FEATURES

RS-232 compatible
Operates with 3 V or 5 V logic
Ultralow power CMOS: 1.3 mA operation
Low power shutdown: $0.2 \mu \mathrm{~A}$
Suitable for serial port mice
116 kbps data rate
$1 \mu \mathrm{~F}$ charge pump capacitors
Single +3 V to +3.6 V power supply
Two receivers active in shutdown (ADM560)

APPLICATIONS

Notebook computers
Peripherals

Modems

Printers
Battery-operated equipment

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADM560/ADM561 are four driver/five receiver interface devices designed to meet the EIA-232 standard and operate with a single +3.3 V power supply. The devices feature an on-board dc-to-dc converter, eliminating the need for dual $\pm 5 \mathrm{~V}$ power supplies. This dc-to-dc converter contains a voltage doubler and voltage inverter, both of which internally generate $\pm 6.6 \mathrm{~V}$ from the input +3.3 V power supply.

The ADM560 and the ADM561 consume only 5 mW making them ideally suited for battery and other power-sensitive applications. A shutdown facility is also provided to reduce the power to $0.66 \mu \mathrm{~W}$.

The ADM560 contains active low shutdown and an active high receiver enable signal. In shutdown mode, two receivers remain active, thereby allowing monitoring of peripheral devices. This feature allows the device to be shut down until a peripheral
device begins communication. The active receivers alert the processor, and then take the ADM560 out of shutdown mode.

The ADM561 features active high shutdown and an active low receiver enable. In this device, all receivers are disabled in shutdown.

The ADM560/ADM561 are fabricated using CMOS technology for minimal power consumption. They feature a high level of over-voltage protection and latch-up immunity. The receiver inputs can withstand up to $\pm 25 \mathrm{~V}$ levels. The transmitter inputs can be driven from either 3 V or 5 V logic levels. This allows operation in mixed $3 \mathrm{~V} / 5 \mathrm{~V}$ power supply systems.

The ADM560/ADM561 are packaged in a 28 -lead SOIC and a 28 -lead SSOP package.

Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADM560/ADM561

TABLE OF CONTENTS

\qquadApplications.
\qquad1
Functional Block Diagram 1
General Description 1
Revision History 2
Specifications 3
Absolute Maximum Ratings 4
ESD Caution 4
REVISION HISTORY
9/06-Rev. A to Rev. B
Updated Format

\qquad
Universal
Changes to Specifications 3
10/05-Rev. 0 to Rev. A
Updated Format Universal
Changes to Specifications 3
Update to Outline Dimensions. 9
Changes to Ordering Guide 10
7/94—Revision 0: Initial Version

