Energy Management **Energy Meter** Type EM21 72D

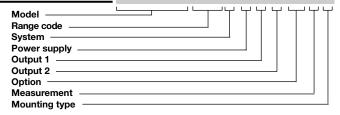
- Certified according to MID Directive (option PF only): see "how to order" below
- Not-certified version available (option X): see "how to order" on the next page.

Product Description

Three-phase energy meter with removable front LCD display unit. The same unit can be used either as a DIN-rail mounting or a panel mounting energy meter. This general purpose three-phase energy meter is suitable for both active and reactive energy metering for cost allocation but also for main electrical parameter measurement and retransmission (transducer function). Housing for DIN-rail mounting with IP50

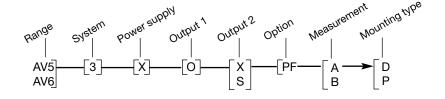
Certified according to MID Directive, Annex "B" + Annex "D" for legal metrology relevant to active electrical energy meters (see Annex MI-003 of MID). Can be used for fiscal (legal) metrology. Only the total active energy meter is certified according to MID.

Class B (kWh) according to EN50470-3


- Class 1 (kWh) according to EN62053-21
- Class 2 (kvarh) according to EN62053-23
- Accuracy ±0.5 RDG (current/voltage)
- Energy meter
- Instantaneous variables readout: 3 DGT
- Energies readout: 7 DGT
- System variables: W, var, PF, Hz, Phase-sequence.
- Single phase variables: V_{LL}, V_{LN}, A, PF
- · Energy measurements: total kWh and kvarh
- TRMS measurements of distorted sine waves (voltages/currents)
- Self power supply
- Dimensions: 4-DIN modules and 72x72mm
- Protection degree (front): IP50
- Application adaptable display and programming procedure (Easyprog function)
- Easy connections management
- Detachable display
- Multi-use housing: for both DIN-rail and panel mounting applications

(front) protection degree. Current measurements carried out by means of external current transformers and voltage measurements carried out either by means of direct connection or by means of potential trans-

formers. EM21-72D is provided, as standard, with a pulsating output for active energy retransmission. In addition a 2wire RS485 communication port is available as an option.


CARLO GAVAZZI

How to order EM21 72D AV5 3 X O X PF A D

Type Selection

Range codes		Syst	System		Power supply	
AV5: AV6:	$400V_{LL}$ AC, 5(6)A (CT connection) $120/230V_{LL}$ AC 5(6)A (VT/PT and CT connections)	3:	3-phase, 4-wire	X:	Self power supply from 18V to 260VAC VLN, 50 Hz (connection VL1-N)	
Outpu	ut 1	Outp	ut 2	Mou	nting type	
0:	Single static output (opto- mosfet)	X: S:	None RS485 port	D: P:	DIN-rail mounting Panel mounting	

PF: Certified according to MID Directive, Annex "B" + Annex "D" for legal metrology relevant to active electrical energy meters (see Annex MI-003 of MID). Can be used for fiscal (legal) metrology.

Measurement

Options

- A: The power is always integrated -both in case of positive (imported) and negative (exported) power
- only the positive (imported) B: power is integrated - no integration in case of negative (exported) power

NOTE: please check the availability of the needed code on the verification path diagram on left before order .

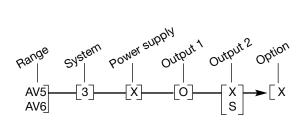
STANDARD

Not certified according to MID directive. Cannot be used for fiscal (legal) metrology.

How to order EM21 72D AV5 3 X O X X

Model —
Range code
System —
Power supply
Output 1
Output 2 —
Option —

Type Selection


Range codes		System		Pow	Power supply		Options	
AV5: AV6:	400V _{LL} AC, 5(6)A or 1(6)A (*) (CT connection) 120/230V _{LL} AC 5(6)A or 1(6)A (*) (VT/PT and CT connections)	3:	balanced and unbalanced load: 3-phase, 4-wire; 3-phase, 3-wire; 2-phase, 3-wire; 1-phase, 2-wire	X:	Self power supply from 18V to 260VAC VLN, 45 to 65 Hz (connection VL1-N)	X:	none	

Output 2

O: Single static output (opto-mosfet)

X:	None
S:	RS485 port

(*) the range 1(6)A is available but not in compliance with the EN50470-3 standard.

