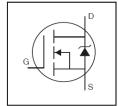
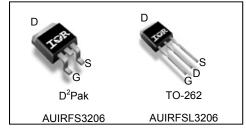


AUTOMOTIVE GRADE

AUIRFS3206 AUIRFSL3206


HEXFET® Power MOSFET

Features


- Advanced Process Technology
- Ultra Low On-Resistance
- Enhanced dV/dT and dI/dT capability
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Timax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications

V _{DSS}	60V
R _{DS(on)} typ.	2.4mΩ
max.	3.0mΩ
D (Silicon Limited)	210A①
D (Package Limited)	120A

G	D	S
Gate	Drain	Source

Boss nort number	Dookogo Typo	Standard Pack	,	Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
AUIRFSL3206	TO-262	Tube	50	AUIRFSL3206
ALUDESSON	D²-Pak	Tube	50	AUIRFS3206
AUIRFS3206	D-Pak	Tape and Reel Left	800	AUIRFS3206TRL

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	210①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	150①	1
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Package Limited)	120	A
I _{DM}	Pulsed Drain Current ②	840	
P _D @T _C = 25°C	Maximum Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy (Thermally Limited) ③	170	mJ
I _{AR}	Avalanche Current ②	See Fig.14,15, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ②		mJ
dv/dt	Peak Diode Recovery @	5.0	V/ns
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

THOTHIGH TROOPS				
Symbol	Parameter	Typ.	Max.	Units
$R_{ heta JC}$	Junction-to-Case ®		0.50	°C/W
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount), D ² Pak®		40	C/VV

HEXFET® is a registered trademark of Infineon.

^{*}Qualification standards can be found at www.infineon.com

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.07	_	V/°C	Reference to 25°C, I _D = 5mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		2.4	3.0	mΩ	V _{GS} = 10V, I _D = 75A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
gfs	Forward Trans conductance	210			S	$V_{DS} = 50V, I_{D} = 75A$
R_G	Gate Resistance		0.7		Ω	
	Drain to Course Leakers Current			20		$V_{DS} = 60V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			250	μΑ	$V_{DS} = 60V, V_{GS} = 0V$ $V_{DS} = 48V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

_ ,		 - Срос.			
Q_g	Total Gate Charge	 120	170		I _D = 75A
Q_{gs}	Gate-to-Source Charge	 29			V _{DS} = 30V V _{GS} = 10V ^⑤
Q_{gd}	Gate-to-Drain Charge	 35		nC	V _{GS} = 10V⑤
Q_{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})	 85			
t _{d(on)}	Turn-On Delay Time	 19			V _{DD} = 30V
t _r	Rise Time	 82		no	I _D = 75A
$t_{d(off)}$	Turn-Off Delay Time	 55		ns	$R_G = 2.7\Omega$
t _f	Fall Time	 83			V _{GS} = 10V ^⑤
C _{iss}	Input Capacitance	 6540			$V_{GS} = 0V$
C_{oss}	Output Capacitance	 720			$V_{DS} = 50V$
C _{rss}	Reverse Transfer Capacitance	 360		pF	f = 1.0MHz, See Fig. 5
Coss eff.(ER)	Effective Output Capacitance (Energy Related)	 1040		-	V_{GS} = 0V, V_{DS} = 0V to 48V \bigcirc
C _{oss eff.(TR)}	Effective Output Capacitance (Time Related)	 1230			V _{GS} = 0V, V _{DS} = 0V to 48V⑥

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
ı	Continuous Source Current			210①		MOSFET symbol
I _S	(Body Diode)			2100		showing the
	Pulsed Source Current			840	A	integral reverse
I _{SM}	(Body Diode) ②			040		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 75A, V_{GS} = 0V $
4	Doverse Deceyory Time		33	50	no	$T_J = 25^{\circ}C$ $V_{DD} = 51V$
t _{rr}	Reverse Recovery Time		37	56	ns	$T_J = 125^{\circ}C$ $I_F = 75A$,
0	Doverse Deceyory Charge		41	62	nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs ©
Q_{rr}	Reverse Recovery Charge		53	80	l IIC	<u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		2.1		Α	T _J = 25°C
t_{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligil	ble (turn-on is dominated by L _S +L _D)