SPECIFICATIONS

$\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \pm 10 \%, \mathrm{C} 1$ to $\mathrm{C} 4=1 \mu \mathrm{~F}$, all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.
Table 1.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
Output Voltage Swing	± 5.0	± 5.5		V	$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V}$, three transmitter outputs loaded with $3 \mathrm{k} \Omega$ to ground
	± 4	± 4.5		V	$\mathrm{V}_{c c}=3.0 \mathrm{~V}$, all transmitter outputs, loaded with $3 \mathrm{k} \Omega$ to ground
$\mathrm{V}_{\text {cc }}$ Power Supply Current		3.5	5	mA	No load, $\mathrm{T}_{\text {IN }}=\mathrm{V}_{\text {cc }}$
		3.5	5	mA	No load, $\mathrm{TiN}_{\text {I }}=\mathrm{GND}$
Shutdown Supply Current		0.2	5	$\mu \mathrm{A}$	$\overline{\text { SHDN }}=\mathrm{GND}(\mathrm{ADM560}), \mathrm{SHDN}=\mathrm{V}_{\text {cc }}(\mathrm{ADM561}), \mathrm{TIN}=\mathrm{V}_{\text {cc }}$
Input Logic Threshold Low, VINL			0.4	V	TiN, EN, $\overline{\text { EN }}$, SHDN, $\overline{\text { SHDN }}$
Input Logic Threshold High, $\mathrm{V}_{\text {INH }}$	2.4			V	TIN, EN, $\overline{\mathrm{EN}}, \mathrm{SHDN}, \overline{\text { SHDN }}$
Logic Pull-Up Current		3	20	$\mu \mathrm{A}$	$\mathrm{TIN}^{\text {a }}$ GND
EIA-232 Input Voltage Range	-25		+25	V	
EIA-232 Input Threshold Low	0.4	0.8		V	
EIA-232 Input Threshold High		1.1	2.4	V	
EIA-232 Input Hysteresis		0.3		V	
EIA-232 Input Resistance	3	5	7	$\mathrm{k} \Omega$	
CMOS Output Voltage Low, Vol			0.4	V	$\mathrm{l}_{\text {lout }}=1.6 \mathrm{~mA}$
CMOS Output Voltage High, V он	2.8			V	lout $=-40 \mathrm{~mA}$
CMOS Output Leakage Current		+0.05	± 5	$\mu \mathrm{A}$	$\overline{\mathrm{EN}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{EN}=\mathrm{GND}, 0 \mathrm{~V} \leq \mathrm{Rout} \leq \mathrm{V}_{\mathrm{Cc}}$
Output Enable Time		100		ns	
Output Disable Time		50		ns	
Receiver Propagation Delay					
TPHL		0.1	1	$\mu \mathrm{s}$	
TPLH		0.5	2	$\mu \mathrm{s}$	
Transition Region Slew Rate		4.5		V/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{RL}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2500 \mathrm{pF} \text { measured from }+3 \mathrm{~V} \text { to }-3 \mathrm{~V} \text { or } \\ & -3 \mathrm{~V} \text { to }+3 \mathrm{~V} \end{aligned}$
Transmitter Output Resistance RS-232 Output Short-Circuit Current	300	± 10		$\begin{aligned} & \Omega \\ & \mathrm{mA} \end{aligned}$	$\mathrm{V}_{\text {CC }}=\mathrm{V}+=\mathrm{V}-=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 2 \mathrm{~V}$

ADM560/ADM561

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Rating
V_{cc}	-0.3 V to +6 V
$\mathrm{~V}+$	$(\mathrm{V} \mathrm{cc}-0.3 \mathrm{~V})$ to +14 V
$\mathrm{~V}-$	+0.3 V to -14 V
Input Voltages	
$\quad \mathrm{T}_{\text {IN }}$	-0.3 V to $(\mathrm{V}+,+0.3 \mathrm{~V})$
RIN	25 V
Output Voltages	
\quad Tout	$(\mathrm{V}+,+0.3 \mathrm{~V})$ to $(\mathrm{V}-,-0.3 \mathrm{~V})$
\quad Rout	-0.3 V to $(\mathrm{V} \mathrm{Cc}+0.3 \mathrm{~V})$
Short-Circuit Duration	
\quad Tout	Continuous
Power Dissipation	
\quad SSOP	900 mW
\quad SOIC	900 mW
Operating Temperature Range	
\quad Commercial (JVersion)	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature	$+300^{\circ} \mathrm{C}$
\quad (Soldering, 10 sec)	
ESD Rating	$>2000 \mathrm{~V}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

T3 ${ }_{\text {Out }} 1$	ADM560 TOP VIEW (Not to Scale)	28	T40ut
T1 Out 2		27	$\mathrm{R} 3_{\text {IN }}$
T2out 3		26	R3 ${ }_{\text {Out }}$
R21N 4		25	SHDN
R2out 5		24	EN
T2 ${ }_{\text {IN }} 6$		23	R4 ${ }_{\text {I }}$
T1 $1_{\text {IN }} 7$		22	R4out
R1 ${ }_{\text {Out }} 8$		21	T4 ${ }_{\text {IN }}$
R1 ${ }_{\text {IN }} 9$		20	T3 ${ }_{\text {N }}$
GND 10		19	R5out
$\mathrm{V}_{\text {cc }} 11$		18	$\mathrm{R5} \mathrm{IN}^{\text {N }}$
$\mathrm{C} 1+12$		17	
$\mathrm{V}+13$		16	C2-
C1-14		15	C2+

