MDP 01, 03, 05

Thick Film Resistor Networks, Dual-In-Line, Molded DIP

FEATURES

- Isolated, bussed, and dual terminator schematics available
- 0.160 " (4.06 mm) maximum seated height and rugged, molded case construction
- Thick film resistive elements
- Low temperature coefficient $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ $\pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Reduces total assembly costs
- Compatible with automatic inserting equipment
- Wide resistance range (10Ω to $2.2 \mathrm{M} \Omega$)
- Uniform performance characteristics
- Available in tube pack
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912
Note
This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

STANDARD ELECTRICAL SPECIFICATIONS							

Notes

(1) For resistor power ratings at $+25^{\circ} \mathrm{C}$ see derating curves
(2) Tighter tracking available
${ }^{(3)} \pm 2 \%$ standard, $\pm 1 \%$, and $\pm 5 \%$ available

GLOBAL PART NUMBER INFORMATION

New Global Part Numbering: MDP1403100RGD04 (preferred part numbering format)

New Global Part Numbering: MDP1405121CGD04 (preferred part numbering format)

Historical Part Number Example: MDP1405221271G (will continue to be accepted)

MDP	14	05	221	271	G	D04
HISTORICAL MODEL	$\frac{1}{\text { PIN COUNT }}$	SCHEMATIC	RESISTANCE VALUE 1	RESISTANCE VALUE 2	TOLERANCE CODE	PACKA

Note

- For additional information on packaging, refer to the Through-Hole Network Packaging document (www.vishay.com/doc?31542).

DIMENSIONS in inches (millimeters)

TECHNICAL SPECIFICATIONS			
PARAMETER	UNIT	MDP14	MDP16
Package Power Rating (Maximum at $+70^{\circ} \mathrm{C}$)	W	1.73	1.92
Voltage Coefficient of Resistance	$\mathrm{V}_{\text {eff }}$	<50 ppm typical	
Dielectric Strength	$\mathrm{V}_{\text {AC }}$	200	
Insulation Resistance	Ω	$>10000 \mathrm{M}$ minimum	
Operating Temperature Range	${ }^{\circ} \mathrm{C}$	-55 to +125	
Storage Temperature Range	${ }^{\circ} \mathrm{C}$	-55 to +150	

MECHANICAL SPECIFICATIONS	
Marking Resistance to Solvents	Permanency testing per MIL-STD-202, method 215
Solderability	Per MIL-STD-202, method 208E
Body	Molded epoxy
Terminals	Solder plated leads
Weight	14 pin $=1.3 \mathrm{~g} ; 16$ pin $=1.5 \mathrm{~g}$

IMPEDANCE CODES						
CODE	$\mathbf{R}_{\mathbf{1}}(\boldsymbol{\Omega})$	$\mathbf{R}_{\mathbf{2}}(\boldsymbol{\Omega})$	CODE	$\mathbf{R}_{\mathbf{1}}(\Omega)$	$\mathbf{R}_{\mathbf{2}}(\Omega)$	
500 B	82	130	141 A	370	270	
750 B	120	200	181 A	330	390	
800 C	130	210	191 A	330	470	
990 A	160	260	221 B	330	680	
101 C	180	240	281 B	560	560	
111 C	180	270	381 B	560	1.2 K	
121 B	180	390	501 C	620	2.7 K	
121 C	220	270	102 A	1.5 K	3.3 K	
131 A	220	330	202 B	3 K	6.2 K	

Note

- For additional impedance codes, refer to the Dual Terminator Impedance Code Table document (www.vishay.com/doc?31530).