NOTE: please check the availability of the needed code on the verification path diagram on left before order.

Input specifications

Rated inputs Current type	System type: 3 Not isolated (shunt inputs).	Energies	Imported Total: 5+2, 6+1 or 7DGT
	Note: the external current	Overload status	EEE indication when the
	transformers can be con- nected to earth individually.		value being measured is
Current range (by CT)	AV5 and AV6: 5(6)A. The		exceeding the "Continuous inputs overload" (maximum
	"1(6)A" range is available		measurement capacity)
	but not in compliance with	Max. and Min. indication	Max. instantaneous vari-
Voltage (direct or by VT/PT)	the EN50470-3 standard.		ables: 999; energies:
voltage (direct of by v1/F1)	AV5: 400VLL; AV6: 120/230VLL		9 999 999. Min. instanta-
Accuracy (Display + RS485)	In: see below, Un: see below		neous variables: 0; ener- gies 0.00.
(@25°C ±5°C, R.H. ≤60%, 50Hz)		LEDs	Red LED (Energy con-
AV5 model	In: 5A, Imax: 6A; Un: 160 to		sumption)
	260VLN (277 to 450VLL).		0.001 kWh by pulse if CT
AV6 model	In: 5A, Imax: 6A; Un: 40 to 144VLN (70 to 250VLL).		ratio x VT ratio is <7;
Current AV5, AV6 models	From 0.002ln to 0.2ln:		0.01 kWh by pulse if CT ratio x VT ratio is \geq 7.0
	±(0.5% RDG +3DGT).		< 70.0;
	From 0.2In to Imax:		0.1 kWh by pulse if CT
Phase-neutral voltage	±(0.5% RDG +1DGT). In the range Un: ±(0,5%		ratio x VT ratio is \geq 70.0
Thase-field at voltage	RDG +1DGT).		< 700.0; 1 kWh by pulse if CT ratio
Phase-phase voltage	In the range Un: ±(1% RDG		x VT ratio is \geq 700.0;
_	+1DGT).	Max frequency	16Hz, according to
Frequency	Range: 50Hz; resolution: ±1Hz		EN50470-3
Active power	\pm (1%RDG +2DGT).		Green LED (on the terminal blocks side) for power on
Power Factor	±[0.001+1%(1.000 - "PF		(steady) and communica-
	RDG")].		tion status: RX-TX (in case
Reactive power	±(2%RDG +2DGT).		of RS485 option only)
Active energy	class B according to EN50470-1-3;		blinking.
	class 1 according to	Measurements	See "List of the variables that can be connected to:"
	EN62053-21.	Method	TRMS measurements of
Reactive energy	class 2 according to	mounou	distorted wave forms.
	EN62053-23. In: 5A, Imax: 6A; 0.1 In:	Coupling type	By means of external CT's.
	0.5A.	Crest factor	In 5A: ≤3 (15A max. peak).
	Start up current: 10mA.	Current Overloads	
Energy additional errors		Continuous For 500ms	6A, @ 50Hz. 120A, @ 50Hz.
Influence quantities	According to EN62053-21, EN50470-1-3, EN62053-23	Voltage Overloads	
Temperature drift	≤200ppm/°C.	Continuous	1.2 Un
Sampling rate	1600 samples/s @ 50Hz,	For 500ms	2 Un
oumping rate	1900 samples/s @ 60Hz	Current input impedance	0.01/1
Display refresh time	1 second	<u>5(6)A</u>	< 0.3VA
Display	2 lines	Voltage input impedance Self-power supply	Power consumption: <2VA.
	1 st line: 7-DGT,	Frequency	50 ± 5 Hz/ 60 ± 5 Hz.
	2 nd line: 3-DGT or 1 st line: 3-DGT + 3-DGT,	Key-pad	Two push buttons for vari-
	2^{nd} line: 3-DGT.	toy pau	able selection and pro-
Туре	LCD, h 7mm.		gramming of the instru-
Instantaneous variables			ment working parameters.
read-out	3-DGT.		

