Midas Components Limited

Specification			
Part			
Number:			
Version:			
Date:			
		Revision	
No.	Date	Description	Item
		Page	

Contents

Page
2. General Specification 4
3. Module Classification Information 5
4. Interface Pin Function 6
5. Contour drawing 7
6. Block Diagram 8
7. Absolute Maximum Ratings 9
8. Electrical Characteristics 10
9. DC Characteristics 10
10. AC Characteristics 11
11. Optical Characteristics 14
12. Reliability 16
13. Package specification 17
14. Initial Code For Reference 19

2. General Specification

■ Resolution: $320 \times$ RGBx240
■ Module dimension: $160.0 \times 109.0 \times 7.0 \mathrm{~mm}$
■ Active Area : $115.2 \times 86.4 \mathrm{~mm}$
■ Dot pitch: $0.36 \times 0.36 \mathrm{~mm}$

- LCD type: TFT, Positive, Transmissive

■ View direction: 12 o'clock
■ Gray Scale Inversion Direction: 6 o'clock
■ Backlight Type: LED, Normally White
*Color tone slight changed by temperature and driving voltage.

Midas Active Matrix Display Part Number System

4. Interface Pin Function

4.1. LCM PIN Definition

Pin	Symbol		Runction
1	GND	System ground	
2	VDD	Power Supply $:+3.3 V$	
3	NC	No connect	
4	A0	Data/Command select	
5	$/$ WR(R/W)	Write strobe signal	
6	$/$ RD(E)	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	Note1
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	Data bus	
15	/CS	Chip select	
16	/RESET(RSTB)	Hardware reset	
17	IF0	Mode select	
18	IF1	Mode	
19	NC	No connect	
20	NC	No connect	
21	NC	No connect	
22	NC	No connect	

Note1:

Setting		MCU Type	Interface Pin Function				
IF1	IFO		CSB	A0	RWR	ERD	D[7:0]
L	L	Parallel 8080 series MCU	CSB	A0	/WR	/RD	D[7:0]
L	H	Parallel 6800 series MCU			R/W	E	
H	H	Serial 4-Line series MCU			-	-	$\begin{aligned} & \text { D7=SCL, D0=SDA, D[6:1] } \\ & \text { are not used } \end{aligned}$
H	L	Serial 3-Line series MCU		-	-	-	

The un-used pins are marked as "-" and should be connected to "H" by VDDI.

4.2. Backlight Unit Section(CN2)

LED Light Bar connector is used for the the integral backlight system. The recommended model is "JST XH-3" manufactured by JST.

Pin No.	Symbol	I/O	Function	Remark
1	VLED+	P	Power for LED backlight anode (A)	Red
3	VLED-	P	Power for LED backlight cathode (K)	White

5. Contour Drawing

6. Block Diagram

7.Absolute Maximum Ratings

Item	Symbol	Min	Typ	Max	Unit
Operating Temperature	TOP	-20	-	+70	${ }^{\circ} \mathrm{C}$
Storage Temperature	TST	-30	-	+80	${ }^{\circ} \mathrm{C}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. $\leqq 60^{\circ} \mathrm{C}, 90 \%$ RH MAX. Temp. $>60^{\circ} \mathrm{C}$, Absolute humidity shall be less than $90 \% \mathrm{RH}$ at $60^{\circ} \mathrm{C}$

8.Electrical Characteristics

8.1. Operating conditions:

Item	Symbol	Condition	Min	Typ	Max	Unit	Remark
Supply Voltage For LCM	VDD	-	3.0	3.3	3.6	V	
Supply Current For LCM	IDD	-	-	20	30	mA	Note1
Power Consumption	-	-	-	66	108	mW	

Note1: This value is test for VDD=3.3V only

8.2. LED driving conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remark
LED current		-	140	-	mA	
Power Consumption		1120	-	1386	mW	
LED voltage	VLED+	8.0	9.0	9.9	V	Note 1
LED Life Time		-	50,000	-	Hr	Note $2,3,4$

Note 1 : Power supply the back light specification
Note 2 : $\mathrm{Ta}=25{ }^{\circ} \mathrm{C}$
Note 3 : Brightness to be decreased to 50% of the initial value
Note 4 : The single LED lamp case

