

FMH30N60S1

FUJI POWER MOSFET

Super J-MOS series

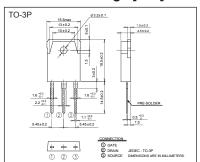
N-Channel enhancement mode power MOSFET

■ Features

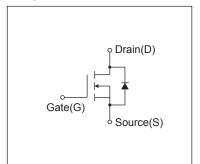
Low on-state resistance Low switching loss easy to use (more controllabe switching dV/dt by Rg)

■ Applications

UPS


Server

Telecom


Power conditioner system

Power supply

■ Outline Drawings [mm]

■ Equivalent circuit schematic

■ Absolute Maximum Ratings at T_c=25°C (unless otherwise specified)

Description	Symbol	Characteristics	Unit	Remarks
Drain Sauras Valtaga	V _{DS}	600	V	
Drain-Source Voltage	V _{DSX}	600	V	V _{GS} =-30V
0 "		±30	А	Tc=25°C Note*1
Continuous Drain Current	ID ID	±19	А	Tc=100°C Note*1
Pulsed Drain Current	IDP	±90	А	
Gate-Source Voltage	V _{GS}	±30	V	
Repetitive and Non-Repetitive Maximum Avalanche Current	I _{AR}	6.6	А	Note *2
Non-Repetitive Maximum Avalanche Energy	Eas	849.2	mJ	Note *3
Maximum Drain-Source dV/dt	dV _{DS} /dt	50	kV/μs	V _{DS} ≤ 600V
Peak Diode Recovery dV/dt	dV/dt	12	kV/μs	Note *4
Peak Diode Recovery -di/dt	-di/dt	100	A/µs	Note *5
Maximum Bawar Dissination	PD	2.5	W	T _a =25°C
Maximum Power Dissipation		220	VV	Tc=25°C
Oneveting and Stayone Temperature range	Tch	150	°C	
Operating and Storage Temperature range	T _{stg}	-55 to +150	°C	

Note *1 : Limited by maximum channel temperature. Note *2 : $T_{ch} \leq 150^{\circ}$ C, See Fig.1 and Fig.2 Note *3 : Starting $T_{ch} = 25^{\circ}$ C, $T_{ch} \leq 150^{\circ}$ C, See Fig.1 and Fig.2 Eas limited by maximum channel temperature and avalanche current. Note *4 : $T_{ch} \leq 150^{\circ}$ C, $T_{ch} \leq 150^{\circ}$ C. Note *5 : $T_{ch} \leq 150^{\circ}$ C, $T_{ch} \leq 150^{\circ}$ C.

■ Electrical Characteristics at T_c=25°C (unless otherwise specified)