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 120A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- 3 Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.023mH, $R_G = 25\Omega$, $I_{AS} = 120$ A, $V_{GS} = 10$ V. Part not recommended for use above this value.
- \P $I_{SD} \le 75A$, $di/dt \le 360A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_J \le 175^{\circ}C$.
- $\$ Pulse width $\le 400 \mu s$; duty cycle $\le 2\%$.
- © Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- © C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

 $\ \$ $\ \ \,$ $\ \$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$

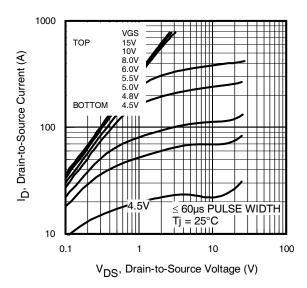


Fig. 1 Typical Output Characteristics

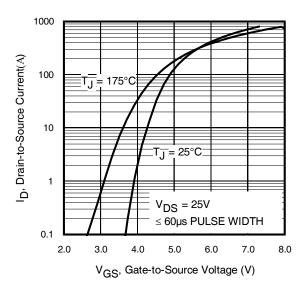


Fig. 3 Typical Transfer Characteristics

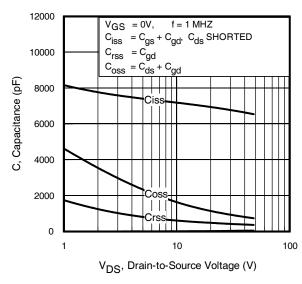


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

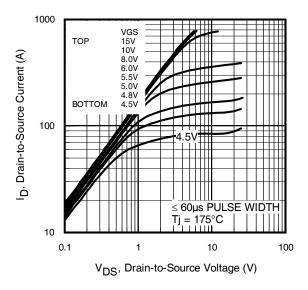


Fig. 2 Typical Output Characteristics

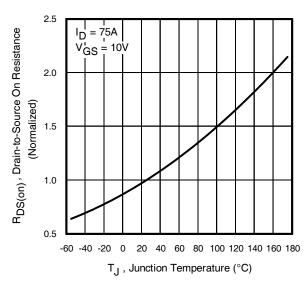


Fig. 4 Normalized On-Resistance vs. Temperature

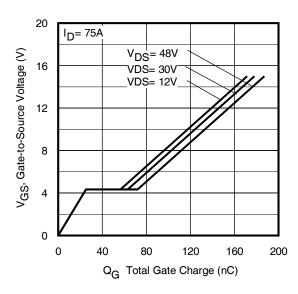


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

