

Midas Components Limited Electra House 32 Southtown Road Great Yarmouth Norfolk NR31 0DU England Telephone Fax Email Website +44 (0)1493 602602 +44 (0)1493 665111 sales@midasdisplays.com www.midasdisplays.com

			Specification	
Part				
Num	ber:			
Versi	on:			
Date	•			
		A	Revision	A
No.	Date		Description	Item Page
	desi	gn •	manufactur	re • supply

Contents

		Page
2.	General Specification	4
3.	Module Classification Information	5
4.	Interface Pin Function	6
5.	Contour drawing	7
6.	Block Diagram	8
7.	Absolute Maximum Ratings	9
	Electrical Characteristics	10
9.	DC Characteristics	10
10.	AC Characteristics	11
11.	Optical Characteristics	14
12.	Reliability	16
13.	Package specification	17
14.	Initial Code For Reference	19

design • manufacture • supply

2. General Specification

■ Resolution: 320 x RGBx240

■ Module dimension: 160.0 x 109.0 x 7.0 mm

■ Active Area: 115.2 x 86.4mm

■ Dot pitch: 0.36 x 0.36 mm

■ LCD type: TFT, Positive, Transmissive

■ View direction: 12 o'clock

■ Gray Scale Inversion Direction: 6 o'clock

■ Backlight Type: LED, Normally White

*Color tone slight changed by temperature and driving voltage.

design • manufacture • supply

Midas Active Matrix Display Part Number System

MC 320240 057 3 5 6 11 4 10 2 7 9 12 13 15 1 8 14 16

- **MC:** Midas Components 1
- T: TFTA: Active Matrix OLED 2
- Size 3
- Series 4
- Viewing Angle: 6: 6 O'clock12: 12 O'clock 5 =
- T: Resistive Touchscreen C: Capacitive Touchscreen 6 Blank: No Touch
- Operating Temp Range: S: 0 to 50Deg C B: -20+60Deg C 7
 - W: -20+70Deg C E: -30+85Deg C
- No of Pixels 8
- **Orientation:** P: Portrait 9
- T: Transflective Mode: **R:** Reflective **M:** Transmissive 10 **S:** Sunlight Readable (transmissive) W: White on Black (Monochrome)
- Backlight: Blank: None L: LEDC: CCFL 11
- Blank: No Module/board C: Controller board module 12
- Blank: None V: Video 13
- Blank: None **B**: Bracket 14
- Blank: None H: Host Cable 15
- Blank: None K: Keyboard 16

F/Displays/Midas Brand/Midas Active Matrix Display Part Number System 09 Nov 2011.doc

4. Interface Pin Function

4.1. LCM PIN Definition

Pin	Symbol	Function	Remark
1	GND	System ground	
2	VDD	Power Supply: +3.3V	
3	NC	No connect	
4	A0	Data/Command select	
5	/WR(R/W)	Write strobe signal	
6	/RD(E)	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	D <mark>at</mark> a bus	
15	/CS	Chip select	
16	/RESET(RSTB)	H <mark>a</mark> rdware reset	
17	IF0	Mode select	Note1
18	IF1		Note
19	NC	No connect	
20	NC	No connect	
21	NC	No connect	
22	1 A S NC N	No connect Talling Silling	

Note1:

Setting		MCU Type	Interface Pin Function						
IF1	IF0	WCO Type	CSB	A0	RWR	ERD	D[7:0]		
L	L	Parallel 8080 series MCU			/WR	/RD	D[7:0]		
L	Н	Parallel 6800 series MCU	CSB	A0	R/W	Е	ال ال		
Н	Н	Serial 4-Line series MCU	CSB		-	-	D7=SCL, D0=SDA, D[6:1]		
Н	L	Serial 3-Line series MCU		-	-	-	are not used		

The un-used pins are marked as "-" and should be connected to "H" by VDDI.

4.2. Backlight Unit Section(CN2)

LED Light Bar connector is used for the the integral backlight system. The recommended model is "JST XH-3" manufactured by JST.