Static Ratings

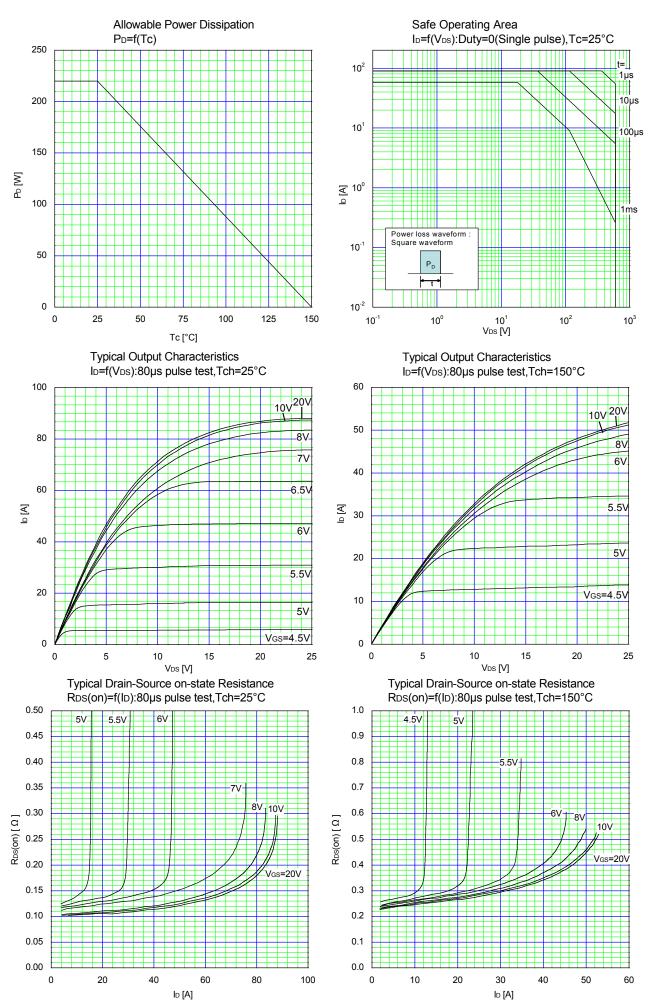
Description	Symbol	Conditions		min.	typ.	max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	I _D =250μA V _{GS} =0V		600	-	-	V
Gate Threshold Voltage	V _{GS(th)}	I _D =250µA V _{DS} =V _{GS}		2.5	3.0	3.5	V
Zero Gate Voltage Drain Current	loss	V _{DS} =600V V _{GS} =0V	T _{ch} =25°C	-	-	25	μА
		V _{DS} =480V V _{GS} =0V	T _{ch} =125°C	-	-	250	
Gate-Source Leakage Current	I _{GSS}	V _{GS} = ±30V V _{DS} =0V		-	10	100	nA
Drain-Source On-State Resistance	R _{DS(on)}	I _D =15A V _{GS} =10V		-	0.106	0.125	Ω
Gate resistance	R _G	f=1MHz, open drain		-	3.2	-	Ω