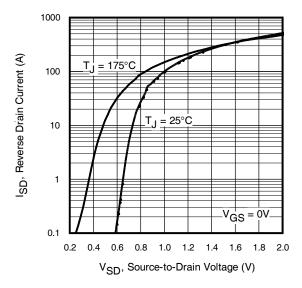


Fig. 7 Typical Source-to-Drain Diode

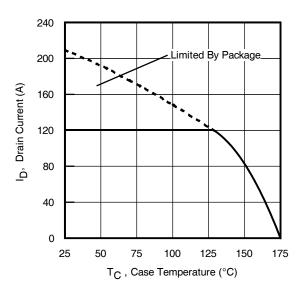


Fig 9. Maximum Drain Current vs. Case Temperature

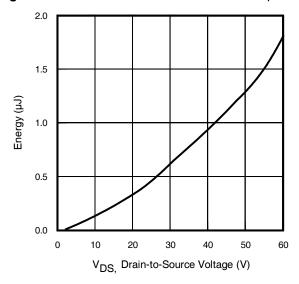


Fig 11. Typical Coss Stored Energy

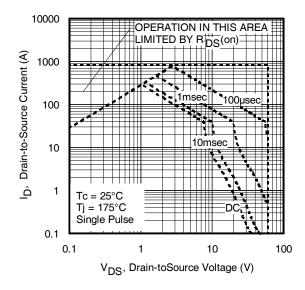


Fig 8. Maximum Safe Operating Area

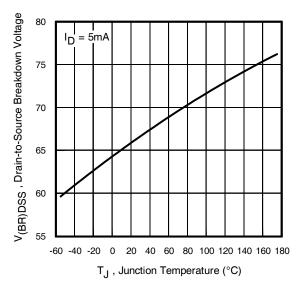


Fig 10. Drain-to-Source Breakdown Voltage

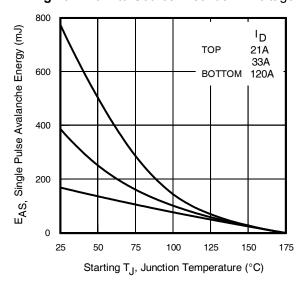


Fig 12. Maximum Avalanche Energy vs. Drain Current

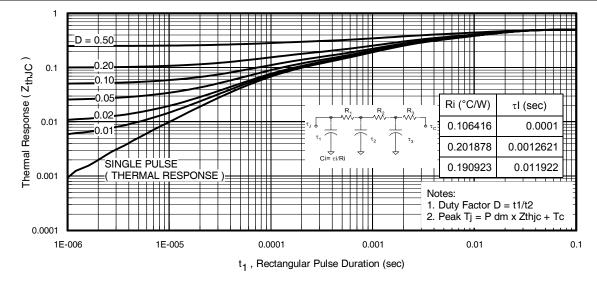


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

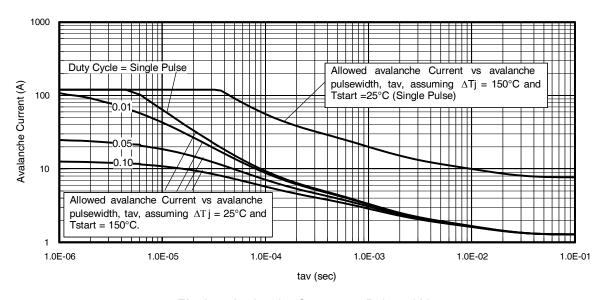


Fig 14. Avalanche Current vs. Pulse width

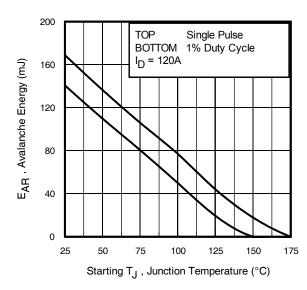


Fig 15. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- Avalanche failures assumption:
 Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 18a, 18b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. Iav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot BV \cdot I_{av}) = \Delta T / \; Z_{thJC} \\ I_{av} &= 2\Delta T / \; [1.3 \cdot BV \cdot Z_{th}] \\ E_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

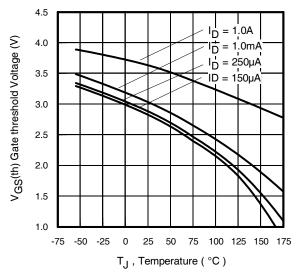


Fig 16. Threshold Voltage vs. Temperature

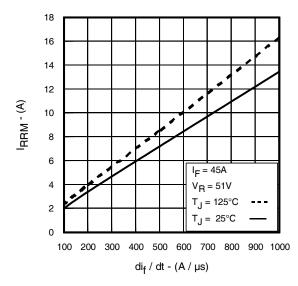


Fig. 18 - Typical Recovery Current vs. dif/dt

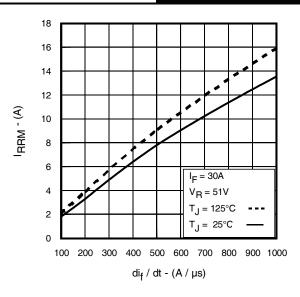


Fig. 17 - Typical Recovery Current vs. dif/dt

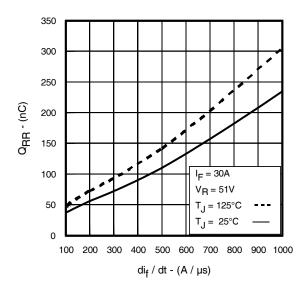


Fig. 19 - Typical Stored Charge vs. dif/dt

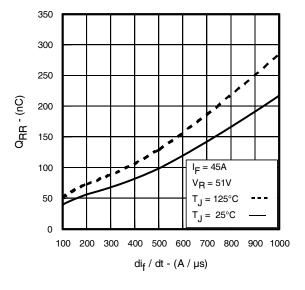


Fig. 20 - Typical Stored Charge vs. dif/dt

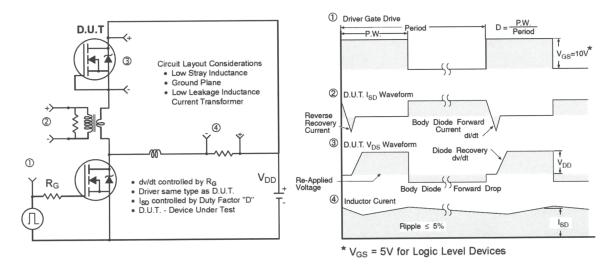


Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

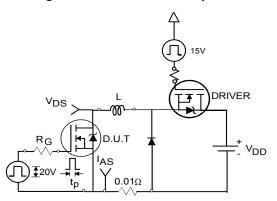


Fig 22a. Unclamped Inductive Test Circuit

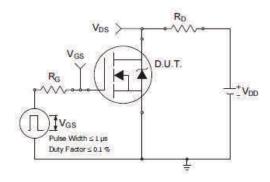


Fig 23a. Switching Time Test Circuit

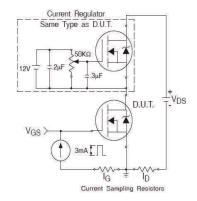


Fig 24a. Gate Charge Test Circuit

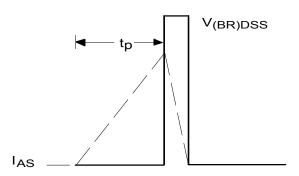


Fig 22b. Unclamped Inductive Waveforms

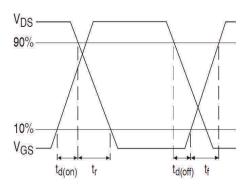


Fig 23b. Switching Time Waveforms

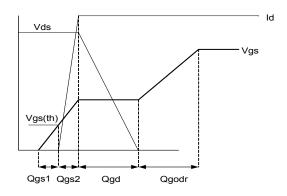
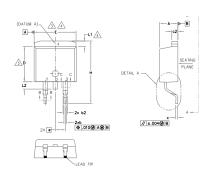
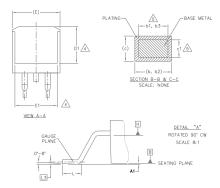




Fig 24b. Gate Charge Waveform

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

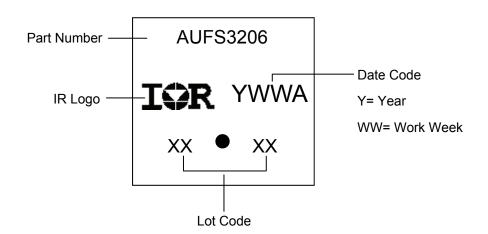
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

S Y M	DIMENSIONS				
В	MILLIM	ETERS	INC	HES	O T E S
O L	MIN.	MAX.	MIN.	MAX.	S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
Ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

LEAD ASSIGNMENTS

DIODES

1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE

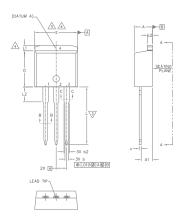

HEXFET

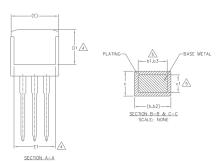
IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE

1.- GATE 2, 4.- COLLECTOR 3.- EMITTER

D²Pak (TO-263AB) Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

2015-10-27

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

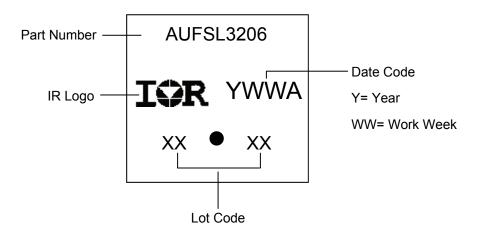
- 6. CONTROLLING DIMENSION: INCH.
- 7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

