit curves

AC load (resistive)

Derating factor F for inductive AC load

DC load (resistive)

Contact lifetime

Dimensions
in mm and inches

Accessories
in mm and inches

ADP. 01 - Adapter for screw mounting

MAR. 12 - Marker label for devices with DIP switches

COV. 11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110004 C020x
CM-SFS. 2	Instruction manual	1SVC 730580 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Single Phase Monitors

Contact us

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents - in whole or in parts - is forbidden without prior written consent of ABB AG.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for General Purpose Relays category:

Click to view products by ABB manufacturer:

Other Similar products are found below :

```
APF30318 JVN1AF-4.5V-F PCN-105D3MHZ 5JO-10000S-SIL 5JO-1000CD-SIL 5JO-400CD-SIL LY2S-AC220/240 LYQ20DC12
6031007G 6131406HQ 6-1393099-3 6-1393099-8 6-1393122-4 6-1393123-2 6-1393767-1 6-1393843-7 6-1415012-1 6-1419102-2 6-
1423698-4 6-1608051-6 6-1608067-0 6-1616170-6 6-1616248-2 6-1616282-3 6-1616348-2 6-1616350-1 6-1616350-8 6-1616358-7 6-
1616359-9 6-1616360-9 6-1616931-6 6-1617039-1 6-1617052-1 6-1617090-2 6-1617090-5 6-1617347-5 6-1617353-3 6-1617801-8 6-
1617802-2 6-1618107-9 6-1618248-4 M83536/1-027M CX-4014 MAHC-5494 MAVCD-5419-6 703XCX-120A 7-1393100-5 7-1393111-7
7-1393144-5 7-1393767-8
```