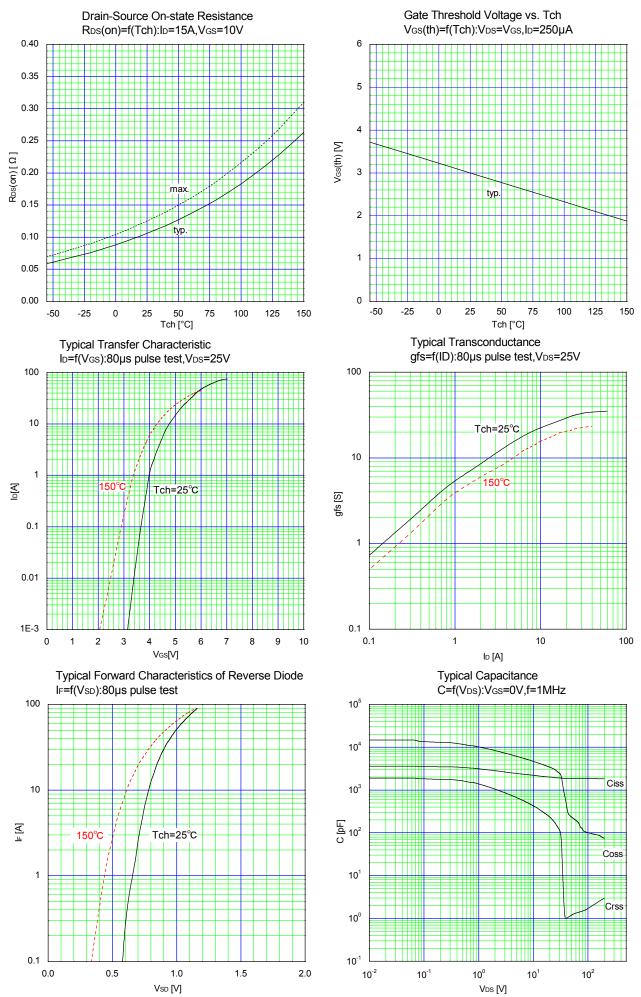
FMH30N60S1 FUJI POWER MOSFET

http://www.fujielectric.com/products/semiconductor/

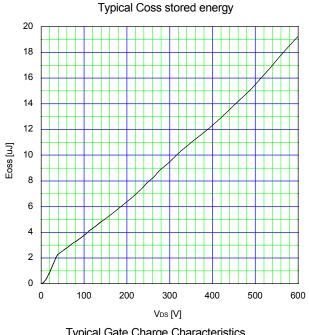
Dynamic Ratings

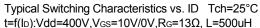
Description	Symbol	Conditions	min.	typ.	max.	Unit
Forward Transconductance	gfs	I _D =15A V _{DS} =25V	13	26	-	S
Input Capacitance	Ciss	V _{DS} =10V	-	2200	-	
Output Capacitance	Coss	V _{GS} =0V	-	4670	-	
Reverse Transfer Capacitance	Crss	f=1MHz	-	430	-	
Effective output capacitance, energy related (Note *6)	C _{o(er)}	V _{SS} =0V V _{DS} =0480V	-	127	-	pF
Effective output capacitance, time related (Note *7)	C _{o(tr)}	V _{GS} =0V V _{DS} =0480V ID=constant	-	450	-	
Turn On Time	t _{d(on)}		-	31	-	
Turn-On Time	V _{DD} =400V, V _{GS} =10V	-	57	-		
Turn-Off Time $\frac{t_{\text{d(off)}}}{t_{\text{f}}}$	t _{d(off)}	I₀=15A, R₀=13Ω See Fig.3 and Fig.4	-	136	-	ns
	t _f		-	17	-	
Total Gate Charge	Q _G		-	73	-	
Gate-Source Charge	Q _{GS}	V _{DD} =480V, I _D =30A V _{SS} =10V See Fig.5	-	18	-	
Gate-Drain Charge	Q _{GD}		-	25	-	nC
Drain-Source crossover Charge	Qsw		-	11.5	-	

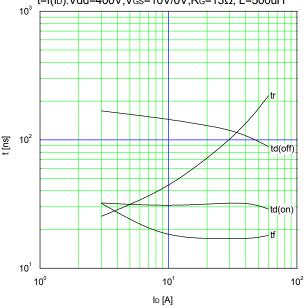

Note *6 : $C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% BV_{DSS}. Note *7 : $C_{o(tr)}$ is a fixed capacitance that gives the same charging times as C_{oss} while V_{DS} is rising from 0 to 80% BV_{DSS}.

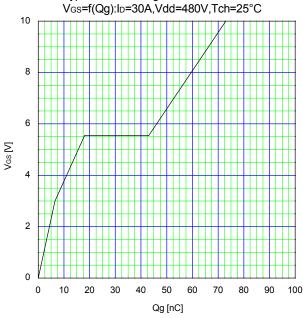

• Reverse Diode

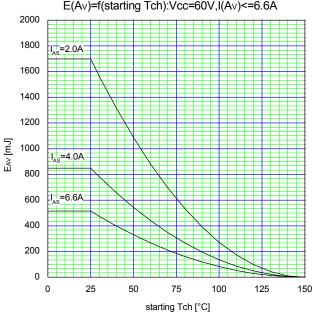
Description	Symbol	Conditions	min.	typ.	max.	Unit
Avalanche Capability	lav	L=21.7mH, T _{ch} =25°C See Fig.1 and Fig.2	6.6	-	-	Α
Diode Forward On-Voltage	V _{SD}	I _F =30A, V _{GS} =0V T _{ch} =25°C	-	0.9	1.35	V
Reverse Recovery Time	trr	I _F =30A, V _{GS} =0V V _{DD} =400V -di/dt=100A/µs T _{ch} =25°C See Fig.6	-	430	-	ns
Reverse Recovery Charge	Qrr		-	8.6	-	μC
Peak Reverse Recovery Current	I _{rp}		-	38	-	А