Pin No.	Symbol	I/O	Function	Remark
1	VLED+	Р	Power for LED backlight anode (A)	Red
3	VLED-	Р	Power for LED backlight cathode (K)	White

5. Contour Drawing

design • manufacture • supply

6. Block Diagram

7. Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-20	_	+70	${\mathbb C}$
Storage Temperature	TST	-30	_	+80	$^{\circ}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

8. Electrical Characteristics

8.1. Operating conditions:

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
Supply Voltage For LCM	VDD	_	3.0	3.3	3.6	V	
Supply Current For LCM	IDD	_	_	20	30	mA	Note1
Power Consumption	_	_	_	66	108	mW	

Note1: This value is test for VDD=3.3V only

8.2. LED driving conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current		-	140	-	mA	
Power Consumption		1120	-	1386	mW	
LED voltage	VLED+	8.0	9.0	9.9	٧	Note 1
LED Life Time		_	50,000	_	Hr	Note
LED LIIC TIME			30,000			2,3,4

Note 1: Power supply the back light specification

Note 2 : Ta = 25 ℃

Note 3: Brightness to be decreased to 50% of the initial value

Note 4: The single LED lamp case

9. DC CHARATERISTICS

Parameter	Symbol		Rating		Unit	Condition
T di difficter	Cymbol	Min	Тур	Max	Onit	Condition
Low level input voltage	VIL	0	-	0.3VDD	V	
High level input voltage	Vıн	0.7VDD	-	VDD	V	

10.AC Characteristics

10.1. System Bus Timing for 6800 Series MPU

Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time	A0	tAW6	-	10		
Address hold time		tAH6	ture •	50) D-L\	/
System cycle time		tCYC6	-	200	- 7	
Enable L pulse width (WRITE)		tEWLW	-	100	-	
Enable H pulse width (WRITE)	E	tEWHW	-	100	-	
Enable L pulse width (READ)		tEWLR	-	130	-	
Enable H pulse width (READ)		tEWHR	-	130	-	ns
CSB setup time	CSB	tCSS6	-	100	-	
CSB hold time	CSB	tCSH6	-	100	-	
Write data setup time		tDS6	-	70	-	
Write data hold time	D(2:01	tDH6	-	20	-	
Read data access time	D[7:0]	tACC6	CL = 100 pF	-	80	
Read data output disable time		tOH6	CL = 100 pF	15	80	

Note:

- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr + tf) \leq (tCYC8 tCCLW tCCHW) for (tr + tf) \leq (tCYC8 tCCLR tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDDI as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).

10.2. System Bus Timing for 8080 Series MPU

Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time	A0	tAW8	-	10	-	
Address hold time	AU	tAH8	-	0	-	
System cycle time		tCYC8	L	200		
/WR L pulse width (WRITE)	/WR	tCCLW	ture •	100) D-LV	
/WR H pulse width (WRITE)		tCCHW	-	100		
/RD L pulse width (READ)	/RD	tCCLR	-	120	-	
/RD H pulse width (READ)	/KD	tCCHR	-	120	-	ns
CSB setup time	CSB	tCSS8	-	100	-	
CSB hold time	CSB	tCSH8	-	100	-	
Write data setup time		tDS8	-	70	-	
Write data hold time	וסיביט	tDH8	-	20	-	
Read data access time	D[7:0]	tACC8	CL = 100 pF	-	80	
Read data output disable time		tOH8	CL = 100 pF	15	80	

Note:

- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr + tf) \leq (tCYC8 tCCLW tCCHW) for (tr + tf) \leq (tCYC8 tCCLR tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDDI as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).

10.3. System Bus Timing for 4-Line Serial Interface

Note:

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDDI as the standard.

10.4. System Bus Timing for 3-Line Serial Interface

Item	Signal	Symbol	Condition	Min	Max	Unit
Serial clock period		tSCYC	ı	80	-	
SCL "H" pulse width	SCL	tSHW	-	40	-	
SCL "L" pulse width		tSLW	-	40	-	
Data setup time	SDA	tSDS	-	15	-	nc
Data hold time	SDA	tSDH	-	20	-	ns
CSB-SCL time		tCSS	-	40	-	
CSB-SCL time	CSB	tCSH	-	40	-	
CSB "H" pulse width		tCSW	-	15	_	

Note:

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDDI as the standard.