Figure 2.ADM560 Pin Configuration

Figure 3. ADM561 Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
2, 3, 1, 28	T1out to T4out	Transmitter (Driver) Outputs. Typically $\pm 6 \mathrm{~V}$.
9, 4, 27, 23, 18	R1 ${ }_{\text {in }}$ to R5in	Receiver Inputs. These inputs accept RS-232 signal levels. An internal $5 \mathrm{k} \Omega$ pull-down resistor to GND is connected on each of these inputs.
8,5,26, 22, 19	R1 ${ }_{\text {out }}$ to R5out	Receiver Outputs. These are 3 V logic levels.
7, 6, 20, 21	T1in to T4in	Transmitter (Driver) Inputs. These inputs accept 3 V or 5 V logic levels. An internal $400 \mathrm{k} \Omega$ pull-up resistor to $\mathrm{V}_{\text {cc }}$ is connected on each input.
10	GND	Ground Pin. Must be connected to 0 V .
11	Vcc	Power Supply Input 3.3 V $\pm 10 \%$.
12, 14	C1+, C1-	External Capacitor 1 is connected between these pins.
13	V+	Internally Generated Positive Supply. +6.6 V nominal.
15, 16	C2+, C2-	External Capacitor 2 is connected between these pins.
17	V-	Internally Generated Negative Supply. -6.6 V nominal.
24	EN/EN	Receiver Enable. EN, active high on ADM560. $\overline{\mathrm{EN}}$, active low on ADM561. Refer to Table 4.
25	$\overline{\text { SHDN/SHDN }}$	Shutdown Control. $\overline{\text { SHDN, active low on ADM560. SHDN, active high on ADM561. Refer to Table } 4 .}$

Table 4. ADM560/ADM561 Enable and Shutdown Control

	ADM560	ADM561
Normal Operation	$\overline{\mathrm{SHDN}}=1$	$\mathrm{SHDN}=0$
	$\mathrm{EN}=1$; receivers active	$\overline{\mathrm{EN}}=0 ;$ receivers active
	$\mathrm{EN}=0$; receivers inactive	$\overline{\mathrm{EN}}=1 ;$ receivers inactive
Shutdown Mode	$\overline{\mathrm{SHDN}=0}$	$\mathrm{SHDN}=1$
	$\mathrm{EN}=1 ;$ Receiver R1 to Receiver R3 inactive	$\overline{\mathrm{EN}}=0 ;$ receivers inactive
	$\mathrm{EN}=1 ;$ Receiver R4 and Receiver R5 active	$\overline{\mathrm{EN}}=1 ;$ receivers inactive
	$\mathrm{EN}=0$; Receiver R1 to Receiver R5 inactive	

ADM560/ADM561

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Transmitter Output Voltage High vs. Load Capacitance

Figure 5. Transmitter Output Voltage vs. Load Current

Figure 6. Transmitter Output Voltage High vs. Vcc

Figure 7. Transmitter Output Voltage Low vs. Load Capacitance

Figure 8. Transmitter Slew Rate vs. Load Capacitance

Figure 9. Transmitter Output Voltage Low vs. Vcc

Figure 10. V+, V-vs. Load Current

ADM560/ADM561

THEORY OF OPERATION

The ADM560/ADM561 are RS-232 transmission line drivers/ receivers, and operate from a single +3.3 V supply. This is achieved by integrating step-up voltage converters and level shifting transmitters and receivers onto the same chip. CMOS technology is used to keep the power dissipation at an absolute minimum. The ADM560/ADM561 are a modification, enhancement, and improvement to the ADM241L family and its derivatives thereof. These devices are essentially plug-in compatible and do not have materially different applications.

The ADM560/ADM561 contain an internal voltage doubler and a voltage inverter that generates $\pm 6.6 \mathrm{~V}$ from the +3.3 V input. Four external $1 \mu \mathrm{~F}$ capacitors are required for the internal voltage converters.

CIRCUIT DESCRIPTION

The internal circuitry consists of three main sections. These are as follows:

- A charge pump voltage converter.
- 3 V logic to EIA-232 transmitters.
- EIA-232 to 3 V logic receivers.

Charge Pump DC-to-DC Voltage Converter

The charge pump voltage converter consists of an oscillator and a switching matrix. The converter generates a $\pm 6.6 \mathrm{~V}$ supply from the input +3.3 V level. This is done in two stages using a switched capacitor technique (see Figure 11 and Figure 12). First, the +3.3 V input supply is doubled to +6.6 V using Capacitor C 1 as the charge storage element. The +6.6 V level is then inverted to generate -6.6 V using Capacitor C 2 as the storage element.