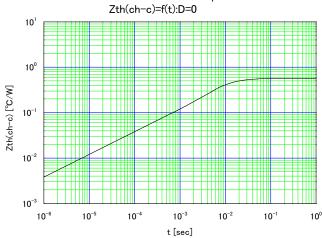

■ Thermal Characteristics


Description	Symbol	min.	typ.	max.	Unit
Channel to Case	R _{th(ch-c)}	-	-	0.57	°C/W
Channel to Ambient	R _{th(ch-a)}	-	-	50	°C/W




http://www.fujielectric.com/products/semiconductor/




Typical Gate Charge Characteristics
Vgs=f(Qg):lp=30A Vdd=480V Tch=25°

Maximum Avalanche Energy vs. startingTch E(Av)=f(starting Tch):Vcc=60V,I(Av)<=6.6A

Transient Thermal Impedance

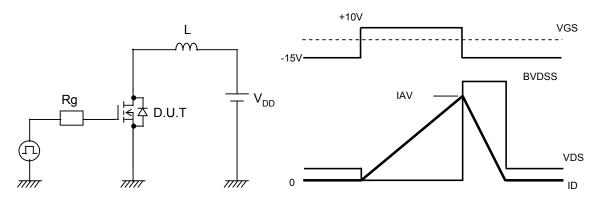


Fig.1 Avalanche Test circuit

Fig.2 Operating waveforms of Avalanche Test

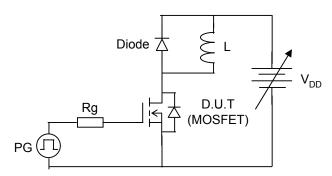


Fig.3 Switching Test circuit

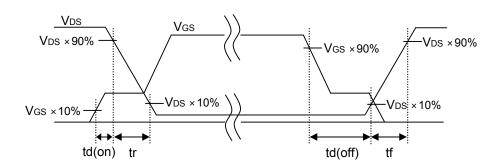


Fig.4 Operating waveform of Switching Test

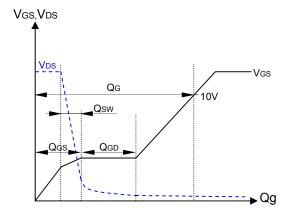


Fig.5 Operating waveform of Gate charge Test

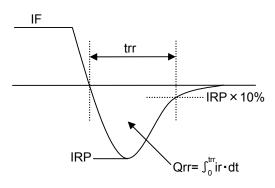
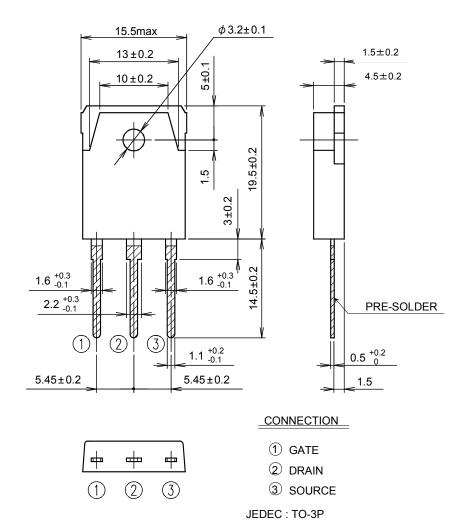
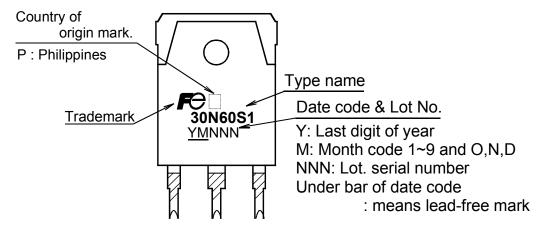




Fig.6 Operating waveform of Body diode Recovery Test

■ Outview: TO-3P Package

Marking

* The font (font type,size) and the trademark-size might be actually different.

DIMENSIONS ARE IN MILLIMETERS.

http://www.fujielectric.com/products/semiconductor/

WARNING

- 1. This Catalog contains the product specifications, characteristics, data, materials, and structures as of May 2012. The contents are subject to change without notice for specification changes or other reasons. When using a product listed in this Catalog, be sur to obtain the latest specifications.
- 2. All applications described in this Catalog exemplify the use of Fuji's products for your reference only. No right or license, either express or implied, under any patent, copyright, trade secret or other intellectual property right owned by Fuji Electric Co., Ltd. is (or shall be deemed) granted. Fuji Electric Co., Ltd. makes no representation or warranty, whether express or implied, relating to the infringement or alleged infringement of other's intellectual property rights which may arise from the use of the applications described herein.
- 3. Although Fuji Electric Co., Ltd. is enhancing product quality and reliability, a small percentage of semiconductor products may become faulty. When using Fuji Electric semiconductor products in your equipment, you are requested to take adequate safety measures to prevent the equipment from causing a physical injury, fire, or other problem if any of the products become faulty. It is recommended to make your design failsafe, flame retardant, and free of malfunction.
- 4. The products introduced in this Catalog are intended for use in the following electronic and electrical equipment which has normal reliability requirements.
- Computers
- OA equipment
- Communications equipment (terminal devices)
- Measurement equipment

- · Machine tools
- Audiovisual equipment
- Electrical home appliances • Personal equipment • Industrial robots etc.
- 5. If you need to use a product in this Catalog for equipment requiring higher reliability than normal, such as for the equipment listed below, it is imperative to contact Fuji Electric Co., Ltd. to obtain prior approval. When using these products for such equipment, take adequate measures such as a backup system to prevent the equipment from malfunctioning even if a Fuji's product incorporated in the equipment becomes faulty.
- Transportation equipment (mounted on cars and ships)
- Traffic-signal control equipment
- Emergency equipment for responding to disasters and anti-burglary devices
- · Medical equipment

- Trunk communications equipment
- · Gas leakage detectors with an auto-shut-off feature
- · Safety devices
- 6. Do not use products in this Catalog for the equipment requiring strict reliability such as the following and equivalents to strategic equipment (without limitation).
- Space equipment • Submarine repeater equipment
- Aeronautic equipment
- · Nuclear control equipment
- 7. Copyright ©1996-2012 by Fuji Electric Co., Ltd. All rights reserved.

No part of this Catalog may be reproduced in any form or by any means without the express permission of Fuji Electric Co., Ltd.

8. If you have any question about any portion in this Catalog, ask Fuji Electric Co., Ltd. or its sales agents before using the product. Neither Fuji Electric Co., Ltd. nor its agents shall be liable for any injury caused by any use of the products not in accordance with instructions set forth herein.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for fuji manufacturer:

Other Similar products are found below:

BZ6WL30CU BZ6WR30CAU BZ6WL30CAU EW100AAG-3P100B EW50AAG-2P015B FMN-60 5V AH165-EG33 AH165-J3C33A

AH165-SGLW11E3 AH165-TGL5W11E3 AHX511-L AHX662-A DR30D0L-E3A AR22E0L-10E4G AR22F0L-02H4R AR22G3R-01B

AR22G4L-10E3W AR22G4L-11E3A AR22JCR-3A14DC AR22M0R-01B AR22PR-711B AR22S2R-22W AR22VGE-11R AR30E0L
10E3W AR30E0R-11G AR9T511-H EG52F/40-30MA BU-ECA2005L BW9BTAA-L3 BW9BTAA-S2 BW9FWCA-15A BZ6KL10CU

1TR0AK RT11-DC24V SA103RCUL/60 SA103RCUL/75 SA203CUL/125 SA203CUL/200 SA203RCUL/125 SA53RCUL/3 SC-E1
220VAC SC-E5-200V 2NC2F-CK SG103CUL/40-CO SK12LR-E01W AC09-CX0/11L1 EW125JAG-4P030K EW250JAGU-3P200K

EW250JAGU-3P225K EW50RAGU-3P003K