\square				May 1995 Revised March 2001
SEMICロNDபСTロRTM				
74LCX543				
Low Voltage Octal Registered Transceiver with				
5 V Tolerant Inputs and Outputs				
General Description Features				
The LCX543 is a non-inverting octal transceiver containing two sets of D-type registers for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent input and output control in either direction of data flow. - 5 V tolerant inputs and outputs - $2.3 \mathrm{~V}-3.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ specifications provided ■ 7.0 ns tPD $^{\max }\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}\right.$), $10 \mu \mathrm{~A} \mathrm{I}_{\mathrm{CC}} \max$ ■ Power down high impedance inputs and outputs ■ Supports live insertion/withdrawal (Note 1)				
The LCX543 is designed for low voltage (2.5 V or 3.3 V) V_{CC} applications with capability of interfacing to a 5 V signal environment. The LCX543 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.			$\begin{aligned} & \text { ■ } \pm 24 \mathrm{~mA} \text { Ou } \\ & ■ \text { Implements } \end{aligned}$	tput Drive ($\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$) patented noise/EMI reduction circuitry
			■ ESD perfor Human b	rformance exceeds 500 mA mance: ody model > 2000V
			Machine	model > 200V
			Note 1: To ensure should be tied to resistor is determ	the high-impedance state during power up or down, $\overline{\mathrm{OE}}$ V_{CC} through a pull-up resistor: the minimum value or the ned by the current-sourcing capability of the driver.
Ordering Code:				
Order Number	Package Number		Packag	ge Description
74LCX543WM	M24B	24-Lead Small Outline	Integrated Circu	it (SOIC), JEDEC MS-013, 0.300 Wide
74LCX543MSA	MSA24	24-Lead Shrink Small	Outline Package	(SSOP), EIAJ TYPE II, 5.3mm Wide
74LCX543MTC	MTC24	24-Lead Thin Shrink	all Outline Pac	ckage (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also availab Connectio		fy by appending the suffix lette	" X " to the ordering Pin Desc	ode. riptions Description A-to-B Output Enable Input (Active LOW) B-to-A Output Enable Input (Active LOW) A-to-B Enable Input (Active LOW) B-to-A Enable Input (Active LOW) A-to-B Latch Enable Input (Active LOW) B-to-A Latch Enable Input (Active LOW) A-to-B Data Inputs or B-to-A 3-STATE Outputs B-to-A Data Inputs or A-to-B 3-STATE Outputs

Logic Symbols

Data I/O Control Table

Inputs			Latch Status	Output Buffers
$\overline{\text { CEAB }}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$		
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

= HIGH Voltage Level
tage Leve
X = Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, $\overline{\text { LEBA }}$ and OEBA

Functional Description

The LCX543 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable ($\overline{C E A B}$) input must be LOW in order to enter data from $\mathrm{A}_{0}-\mathrm{A}_{7}$ or take data from $\mathrm{B}_{0}-\mathrm{B}_{7}$, as indicated in the Data I/O Control Table. With CEAB LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signa puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}$, LEBA and OEBA inputs

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

DC Electrical Characteristics（Continued）						
Symbol	Parameter	Conditions	$V_{c c}$ （V）	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units
				Min	Max	
${ }_{\text {ICC }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND	2．3－3．6		10	$\mu \mathrm{A}$
		$3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$（Note 5）	2．3－3．6		± 10	
$\Delta \mathrm{l}_{\text {cc }}$	Increase in $\mathrm{I}_{\text {cc }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2．3－3．6		500	$\mu \mathrm{A}$

AC Electrical Characteristics

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V} \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{gathered}$		
		Min	Max	Min	Max	Min	Max	
$t_{\text {PHL }}$ $t_{\text {PLH }}$	Propagation Delay A_{n} to B_{n} or B_{n} to A_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.4 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PHL}}$ $t_{\text {PLH }}$	Propagation Delay $\overline{\text { LEBA }}$ to A_{n} or $\overline{\text { LEAB }}$ to B_{n}	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 9.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.5 \\ & 10.5 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	$\begin{aligned} & \overline{\text { Output Enable Time }} \\ & \overline{\text { OEBA }} \text { or } \overline{O E A B} \text { to } A_{n} \text { or } B_{n} \\ & \overline{\mathrm{CEBA}} \text { or } \overline{\mathrm{CEAB}} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 11.0 \end{aligned}$	ns
$\begin{aligned} & \hline t_{P L Z} \\ & t_{P H Z} \end{aligned}$	$\begin{aligned} & \text { Output Disable Time } \\ & \frac{\text { OEBA }}{} \text { or } \overline{\text { OEAB }} \text { to } A_{n} \text { or } B_{n} \\ & \overline{\text { CEBA }} \text { or } \overline{C E A B} \text { to } A_{n} \text { or } B_{n} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 8.4 \end{aligned}$	ns
t_{s}	Setup Time，HIGH or LOW Data to $\overline{\text { LEXX }}$	2.5		2.5		4.0		ns
t_{H}	Hold Time，HIGH or LOW Data to $\overline{\text { LEXX }}$	1.5		1.5		2.0		ns
t_{W}	Pulse Width，Latch Enable，LOW	3.3		3.3		3.3		ns
$\mathrm{t}_{\mathrm{OSHL}}$ $t_{\text {OSLH }}$	Output to Output Skew （Note 6）		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$					ns

Note 6：Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device．The
specification applies to any outputs switching in the same direction，either HIGH－to－LOW（ $\mathrm{t}_{\mathrm{OSHL}}$ ）or LOW－to－HIGH（ $\mathrm{t}_{\mathrm{OSLH}}$ ）

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\mathrm{V}_{\text {cc }}$	$\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$	Units
			（V）	Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.6 \end{aligned}$	V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{~V}_{\mathrm{IH}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 2.5 \end{aligned}$	$\begin{aligned} & -0.8 \\ & -0.6 \end{aligned}$	V

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=$ Open， $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	7	pF
$\mathrm{C}_{/ / \mathrm{O}}$	Input／Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	8	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{f}=10 \mathrm{MHz}$	25	pF

AC LOADING and WAVEFORMS Generic for LCx Family

FIGURE 1. AC Test $\overline{\text { Circuit }}$ ($\overline{\mathrm{C}_{\mathrm{L}}}$ includes probe and jig capacitance)

Test	Switch
$\mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{CC}} \times 2 \mathrm{at} \mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH},}, \mathrm{t}_{\mathrm{PHZ}}$	GND

Waveform for Inverting and Non-Inverting Functions

Propagation Delay. Pulse Width and $\mathrm{t}_{\text {rec }}$ Waveforms

3-STATE Output Low Enable and

3-STATE Output High Enable and Disable Times for Logic Disable Times for Logic

FIGURE 2. Waveforms
(Input Characteristics; $\mathrm{f}=\mathbf{1 M H z}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=\mathbf{3 n s}$)

Symbol	$\mathbf{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 7} \mathrm{V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2} \mathbf{V}$
V_{mi}	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA24

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
 Package Number MTC24

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