CIRCUIT APPLICATIONS	
01 Schematic	13 and 15 resistors with one pin common The MDPXX01 circuit provides a choice of 13 and 15 nominally equal resistors, each connected between a common pin (14 and 16) and a discrete PC board pin. Commonly used in the following applications: - MOS/ROM Pull-up/Pull-down - Open Collector Pull-up - "Wired OR" Pull-up - Power Driven Pull-up - TTL Input Pull-down - Digital Pulse Squaring - TTL Unused Gate Pull-up - High Speed Parallel Pull-up
03 Schematic	7 or 8 isolated resistors The MDPXX03 provides a choice of 7 and 8 nominally equal resistors, each resistor isolated from all others and wired directly across. Commonly used in the following applications: - "Wired OR" Pull-up - Power Driven Pull-up - Powergate Pull-up - Line Termination - Long-line Impedance Balancing - LED Current Limiting - ECL Output Pull-down - TTL Input Pull-down
05 Schematic	TTL dual-line terminator; pulse squaring The MDPXX05 circuit contains 12 and 14 series pair of resistors. Each series pair is connected between ground and a common line. The junction of these resistor pairs is connected to the input terminals. The 05 circuits are designed for TTL dual-line termination and pulse squaring.

Note

- Standard E24 resistance values stocked. Consult factory.

DERATING

PERFORMANCE		
TEST	CONDITIONS	MAX. ΔR (TYPICAL TEST LOTS)
Power Conditioning	1.5 rated power, applied 1.5 h "ON" and 0.5 h "OFF" for 100 h $\pm 4 \mathrm{~h}$ at $+25^{\circ} \mathrm{C}$ ambient temperature	± 0.50 \% ΔR
Thermal Shock	5 cycles between $-65^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$	$\pm 0.50 \% \Delta R$
Short Time Overload	$2.5 \times$ rated working voltage 5 s	$\pm 0.25 \% \Delta R$
Low Temperature Operation	45 min at full rated working voltage at $-65{ }^{\circ} \mathrm{C}$	± 0.25 \% ΔR
Moisture Resistance	240 h with humidity ranging from $80 \% \mathrm{RH}$ to $98 \% \mathrm{RH}$	$\pm 0.50 \% \Delta R$
Resistance to Soldering Heat	Leads immersed in $+350^{\circ} \mathrm{C}$ solder to within $1 / 16$ " of device body for 3 s	± 0.25 \% ΔR
Shock	Total of 18 shocks at 100 g 's	± 0.25 \% ΔR
Vibration	12 h at maximum of 20 g 's between 10 Hz and 2000 Hz	± 0.25 \% ΔR
Load Life	1000 h at $+70^{\circ} \mathrm{C}$, rated power applied 1.5 h " ON , 0.5 h "OFF" for full 1000 h period. Derated according to the curve.	$\pm 1.00 \% \Delta R$
Terminal Strength	4.5 pound pull for 30 s	± 0.25 \% ΔR
Insulation Resistance	$10000 \mathrm{M} \Omega$ (minimum)	-
Dielectric Withstanding Voltage	No evidence of arcing or damage ($200 \mathrm{~V}_{\mathrm{RMS}}$ for 1 min)	-

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for vishay manufacturer:
Other Similar products are found below :
M39006/22-0577H Y00892K49000BR13L VSKT250-16PBF M8340109M6801GGD03 NTCALUG01A103F291L ITU1341SM3 VS-
MBRB1545CTPBF 1KAB100E 1KAB20E IH10EB600K12 CP0005150R0JE1490 562R5GAD47RR S472M69Z5UR84K0R
MKP1848C65090JY5L CRCW1210360RFKEA VSMF4720-GS08 TSOP34438SS1V CRCW04024021FRT7 001789X
CRCW08054K00FKTA LVR10R0200FE03 CRCW12063K30FKEAHP 009923A CRCW2010331JR02 CRCW25128K06FKEG
CS6600552K000B8768 CSC07A0110K0GPA M34C156K100BZSS M39003/01-2289 M39003/01-2784 M39006/25-0133 M39006/25-0228
M64W101KB40 M64Z501KB40 CW001R5000JS73 CW0055R000JE12 CW0056K800JB12 CW0106K000JE73 672D826H075EK5C
CWR06JC105KC CWR06NC475JC MAL219699001E3 MCRL007035R00JHB00 PTF56100K00QYEK PTN0805H1502BBTR1K RCWL1210R130JNEA RH005220R0FE02 RH005330R0FC02 RH010R0500FC02 132B20103