- 1.- GATE
 2.- COLLECTOR
 3.- EMITTER
 4.- COLLECTOR

HEXFET DIODES

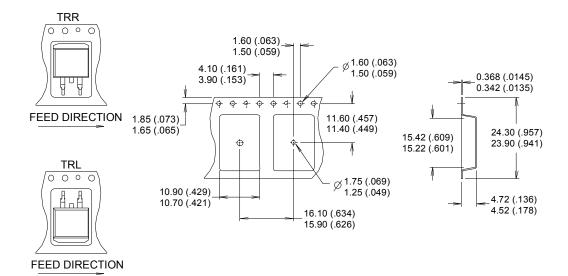

1.- ANODE (TWO DIE) / OPEN (ONE DIE) 1.- GATE 2, 4.- CATHODE 3.- ANODE

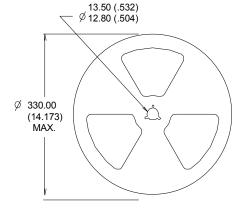
2.- DRAIN 3.- SOURCE

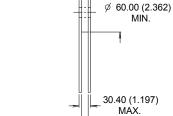
4.- DRAIN

S Y M		N				
В	MILLIM	ETERS	INC	INCHES		
0 L	MIN.	MAX.	MIN.	MAX.	O T E S	
Α	4.06	4.83	.160	.190		
Α1	2.03	3.02	.080	.119		
b	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
ь3	1.14	1.73	.045	.068	5	
С	0.38	0.74	.015	.029		
с1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	_	.270	_	4	
Ε	9.65	10.67	.380	.420	3,4	
E1	6.22	_	.245		4	
е	2.54	BSC	.100	BSC		
L	13.46	14.10	.530	.555		
L1	_	1.65	_	.065	4	
L2	3.56	3.71	.140	.146		

TO-262 Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


2015-10-27

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

4

26.40 (1.039) 24.4<u>0 (.</u>961)

(3)

27.40 (1.079)

23.90 (.941)

NOTES:

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

evel		Automotive (per AEC-Q101)		
evel		(per AEC-Q101)		
evel				
	Comments: Thi	s part number(s) passed Automotive qualification. Infineon's		
		onsumer qualification level is granted by extension of the higher		
	Automotive leve			
Moisture Sensitivity Level		MSI 1		
		WOLI		
		Class M4 (+/- 800V) [†]		
Machine Model	AEC-Q101-002			
	Class H2 (+/- 4000V) [†]			
Human Body Model		AEC-Q101-001		
O	Class C5 (+/- 2000V) [†]			
Charged Device Model	AEC-Q101-005			
Compliant Yes				
	Machine Model Human Body Model Charged Device Model	Industrial and C Automotive leve D²-Pak TO-262 Machine Model Human Body Model Charged Device Model		

[†] Highest passing voltage.

Revision History

Date	Comments
10/27/2015	Updated datasheet with corporate template
	Corrected ordering table on page 1.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for MOSFET category:

Click to view products by International Rectifier manufacturer:

Other Similar products are found below:

614233C 648584F MCH3443-TL-E MCH6422-TL-E FDPF9N50NZ FW216A-TL-2W FW231A-TL-E APT5010JVR NTNS3A92PZT5G IRF100S201 JANTX2N5237 2SK2464-TL-E 2SK3818-DL-E FCA20N60_F109 FDZ595PZ STD6600NT4G FSS804-TL-E 2SJ277-DL-E 2SK1691-DL-E 2SK2545(Q,T) D2294UK 405094E 423220D MCH6646-TL-E TPCC8103,L1Q(CM 367-8430-0972-503 VN1206L 424134F 026935X 051075F SBVS138LT1G 614234A 715780A NTNS3166NZT5G 751625C 873612G IRF7380TRHR IPS70R2K0CEAKMA1 RJK60S3DPP-E0#T2 RJK60S5DPK-M0#T0 APT5010JVFR APT12031JFLL APT12040JVR DMN3404LQ-7 NTE6400 JANTX2N6796U JANTX2N6784U JANTXV2N5416U4 SQM110N05-06L-GE3 SIHF35N60E-GE3