

Truth Table

Inputs				
Outputs				
$\overline{\mathbf{E}}$	S	$\mathrm{I}_{\mathbf{0}}$	$\mathbf{I}_{\mathbf{1}}$	Z
H	X	X	X	L
L	H	X	L	L
L	H	X	H	H
L	L	L	X	L
L	L	H	X	H

H = HIGH Voltage Leve
L = LOW Voltage Level
X = Immateria

Functional Description

The LVX157 is a quad 2-input multiplexer. It selects four bits of data from two sources under the control of a common Select input (S). The Enable input ($\overline{\mathrm{E}}$) is active-LOW. When E is HIGH, all of the outputs (Z) are forced LOW regardless of all other inputs. The LVX157 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below
$\mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}} \cdot\left(\mathrm{I}_{1 \mathrm{a}} \cdot \mathrm{S}+\mathrm{I}_{\mathrm{oa}} \cdot \overline{\mathrm{S}}\right)$
$Z_{b}=\bar{E} \cdot\left(I_{1 b} \cdot S+I_{0 b} \cdot \bar{S}\right)$
$Z_{C}=\bar{E} \cdot\left(I_{1 c} \cdot S+I_{0 c} \cdot \bar{S}\right)$
$Z_{d}=\bar{E} \cdot\left(I_{1 d} \cdot S+I_{0 d} \cdot \bar{S}\right)$

Logic Diagram

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions（Note 2）
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	
DC Input Diode Current（ I_{IK} ）		Supply Voltage（ V_{CC} ） 2.0 V to 3.6 V
$V_{1}=-0.5 \mathrm{~V}$	－20 mA	Input Voltage（ V_{l} ） $\mathrm{V}^{\text {a }}$ to 5.5 V
DC Input Voltage（ V_{l} ）	-0.5 V to 7 V	Output Voltage（ V_{O} ） 0 V to V_{CC}
DC Output Diode Current（ I_{OK} ）		Operating Temperature（ T_{A} ）$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Input Rise and Fall Time（ $\Delta \mathrm{t} / \Delta \mathrm{V}$ ） $0 \mathrm{~ns} / \mathrm{V}$ to $100 \mathrm{~ns} / \mathrm{V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$+20 \mathrm{~mA}$	
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	
DC Output Source		
or Sink Current（I）	$\pm 25 \mathrm{~mA}$	Note 1：The＂Absolute Maximum Ratings＂are those values beyond which
DC V ${ }_{\text {CC }}$ or Ground Current		the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical
（ $I_{\text {CC }}$ or $I_{\text {GND }}$ ）	$\pm 50 \mathrm{~mA}$	Characteristics tables are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions
Storage Temperature（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．
Power Dissipation	180 mW	Note 2：Unused inputs must be held HIGH or LOW．They may not float．

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	$C_{L}(\mathrm{pF})$
			Min	Typ	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time I_{n} to Z_{n}	2.7		6.6	12.5	1.0	15.5	ns	15
				9.1	16.0	1.0	19.0		50
		3.3 ± 0.3		5.1	7.9	1.0	9.5		15
				7.6	11.4	1.0	13.0		50
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time S to Z_{n}	2.7		8.9	16.9	1.0	20.5	ns	15
				11.4	20.4	1.0	24.0		50
		3.3 ± 0.3		7.0	11.0	1.0	13.0		15
				9.5	14.5	1.0	16.5		50
$t_{\text {PLH }}$ t_{PH}	Propagation Delay Time $\overline{\mathrm{E}}$ to Z_{n}	2.7		9.1	17.6	1.0	20.5	ns	15
				11.6	21.1	1.0	24.0		50
		3.3 ± 0.3		7.2	11.5	1.0	13.5		15
				9.7	15.0	1.0	17.0		50
toshl $t^{\text {tosLh }}$	Output to Output	2.7			1.5		1.5	ns	50
	Skew (Note 4)	3.3			1.5		1.5		

Note 4: Parameter guaranteed by design.
$\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|$.
$\mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLn }}\right|$.

Capacitance

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{C}_{\text {IN }}$	Input Capacitance		4	10		10	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (Note 5)		20				pF

Note 5: $\mathrm{C}_{P D}$ is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: $\mathrm{I}_{\mathrm{CC}(\text { opr. })}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}}$

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Multiplexer Switch ICs category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
M74HCT4066ADTR2G ADG506ATE/883B DG406BDN-T1-E3 JM38510/19004BXA HEF4051BP 5962-8512704XA
NLAS5223CMUTAG NLV14051BDG NLVHC4051ADTR2G JM38510/19002BXA 016400E ADV3014KSTZ PI3V512QE FSA644UCX
FSA9591UCX FSSD07BQX MAX7356ETG NLV74HCT4851ADRG 7705201EC MAX4634ETBT MAX4578CAP+ PI2SSD3212NCE
MAX3997ETM + NLV14052BDTR2G PI3L100QE PI3DBS12412AZLEX PI3V512QEX MAX4969CTO+ PI3DBS12212AZBEX
PI3DBS16415ZHEX MAX7367EUP+T MAX7369EUP+ MAX7357ETG+T NLV74HC4053ADR2G NLVAST4051DTR2G
PI3DBS12412AZHEX ADG5209BCPZ-RL7 PS509WEX PS509QEX PS508QEX PS508WEX ADG5209FBRUZ-RL7 ADG5208FBRUZ-
$\underline{\text { RL7 MAX14984ETG+ MAX14984ETG+T HV2818/R4X HV2918/R4X CBTU02044HEJ PS508LEX PS509LEX }}$

