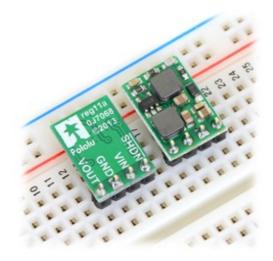
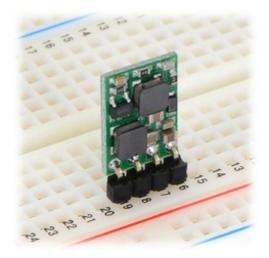


Pololu 9V Step-Up/Step-Down Voltage Regulator S10V3F9




Overview

The Pololu step-up/step-down voltage regulator S10V3F9 is a switching regulator (also called a switched-mode power supply (SMPS) or DC-to-DC converter) with a single-ended primary-inductor converter (SEPIC) topology. It takes an input voltage from 2.5 V to 18 V and increases or decreases the voltage to a fixed 9 V output with a typical efficiency of 70% to 80%.

This flexibility in input voltage is especially well-suited for battery-powered applications in which the battery voltage begins above 9 V and drops below as the battery discharges. Since it lacks the typical restriction that the battery voltage stay above the required voltage throughout its life, new battery packs and form factors can be considered. For instance, a 7-cell battery holder, which might have an 11 V output with fresh alkalines but an 8.4 V nominal voltage with NiMH cells and a 7 V output with partially discharged cells, can now be used to produce a steady 9 V output.

In typical applications, this regulator can deliver over 300 mA continuous; please see the graphs at the bottom of this page for a more detailed characterization. The regulator's thermal shutdown prevents damage from overheating, but it does not have short-circuit or reverse-voltage protection.

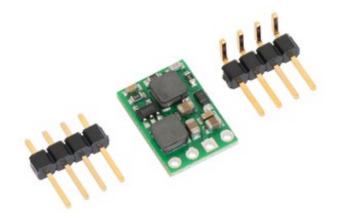
This regulator is also available with a fixed 5 V output or a fixed 12 V output.

Features

- Input voltage: 2.5 V to 18 V (can be higher than, the same as, or lower than the 9 V output)
- Fixed 9 V output with 4% accuracy
- Typical continuous output current: 300 mA (actual continuous output current depends on input voltage; see Typical Efficiency and Output Current section below for details)
- <2 mA typical no-load quiescent current
- Integrated over-temperature shutoff
- Small size: 0.40" × 0.575" × 0.1" (10 mm × 15 mm × 3 mm)

Using the Regulator

During normal operation, this product can get hot enough to burn you. Take care when handling this product or other components connected to it.

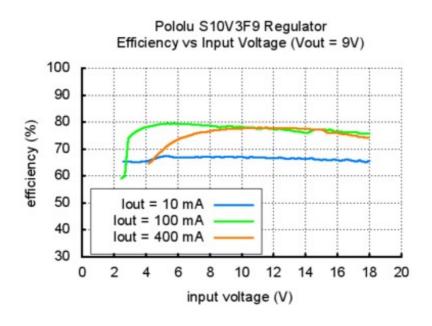

Connections

This step-up/step-down regulator has four connections: shutdown (SHDN), input voltage (VIN), ground (GND), and output voltage (VOUT).

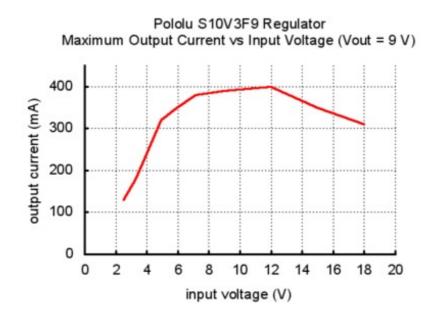
The SHDN pin can be driven low (under 0.4 V) to power down the regulator. The quiescent current in this shutdown mode is dominated by the current in the 10 k Ω pull-up resistor from SHDN to VIN. With SHDN held low, this resistor will draw 0.1 mA per volt on VIN (for example, the shutdown current with a 5 V input will be 0.5 mA). This pin should only ever be driven low or left floating; this can be accomplished with a physical switch that toggles it between ground and disconnected, or electrically with something like a transistor controlled by an I/O line.

The input voltage should be between 2.5 V and 18 V. Lower inputs can shut down the voltage regulator; higher inputs can destroy the regulator, so you should ensure that noise on your input is not excessive and be wary of destructive LC spikes (see below for more information).

The four connections are labeled on the back side of the PCB, and they are arranged with a 0.1'' spacing along the edge of the board for compatibility with standard solderless breadboards and perfboards and connectors that use a 0.1'' grid. You can solder wires directly to the board or solder in either the 4×1 straight male header strip or the 4×1 right-angle male header strip that is included.



Typical Efficiency and Output Current


The efficiency of a voltage regulator, defined as (Power out)/(Power in), is an important measure of its performance, especially when battery life or heat are concerns. As shown in the graphs below, this switching regulator typically has an efficiency of 70% to 80%.

Pololu S10V3F9 Regulator Efficiency vs Output Current (Vout = 9V)

The maximum achievable output current of the board varies with the input voltage but also depends on other factors, including the ambient temperature, air flow, and heat sinking. The graph below shows output currents at which this voltage regulator's over-temperature protection typically kicks in after a few seconds. These currents represent the limit of the regulator's capability and cannot be sustained for long periods, so the continuous currents that the regulator can provide are typically lower.

LC Voltage Spikes

When connecting voltage to electronic circuits, the initial rush of current can cause voltage spikes that are much higher than the input voltage. If these spikes exceed the regulator's maximum

voltage, the regulator can be destroyed. In our tests with typical power leads (~30" test clips), input voltages above 11 V caused spikes over 18 V. You can suppress such spikes by soldering a 33 μ F or larger electrolytic capacitor close to the regulator between VIN and GND.

More information about LC spikes can be found in our application note, Understanding Destructive LC Voltage Spikes.

Documentation on producer website.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Converter Modules category:

Click to view products by Pololu manufacturer:

Other Similar products are found below :

6V 1A STEP-DOWN D24V10F6 7.5V 2.4A STEP-DOWN D24V22F7 ADJUSTABLE BOOST REGULATOR 2.5-9.5V 4-25V ADJUSTABLE STEP-DOWN REGULULATOR 5V, 5.5A STEP-DOWN VOLT REG. D36V50F5 9V, 5A STEP-DOWN VOLT REG. D36V50F9 12V, 4.5A STEP-DOWN VOLT REG. D36V50F12 D24V150F12 D24V150F3 D24V150F5 D24V150F6 D24V150F9 D24V25F3 D24V25F6 D24V25F7 12V, 600MA STEP-DOWN VOLTAGE REGULATOR 15V, 600MA STEP-DOWN VOLTAGE REGULATOR FIT0169 POLOLU-2095 POLOLU-2096 POLOLU-2099 POLOLU-2115 POLOLU-2118 POLOLU-2121 POLOLU-2122 POLOLU-2123 POLOLU-2562 POLOLU-2568 POLOLU-2572 POLOLU-2577 POLOLU-2841 POLOLU-2842 POLOLU-2866 POLOLU-799 2.5-7.5V ADJUSTABLE STEP-DOWN REGULATOR DFR0205 FIT0172 3.3V, 600MA STEP-DOWN VOLTAGE REGULATOR 3.3V, 6.5A STEP-DOWN VOLT REG. D36V50F3 FIT0471 DFR0379 OKY3498-1 OKY3498-2 OKY3498-3 OKY3501-2 OKY3501-3 OKY3502-1 OKY3502-4 OKY3502-5 OKY3502-6