11. OPTICAL CHARATERISTIC

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr	θ <mark>=</mark> 0° \ Φ=0°	-	20	30	.ms	Note 3,5
		Tf		-	10	15	.ms	
Contrast rat	tio	CR	At optimized viewing angle	-	800	-	•	Note 4,5
Viewing angle	Hor.	ΘR	CR≧10		60			
		ΘL			60		Dog	Note 1
	Ver.	ΦТ			60		Deg.	
		ΦВ			50			
Brightness		ign •	manu	900	1000	• S	cd/m²	Center of display

Ta=25±2°C, IL=140mA

Note 1: Definition of viewing angle range

Fig.11.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7orBM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

Fig.11.2. Optical measurement system setup

Note 3: Definition of Response time:

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Note 5: White $Vi = Vi50 \pm 1.5V$

Black Vi = Vi50 \pm 2.0V

"±" means that the analog input signal swings in phase with VCOM signal.

"±" means that the analog input signal swings out of phase with VCOM signal.

The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.

Note 6: Definition of color chromaticity (CIE 1931)

Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

12.Reliability Test

Content of Reliability Test (Wide temperature, -20°C~70°C)

Test Item	Content of Test	Test Condition	Note	
High Temperature storage	Endurance test applying the high storage temperature for a		2	
	long time.	200hrs		
Low Temperature	Endurance test applying the low storage temperature for a		1,2	
storage	long time.	200hrs		
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.			
Low Temperature	Endurance test applying the electric stress under low	-20 ℃	1	
Operation	temperature for a long time.	200hrs		
High Temperature/ Humidity Operation	The module should be allowed to stand at 60°C,90%RH max	60℃,90%RH 96hrs	1,2	
	For 96hrs under no-load condition excluding the polarizer,			
The second should be stated as	Then taking it out and drying it at normal temperature.	00%0 /70%0		
Thermal shock resistance	The sample should be allowed stand the following 10 cycles			
	of operation	10 cycles		
	-20°C 25°C 70°C 30min 5min 30min 1 cycle			
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude: 15mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes		
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V,RS=1.5kΩ CS=100pF 1 time		

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

14.Initial Code For Reference

```
void Initial code()
{
    Write_Command(0xae);
    Write Data(0xa5);
    Write Command(0x61);
    Write Data(0x8f);
    Write Data(0x04);
    Write_Data(0xa5);
    Write_Data(0xa5);
    Write Command(0x62);
    Write Data(0x36);
    Write Data(0x0b);
    Write_Data(0x0b);
    Write Data(0xa5);
    Write Command(0x33);
    Write Data(0x07);
    Write_Data(0x2c);
    Write Data(0x09);
    Write Data(0x2a);
    Write Command(0x63);
    Write Data(0x09);
    Write Data(0x17);
    Write Data(0xa5);
    Write Data(0xa5);
     Write Command(0x91);
     Write Data(0x00);
     Write Data(0x16);
     Write Data(0x1B);
     Write_Data(0x1C);
     Write Command(0x92);
     Write Data(0x1E);
     Write_Data(0x1F);
     Write Data(0x20);
     Write Data(0x21);
```

```
Write_Command(0x93);
Write_Data(0x23);
Write_Data(0x24);
Write_Data(0x26);
Write_Data(0x28);
Write_Command(0x94);
Write_Data(0x2B);
Write_Data(0x2F);
Write_Data(0x34);
Write_Data(0x3f);
Write_Command(0x99);
Write_Data(0x00);
Write_Data(0x16);
Write_Data(0x1B);
Write_Data(0x1C);
Write_Command(0x9a);
Write_Data(0x1E);
Write_Data(0x1F);
Write_Data(0x20);
Write_Data(0x21);
Write_Command(0x9b);
Write Data(0x23);
Write_Data(0x24);
Write_Data(0x26);
Write Data(0x28);
Write_Command(0x9c);
Write_Data(0x2B);
Write Data(0x2F);
Write_Data(0x34);
Write_Data(0x3F);
Write_Command(0x12);
Write_Data(0xa5);
Write_Command(0x24);
Write_Data(0x01);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Data(0xa5);
```

```
Write_Command(0x22);
Write_Data(0x00);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Command(0x15);
Write_Data(0xa5);
_nop_();
```

}

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for midas manufacturer:

Other Similar products are found below:

MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCC0G21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MC0T064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI