
LABILITY WHATSOEVER IN CONNECTION THEREWITH, FOR THE INTENDED USE AND ASSUME ALL RISK AND HERBIN ARE BASED UPON INFORMATION AND/OR TESTS WE SELLEYE TO 86 ACCUMENT AND BUR CONTINOUS CONTINOUS THE PRODUCT LISER SHALL DEFERMINE THE SUITABILITY OF THE PRODUCT CONTINUE OF THE PRODUCT CONTINUES OF THE PRODUCT CONTIN ALL STATEMENTS AND TECHNICAL INFORMATION CONTAINED

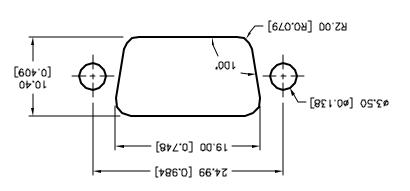
[0.109±0.004]

[800.0] I.0± XX. [800.0] S.0± X. Specified Unless Otherwise TOLERANCES:

LN :3	TA32	80\&1\Z	нвый повоц		
		:3TAQ	YB Q3V0A99A		
	A	80\21\S	dabu noabt		
DMC	3ZIS	:3TAQ	CHECKED BA:		
- 6		90/52/70	EKFY2 ODIZH		
ĬЩ Э́NI.	WAЯO	DATE:	DRAWN BY:		

يا ا	∃O	INCHEZI I	ו מישיי ששון	7	SIN :	SCALE	BU/ Z 1/ G	71
			-				:3TAG	YOVED BY:
В	K2012'DMC	6∠	S279	SPC15		\forall	80\21\Z	Haby ne
KEA	RONIC FILE	ELECT			DMC' NO'	3ZIS	:3TAQ	KED BA:
	Contacts	21amped	'ɓnia	ans-a	uld 6		07/25/06	Y2 ODI2H
						IIW∀∕NII	DAIE:	ITEL NIV

5. Dielectric Strength: 1000 V for One Minute 4. Current Rating: 5 Amps


7. Temperature: -50°C ~ +105°C

2. Contact: Brass, Stamped Gold 5u" Min.— Plated over Nickel 3. Insulator: P.51 & Fiber-Glass Reinforced, Blue Color

6. Insulator Resistance: 1000 Megohms Min. at 500 VDC

1. Shell: Steel, Tin-Plate SPECIFICATIONS

PANEL CUTOUT

[811.00] 00.20 —		8,2 1.0]
\$8.21 [484.0]	++++	25.8 [625.0]
,	\$1.0±90.02 [300.0±\86.0] \tilde{\text{c}} \tilde{\text{c}} \tilde{\text{c}	Ī
	82.0±18.02 [210.0±212.1]	

Compliant

L									
	5/13/0 8	NΓ	5/13/08	ΝΓ	2/13/08	NΓ	Shell Plate was Zinc	8	6961
Ī	90/21/7	NΓ	80/21/2	NΓ	90/52/20	EO	RELEASED	A	9781
Ī	DATE	₫VЯ٩٩Α	DATE	снеско	∃T A 0	DRAWN	DESCRIPTION	ΚEΛ	# 430
Ī	00E 1 NO. SPC-F005 + Effectives 7/8/DZ + DCP No. 1308					םסכי אכ	KEAIRIONR		

00C NO SPC-FD05 + Effectives 7/8/D2 + DCP Nol 139			2007–292 .C	аос. и к	KEAISIONS			ALL RIGHTS RESERVED. אם PORTION OF THIS PUBLICATION,	0430		
DATE	ΟνЯ٩٩Α	DATE	СНЕСКО	∃TA0	DRAWN	DESCRIPTION	KEV	# 430	WITHOLOGY, WHOLE OR IN PART CAN BE REPRODUCED WITHOUT THE EXPRESS WRITTEN CONSENT OF SPC		
5/12/0	ΝΓ	80/51/2	NΓ	90/52/20	ЕО	RELEASED	≯	9781	UGD3GW ID3U	X3010NII331	
0/21/2	NΓ	2/13/08	NΓ	2/13/08	NΓ	Shell Plate was Zinc	8	696L	SPC-F00&DWG	LECHNOLOGY	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for spc technology manufacturer:

Other Similar products are found below:

2N5884 2N6438 SPC19947 2N5886 SPC19942 SPC19944 MJE15030 SPC15477 SPC15391 2N5320