Output specifications

Pulse output		Connections	2-wire. Max. distance
Number of outputs	1		1000m, termination directly
Туре	Programmable from 0.01 to		on the instrument.
	9.99 kWh per pulses. Out-	Addresses	247, selectable by means
	put connectable to the		of the front keypad
	energy meters (kWh)	Protocol	MODBUS/JBUS (RTU)
Pulse duration	$T_{OFF} \ge 120$ ms, according to	Data (bidirectional)	
	EN62052-31.	Dynamic (reading only)	System and phase vari-
	T _{ON} selectable (30 ms or		ables: see table "List of
	100 ms) according to		variables"
	EN62053-31	Static (reading and writing)	All the configuration
Output	Static: opto-mosfet.		parameters.
Load	V _{ON} 2.5 VAC/DC max. 70 mA,	Data format	1 start bit, 8 data bit, no
	V _{OFF} 260 VAC/DC max.		parity,1 stop bit.
Insulation	By means of optocouplers,	Baud-rate	9600 bits/s.
	4000 VRMS output to mea-	Driver input capability	1/5 unit load. Maximum
	suring inputs.		160 transceiver on the
RS485			same bus.
Туре	Multidrop, bidirectional	Insulation	By means of optocouplers,
.) 0	(static and dynamic vari-		4000 VRMS output to mea-
	ables)		suring input.

Software functions

Password 1st level 2nd level Programming lock	Numeric code of max. 3 DGT; 2 protection levels of the pro- gramming data: Password "0", no protection; Password from 1 to 999, all data are protected By means of potentiometer (back-side of the display module) it is possible to lock	Transformer ratio VT (PT) CT	1.0 to 99.9 / 100 to 999 / 1.0 to 99.9 / 100 to 999. The max CTxVT product for AV6 models is 2421 (X option) or 908 (PF option). The max CT ratio for MID applications (PF option) is 525.
	the access to all the configu-	Displaying	Up to 3 variables per page.
System selection System 3-Ph.n unbalanced load System 3-Ph.1 balanced load	ration parameters. 3-phase (4-wire) 3-phase (3-wire) • 3-phase (3-wire) one current		See « Display pages », 3 different set of variables avail- able (see « Display pages ») according to the metering function being selected.
Gystern of hit balanced load	and 3-phase to phase voltage measurements. Note: the phase to phase voltage is cal-	Reset	By means of the front key- pad: total energies (kWh, kvarh).
Sustan 2 Dh	 culated multiplying by 1.73 the virtual phase to neutral voltage. 3-phase (4-wire) one current and 3-phase to neutral voltage measurements. Note: the phase to phase voltage is calculated multiplying by 1.73 the virtual phase to neutral voltage. 3-phase (2-wire) one current and 1-phase (L1) to neutral voltage measurement. 	Easy connection function	Wrong phase detection and displaying. For all the display selections (except "D") the current, pow- er and energy measurement are independent on the cur- rent direction.
System 2-Ph System 1-Ph	2-phase (3-wire) 1-phase (2-wire)		

General specifications

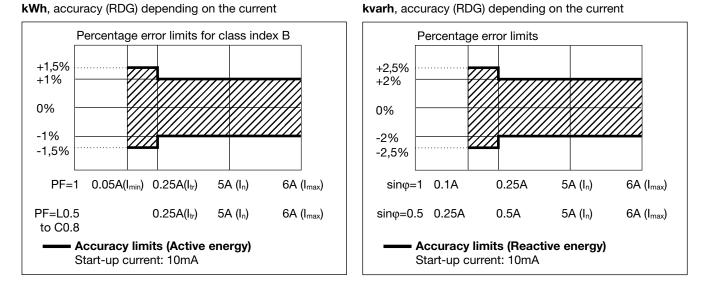
Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C) according to EN62053-21 and EN62053-23.	Surge Radio frequency suppression Standard compliance	On current and voltage measuring inputs circuit: 6kV; According to CISPR 22
Storage temperature	-30°C to +70°C (-22°F to 158°F) (R.H. < 90% non- condensing @ 40°C) according to EN62053-21 and EN62053-23.	Safety Metrology	IEC60664, IEC61010-1 EN60664, EN61010-1 EN62052-11 EN62053-21, EN62053-23, EN50470-3
Installation category	Cat. III (IEC60664, EN60664).	Pulse output Approvals	DIN43864, IEC62053-31 CE, cULus listed, MID (PF option only)
Insulation (for 1 minute)	4000 VRMS between mea- suring inputs and digital output.	Connections Cable cross-section area	Screw-type 2.4 x 3.5 mm Min./Max. screws tighten-
Dielectric strength	4000 VRMS for 1 minute.		ing torque: 0.4 Nm / 0.8 Nm
Noise rejection CMRR	100 dB, 48 to 62 Hz.	Housing	
EMC Electrostatic discharges Immunity to irradiated Electromagnetic fields	According to EN62052-11 15kV air discharge; Test with current: 10V/m from 80 to 2000MHz; Test without any current:	Dimensions (WxHxD) Material Mounting	72 x 72 x 65 mm Noryl PA66, self-extinguishing: UL 94 V-0 Panel and DIN-rail
Burst	30V/m from 80 to 2000MHz;	Protection degree Front Screw terminals	IP50 IP20
Immunity to conducted disturbances	measuring inputs circuit: 4kV munity to conducted		Approx. 400 g (packing included)