Capacitor C3 and Capacitor C4 are used to reduce the output ripple. Their values are not critical and can be reduced if higher levels of ripple are acceptable. The C 1 and C 2 charge pump capacitors can also be reduced at the expense of the higher output impedance on the $\mathrm{V}+$ and V - supplies.

The V+ and V-supplies are also used to power external circuitry if the current requirements are small.

Transmitter (Driver) Section

The drivers convert 3 V or 5 V logic input levels into EIA-232 output levels. With $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}$ and driving an EIA-232 load, the output voltage swing is typically $\pm 5.5 \mathrm{~V}$.

Figure 11. Charge Pump Voltage Double Operation

Figure 12. Charge Pump Voltage Inverted Operation
Unused inputs can be left unconnected as an internal $400 \mathrm{k} \Omega$ pull-up resistor pulls them high forcing the outputs into a low state. The input pull-up resistors typically source $8 \mu \mathrm{~A}$ when grounded, so connect unused inputs to V_{CC} or leave unconnected in order to minimize power consumption.

Receiver Section

The receivers are inverting level shifters; they accept EIA-232 input levels and translate them into 3 V logic output levels. The inputs have internal $5 \mathrm{k} \Omega$ pull-down resistors to ground and are also protected against overvoltages of up to $\pm 25 \mathrm{~V}$. The guaranteed switching thresholds are 0.4 V minimum and 2.4 V maximum. Unconnected inputs are pulled to 0 V by the internal $5 \mathrm{k} \Omega$ pulldown resistor. This results in a Logic 1 output level for unconnected inputs or for inputs connected to GND.

The receivers have a Schmitt trigger input with a hysteresis level of 0.3 V . This ensures error-free reception for both noisy inputs and for inputs with slow transition times.

ENABLE AND SHUTDOWN

Table 4 shows the truth table for the enable and shutdown control signals. When disabled all receivers are placed in a high impedance state. In shutdown, all transmitters are disabled and all receivers on the ADM561 are disabled. On the ADM560, Receiver R4 and Receiver R5 remain enabled in shutdown.

OUTLINE DIMENSIONS

ADM560/ADM561

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADM560JR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM560JR-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM560JRZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM560JRZ-REEL ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM560JRS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM560JRS-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM560JRSZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM560JRSZ-REEL ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM561JR	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM561JR-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM561JRZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM561JRZ-REEL ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Standard Small Outline Package [SOIC_W]	RW-28
ADM561JRS	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM561JRS-REEL	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM561JRSZ ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28
ADM561JRSZ-REEL' ${ }^{1}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	28-Lead Shrink Small Outline Package [SSOP]	RS-28

[^0]NOTES

ADM560/ADM561

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RS-232 Interface IC category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAX232EPE MAX232ECPE 062191EB 713266CB MAX3250EAIT MAX250ESD+T MAX13223EEUP+T SP508EEF-L MAX3218EAP+T MAX561CAI+T MAX3218CAP+T MAX218EAP+T MAX3232ECUP+G071 MAX3228AEEWV+T
LT1180AISW\#TRPBF MAX3386ECPWR TRSF3223ECPWR ADM202EARWZ-REEL ICL3232IVZ-T7A ICL3232IBZ-T ICL3222EIBZ-T
LMS202EIMX/NOPB 5962-89877012C AZ75232GTR-G1 AZ75232GSTR-G1 TRS222IDWR TRS3223ECDWR MAX563CPN+
MAX491EESD + MAX489ESD + MAX489CPD + MAX491ECSD + MAX487EESA+ MAX3389ECUG MAX3318EEAP MAX3244EEUI + MAX3232ECUE+ MAX3225EETP+ MAX3223EAPT MAX3222ECUP+T MAX3221EUE+T MAX3221EUE+ MAX3190EEUTT $\underline{\text { MAX251CSD+T MAX248CQH+D MAX3245CWI+ MAX3241CUI+T MAX221EEUE+ MAX3232EEWET MAX3232EEUET }}$

[^0]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