9. DC CHARATERISTICS

Parameter	Symbol	Rating			Unit	Condition
		Min	Typ	Max		
Low level input voltage	V_{IL}	0	-	0.3 VDD	V	
High level input voltage	V_{H}	0.7 VDD	-	VDD	V	

10.AC Characteristics

10.1. System Bus Timing for 6800 Series MPU

Note:

1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tCYC8}-\mathrm{tCCLW}-\mathrm{tCCHW})$ for $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tCYC8}-$ tCCLR - tCCHR) are specified.
2. All timing is specified using 20% and 80% of VDDI as the reference.
3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).
10.2. System Bus Timing for $\mathbf{8 0 8 0}$ Series MPU

Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time	A0	tAW8	-	10	-	
Address hold time		tAH8	-	0	-	ns
System cycle time	/WR	tCYC8	-	200		
/WR L pulse width (WRITE)		tCCLW	-	100	-	
/WR H pulse width (WRITE)		tCCHW	-	100	-	
/RD L pulse width (READ)	/RD	tCCLR	-	120	-	
/RD H pulse width (READ)		tCCHR		120	-	
CSB setup time	CSB	tCSS8	-	100	-	
CSB hold time		tCSH8	-	100	-	
Write data setup time	D[7:0]	tDS8	-	70	-	
Write data hold time		tDH8	-	20	-	
Read data access time		tACC8	$\mathrm{CL}=100 \mathrm{pF}$	-	80	
Read data output disable time		tOH8	$\mathrm{CL}=100 \mathrm{pF}$	15	80	

Note:

1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(\operatorname{tr}+\mathrm{tf}) \leq(\mathrm{tCYC} 8-\mathrm{tCCLW}-\mathrm{tCCHW})$ for $(\mathrm{tr}+\mathrm{tf}) \leq(\mathrm{tCYC} 8-$ tCCLR - tCCHR) are specified.
2. All timing is specified using 20% and 80% of VDDI as the reference.
3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).
10.3. System Bus Timing for 4-Line Serial Interface

Note:

1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
2. All timing is specified using 20% and 80% of VDDI as the standard.

10.4. System Bus Timing for 3-Line Serial Interface

Item	Signal	Symbol	Condition	Min	Max	Unit
Serial clock period	SCL	tSCYC	-	80	-	ns
SCL "H" pulse width		tSHW	-	40	-	
SCL "L" pulse width		tSLW	-	40	-	
Data setup time	SDA	tSDS	-	15	-	
Data hold time		tSDH	-	20	-	
CSB-SCL time	CSB	tCSS	-	40	-	
CSB-SCL time		tCSH	-	40	-	
CSB "H" pulse width		tCSW	-	15	-	

Note:

1. The input signal rise and fall time (tr , tf) are specified at 15 ns or less.
2. All timing is specified using 20% and 80% of VDDI as the standard.

11. OPTICAL CHARATERISTIC

Item		Symbol	Condition.	Min	Typ.	Max.	Unit	Remark
Response time		Tr	$\theta=0^{\circ}, ~ \Phi=0^{\circ}$	-	20	30	.ms	Note 3,5
		Tf		-	10	15	.ms	
Contrast ratio		CR	At optimized viewing angle	-	800	-		Note 4,5
Viewing angle	Hor. Ver.	OR	$C R \geqq 10$	60			Deg.	Note 1
		OL		60				
		ФТ		60				
		ФВ		50				
Brightness		-	- -	900	1000	-	$\mathrm{cd} / \mathrm{m}^{2}$	Center of display

$\mathrm{Ta}=25 \pm 2^{\circ} \mathrm{C}, \mathrm{IL}=140 \mathrm{~mA}$
Note 1: Definition of viewing angle range

Fig.11.1. Definition of viewing angle
Note 2: Test equipment setup:
After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7orBM-5 luminance meter 1.0° field of view at a distance of 50 cm and normal direction.

Fig.11.2. Optical measurement system setup
Note 3: Definition of Response time:
The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90% to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10\%to 90%

Note 4: Definition of contrast ratio:
The contrast ratio is defined as the following expression.

$$
\text { Contrast ratio }(C R)=\frac{\text { Luminance measured when LCD on the "White" state }}{\text { Luminance measured when LCD on the "Black" state }}
$$

Note 5: White $\mathrm{Vi}=\mathrm{Vi} 50 \pm 1.5 \mathrm{~V}$
Black Vi $=$ Vi50 $\pm 2.0 \mathrm{~V}$
" \pm " means that the analog input signal swings in phase with VCOM signal.
" \pm " means that the analog input signal swings out of phase with VCOM signal.
The 100% transmission is defined as the transmission of LCD panel when all the input terminals of module are electrically opened.
Note 6: Definition of color chromaticity (CIE 1931)
Color coordinates measured at the center point of LCD
Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.

12.Reliability Test

Content of Reliability Test (Wide temperature, $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$)
Environmental Test

Test Item	Content of Test	Test Condition	Note
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & 80^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	2
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	$\begin{aligned} & -30^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	1,2
High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \\ & \hline \end{aligned}$	1
High Temperature/ Humidity Operation	The module should be allowed to stand at $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max For 96 hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	$\begin{aligned} & 60^{\circ} \mathrm{C}, 90 \% \mathrm{RH} \\ & 96 \mathrm{hrs} \end{aligned}$	1,2
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation	$-20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ 10 cycles	
Vibration test	Endurance test applying the vibration during transportation and using.	Total fixed amplitude : 15 mm Vibration $10 \sim 55 \mathrm{~Hz}$ One cycle 60 seconds to 3 directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for minutes	${ }^{3}$
Static electricity test	Endurance test applying the electric stress to the terminal.	$\begin{aligned} & \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega \\ & \mathrm{CS}=100 \mathrm{pF} \\ & 1 \text { time } \end{aligned}$	

Note1: No dew condensation to be observed.
Note2: The function test shall be conducted after 4 hours storage at the normal
Temperature and humidity after remove from the test chamber.
Note3: The packing have to including into the vibration testing.

Use empty tray
空盤

(1) POF

Put products into the tray

14.Initial Code For Reference

```
void Initial_code()
{
    Write_Command(0xae);
    Write_Data(0xa5);
    Write_Command(0x61);
    Write_Data(0x8f);
    Write_Data(0x04);
    Write_Data(0xa5);
    Write_Data(0xa5);
    Write_Command(0x62);
    Write_Data(0x36);
    Write_Data(0x0b);
    Write_Data(0x0b);
    Write_Data(0xa5);
    Write_Command(0x33);
    Write_Data(0x07);
    Write_Data(0x2c);
    Write_Data(0x09);
    Write_Data(0x2a);
    Write_Command(0x63);
    Write_Data(0x09);
    Write_Data(0x17);
    Write_Data(0xa5);
    Write_Data(0xa5);
    Write_Command(0x91);
    Write_Data(0x00);
    Write_Data(0x16);
    Write_Data(0x1B);
    Write_Data(0x1C);
    Write_Command(0x92);
    Write_Data(0x1E);
    Write_Data(0x1F);
    Write_Data(0x20);
    Write_Data(0x21);
```

```
Write_Command(0x93);
Write_Data(0x23);
Write_Data(0x24);
Write_Data(0x26);
Write_Data(0x28);
Write_Command(0x94);
Write_Data(0x2B);
Write_Data(0x2F);
Write_Data(0x34);
Write_Data(0x3f);
Write_Command(0x99);
Write_Data(0x00);
Write_Data(0x16);
Write_Data(0x1B);
Write_Data(0x1C);
Write_Command(0x9a);
Write_Data(0x1E);
Write_Data(0x1F);
Write_Data(0x20);
Write_Data(0x21);
Write_Command(0x9b);
Write_Data(0x23);
Write_Data(0x24);
Write_Data(0x26);
Write_Data(0x28);
Write_Command(0x9c);
Write_Data(0x2B);
Write_Data(0x2F);
Write_Data(0x34);
Write_Data(0x3F);
Write_Command(0x12);
Write_Data(0xa5);
Write_Command(0x24);
Write_Data(0x01);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Data(0xa5);
```

Write_Command(0x22);
Write_Data(0x00);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Command(0x15);
Write_Data(0xa5);
nop();

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