Power supply specifications

Self power supply

18 to 260VAC (48-62Hz). Across input "VL1" and "N" **Power consumption**

≤2VA/1W


Insulation between inputs and outputs

	Measuring Inputs	Opto-Mosfet output	Communication port	Self power supply
Measuring Inputs	-	4kV	4kV	0kV
Opto-Mosfet output	4kV	-	-	4kV
Communication port	4kV	-	-	4kV
Self power supply	0kV	4kV	4kV	-

NOTE: all the models have, mandatorily, to be connected to external current transformers.

Accuracy (According to EN50470-3 and EN62053-23)

MID "Annex MI-003" compliance (PF option only)

Accuracy	$\begin{array}{l} 0.9 \ \text{Un} \leq \text{U} \leq 1.1 \ \text{Un}; \\ 0.98 \ \text{fn} \leq \text{f} \leq 1.02 \ \text{fn}; \\ \text{fn}: 50\text{Hz}; \\ \text{cos}\phi: 0.5 \ \text{inductive to} \ 0.8 \\ \text{capacitive.} \\ \text{Class B I st: } 0.01\text{A}; \text{I min:} \\ 0.05\text{A}; \text{I tr: } 0.25\text{A}; \text{I n: } 5\text{A} \\ \text{I max: } 6\text{A}. \end{array}$	EMC compliance Mechanical compliance Protection degree	E2 M2 in order to achieve the protection against dust and water required by the norms harmonized to MID, the meter must be used only installed in IP51 (or
Operating temperature	-25°C to +55°C (-13°F to 131°F) (R.H. from 0 to 90% non-condensing @ 40°C)		better) cabinets.

Used calculation formulas

Phase variables

Instantaneous effective voltage

$$V_{1N} = \sqrt{\frac{1}{n} \cdot \sum_{1}^{n} (V_{1N})_{i}^{2}}$$

Instantaneous active power

$$W_1 = \frac{1}{n} \cdot \sum_{1}^{n} \left(V_{1N} \right)_i \cdot \left(A_1 \right)_i$$

Instantaneous power factor

$$\cos\varphi_1 = \frac{W_1}{VA_1}$$

Instantaneous effective current

 $A_{\rm I} = \sqrt{\frac{1}{n} \cdot \sum_{\rm I}^{n} (A_{\rm I})_i^2}$ Instantaneous apparent power

 $VA_1 = V_{1N} \cdot A_1$

Instantaneous reactive power var₁ = $\sqrt{(VA_1)^2 - (W_1)^2}$

System variables

Equivalent three-phase voltage $V_{\Sigma} = \frac{V_1 + V_2 + V_3}{3} \cdot \sqrt{3}$ Voltage asymmetry

Three-phase active power

 $W_{\Sigma} = W_1 + W_2 + W_3$ Three-phase apparent power $VA_{\Sigma} = \sqrt{W_{\Sigma}^2 + \operatorname{var}_{\Sigma}^2}$ Three-phase power factor $\cos \varphi_{\Sigma} = \frac{W_{\Sigma}}{VA_{\Sigma}}$ (TPF)

Energy metering

$$k \operatorname{var} hi = \int_{t_1}^{t_2} Qi(t) dt \cong \Delta t \sum_{n_1}^{n_2} Qnj$$

$$kWhi = \int_{t_1}^{t_2} Pi(t) dt \cong \Delta t \sum_{n_1}^{n_2} Pnj$$

Where:

i= considered phase (L1, L2 or L3) P= active power; Q= reactive power; t₁, t₂ =starting and ending time points of consumption recording; n= time unit; Δ t= time interval between two successive power consumptions; n₁, n₂ = starting and ending discrete time points of consumption recording

List of the variables that can be connected to:

RS485 communication portPulse outputs (only "energies")

No	Variable	1-ph. sys.	2-ph. sys.	3-ph. 4-wire balanced system	3-ph. 3-wir balanced system	3-ph. 4-wire unbalanced system	3-ph. 3-wir unbalanced system	Notes
1	kWh	х	х	x	х	x	х	Total
2	kvarh	Х	х	x	х	x	х	Total
3	V L-N sys (1)	0	х	x	х	x	х	sys=system (∑)
4	V L1	х	х	x	х	x	х	
5	V L2	0	х	x	х	x	х	
6	V L3	0	0	x	х	x	х	
7	V L-L sys (1)	0	х	x	х	x	х	sys=system (∑)
8	V L1-2	0	х	x	х	x	х	
9	V L2-3	0	0	x	х	x	х	
10	V L3-1	0	0	x	х	x	х	
11	A L1	х	х	x	х	x	х	
12	A L2	0	х	x	х	x	х	
13	A L3	0	0	x	х	x	х	
14	VA sys (1)	Х	х	x	х	x	х	sys=system (∑)
15	VA L1 (1)	х	х	x	х	x	х	
16	VA L2 (1)	0	х	x	х	x	х	
17	VA L3 (1)	0	0	x	х	x	х	
18	var sys	х	х	x	х	x	х	sys=system (∑)
19	var L1 (1)	х	х	x	х	x	х	
20	var L2 (1)	0	х	x	х	x	х	
21	var L3 (1)	0	0	x	х	x	х	
22	W sys	х	х	x	х	x	х	sys=system (∑)
23	W L1 (1)	х	х	x	х	x	х	
24	W L2 (1)	0	х	x	х	x	х	
25	W L3 (1)	0	0	x	х	x	х	
26	PF sys	Х	х	x	х	x	х	sys=system (Σ)
27	PF L1	Х	х	x	х	x	х	
28	PF L2	0	х	x	x	x	х	
29	PF L3	0	0	x	х	x	х	
30	Hz	х	x	x	х	x	х	
31	Phase sequence	0	0	x	х	x	х	

(x) = available

(o) = not available (zero indication on the display)
 (1) = Variable available only through the serial communication port RS485

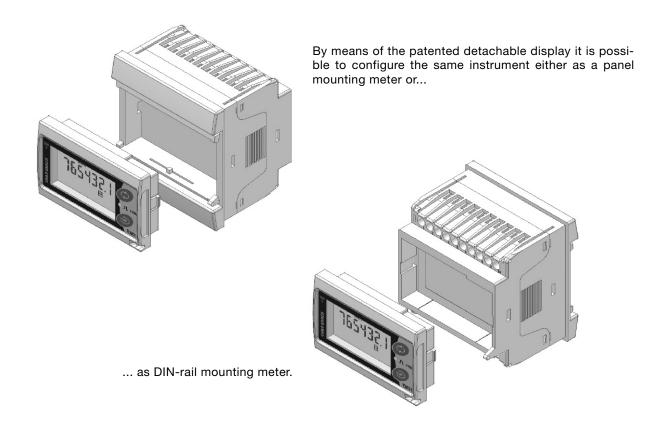
Display pages

No	1st variable	2nd variable	3rd variable	Note	Applications			
	(1 st half-line)	(2 nd half-line)	(2nd line)	Note		В	С	D
		Phase sequence		The phase sequence triangle appears in any page only if there is a phase reverse	х	х	х	х
1	Total kWh		W sys		х	х	х	х
2	Total kvarh		kvar sys			х	х	х
3		PF sys	Hz	Indication of C, -C, L, -L depending on the quadrant		х	х	х
4	PF L1	PF L2	PF L3	Indication of C, -C, L, -L depending on the quadrant			х	х
5	A L1	A L2	A L3				х	х
6	V L1-2	V L2-3	V L3-1				х	х
7	V L1	V L2	V L3				х	х

Additional available information on the display

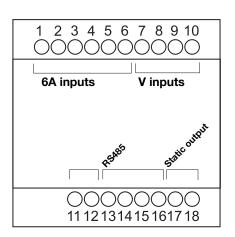
Туре	1st line	2nd line	note		
Meter information 1	Y. 2007	r.A0	Year of production and firmware release		
Meter information 2	value	LEd (kWh)	KWh per pulse of the LED		
Meter information 3	SYS [3P.n]	value	System type and connection type		
Meter information 4	Ct rAt.	value	Current transformer ratio		
Meter information 5	Ut rAt.	value	Voltage transformer ratio		
Meter information 6	PuLSE (kWh)	value	Pulse output: kWh per pulse		
Meter information 7	Add	value	Serial communication address		
Meter information 8	value	Sn	Secondary address (M-bus protocol)		

List of selectable applications

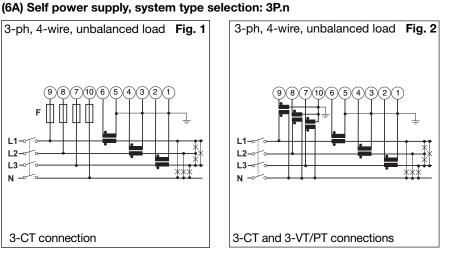

	Description	Notes		
Α	Active energy meter **	Active energy measurement with some minor parameters		
В	Active and reactive energy meter **	Active and reactive energy measurement with some minor parameters		
С	Full set of variables **	Full set of available variables can be displayed (default selection, except PFB option)		
D	Full set of variables **	Full set of available variables can be displayed * (default in PFB option)		

Notes:

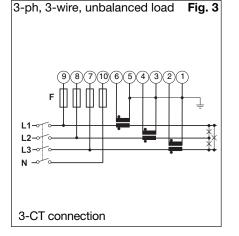
* Only in "D" application the actual direction of the current is considered.


* Not available with option PF A. ** Not available with option PF B.

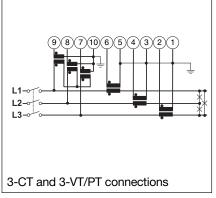
One instrument with double mounting capability

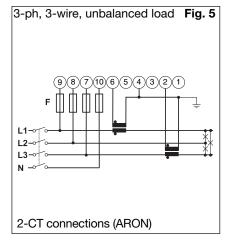


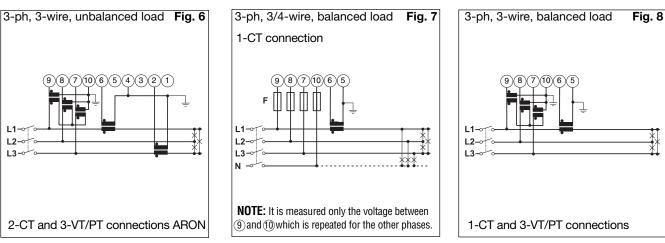
Wiring diagrams



(10)(6)(5)(4)(3)(2)L1 L2 13-3-CT connection

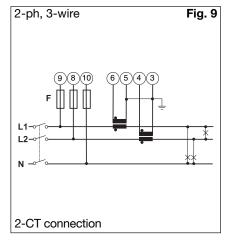

3-ph, 4-wire, unbalanced load Fig. 1

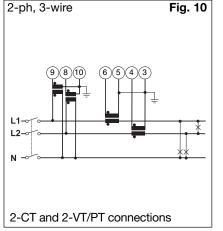

(6A) System type selection: 3P.n

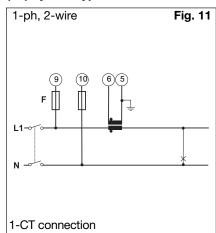

L3

3-ph, 3-wire, unbalanced load Fig. 4

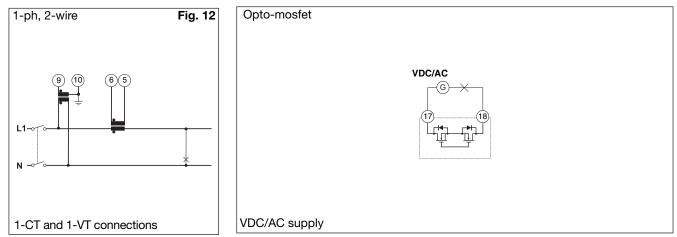
(6A) Self power supply, system type selection: 3P.1



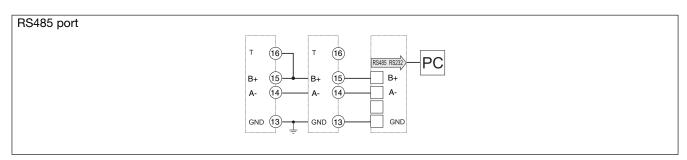

NOTE: For a correct power supply of the instrument, the neutral must always be connected.


Wiring diagrams

(6A) System type selection: 2P

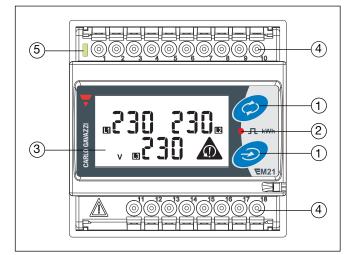


(6A) System type selection: 1P



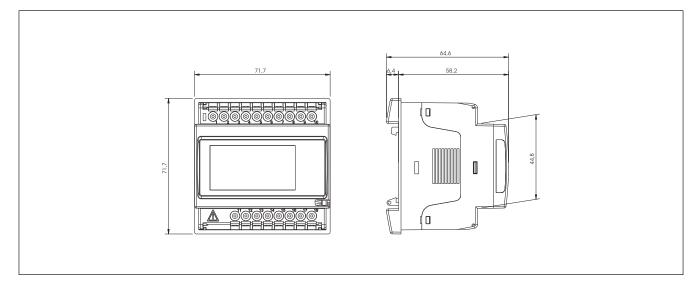
(6A) System type selection: 1P

Static output wiring diagram

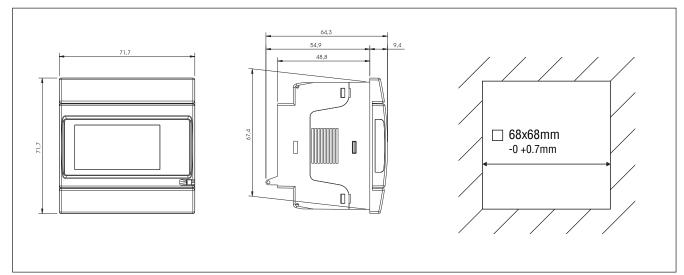

RS485 port wiring diagram

RS485 NOTE: additional devices provided with RS485 are connected as per the picture above. The termination of the serial output is carried out only on the last instrument of the network, by means of a jumper between (B+) and (T).

Front panel description


Dimensions (DIN configuration)

1. Keypad To program the configuration parameters and scroll the variables on the display.


2. Pulse output LED Red LED blinking proportional to the energy being measured.

3. Display LCD-type with alphanumeric indications to display all the measured variables.

- 4. Connections
- Screw terminal blocks for instrument wiring.
- 5. Green LED Lit when power supply is available

Dimensions and panel cut out (72x72 panel mounting configuration)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for carlo gavazzi manufacturer:

Other Similar products are found below :

 CTD10S16005AXXX
 CTD2X1005AXXX
 FPD01SBS200
 FPD06SCC200
 FPT01SBS200
 MP3100
 PD30CNG02NPM5RT

 PD30CNP06NPM5DU
 PH18CNT20PASA
 G21305521700
 G21960005700
 G34296470800
 G34304443115
 G34396470115
 G34404443824

 G89111010
 GAD1213024
 GP67630107
 PPB01CM23N
 PPC01DM23
 PS21M-US11PR-M0L
 PS21R-NT11N7-YK0
 GT150S105A

 GT225S100A
 GT400S400A
 GT800S800A
 GT95L36A
 GT95L95A
 A208024060
 A82-10100
 RAP48A3
 AD2000

 RCP1100324DC
 RCP800224VDC
 REC2R48D30GKE
 REC3B48A30GKE
 RGC1A60D62KGU
 RGC1FS60D30GGE
 RJ1A23D45E

 RJ1P23MBT50ECV
 RJ1P48V30E
 DFC01DB48
 DHA51CM24S8
 RMD2H24MA30
 RMD3H24LA40
 DPA02CM40
 DPB71CM48

 DPC01DM48400HZ
 AQ1018
 D
 AQ1018
 AQ1018
 AQ1018
 AQ1018