

April 1988 Revised September 2000

74F112

Dual JK Negative Edge-Triggered Flip-Flop

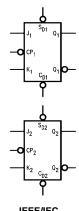
General Description

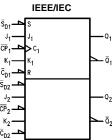
The 74F112 contains two independent, high-speed JK flipflops with Direct Set and Clear inputs. Synchronous state changes are initiated by the falling edge of the clock. Triggering occurs at a voltage level of the clock and is not directly related to the transition time. The J and K inputs can change when the clock is in either state without affecting the flip-flop, provided that they are in the desired state during the recommended setup and hold times relative to the falling edge of the clock. A LOW signal on $\overline{\mathbb{S}}_{\mathbb{D}}$ or $\overline{\mathbb{C}}_{\mathbb{D}}$ prevents clocking and forces Q or $\overline{\mathbb{Q}}$ HIGH, respectively.

Simultaneous LOW signals on \overline{S}_D and \overline{C}_D force both Q and \overline{Q} HIGH.

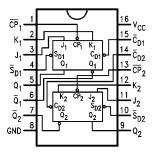
Asynchronous Inputs:

LOW input to \overline{S}_D sets Q to HIGH level LOW input to \overline{C}_D sets Q to LOW level Clear and Set are independent of clock


Simultaneous LOW on \overline{C}_D and \overline{S}_D makes both Q and \overline{Q} HIGH


Ordering Code:

	Order Number	Package Number	Package Description
74F112SJ M16D 1		M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
		M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
		N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

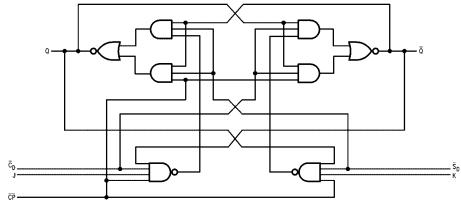
Connection Diagram

Unit Loading/Fan Out

Din Names	December 1	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
J ₁ , J ₂ , K ₁ , K ₂	Data Inputs	1.0/1.0	20 μA/-0.6 mA	
\overline{CP}_1 , \overline{CP}_2	Clock Pulse Inputs (Active Falling Edge)	1.0/4.0	20 μA/–2.4 mA	
$\overline{C}_{D1}, \overline{C}_{D2}$	Direct Clear Inputs (Active LOW)	1.0/5.0	20 μA/–3.0 mA	
\overline{S}_{D1} , \overline{S}_{D2}	Direct Set Inputs (Active LOW)	1.0/5.0	20 μA/-3.0 mA	
$Q_1, Q_2, \overline{Q}_1, \overline{Q}_2$	Outputs	50/33.3	−1 mA/20 mA	

Truth Table

		Outputs				
\overline{s}_{D}	\overline{c}_{D}	\overline{C}_D \overline{CP}		K	Q	Q
L	Н	Х	Х	Χ	Н	L
Н	L	Χ	Х	Χ	L	Н
L	L	Χ	Х	Χ	Н	Н
Н	Н	\sim	h	h	\overline{Q}_0	Q_0
Н	Н	\sim	1	h	L	Н
Н	Н	\sim	h	1	Н	L
Н	Н	~	I	I	Q_0	\overline{Q}_0


H (h) = HIGH Voltage Level L (l) = LOW Voltage Level X = Immaterial

 $\begin{array}{lll} & & \\ \sim & = \text{HIGH-to-LOW Clock Transition} \\ & & \\$

Lower case letters indicate the state of the referenced input or output one setup time prior to the HIGH-to-LOW clock transition.

Logic Diagram

(One Half Shown)

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias $-55^{\circ}C$ to $+150^{\circ}C$ V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

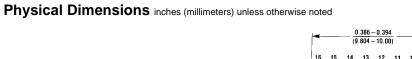
Recommended Operating Conditions

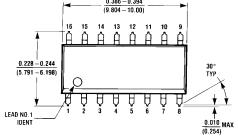
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

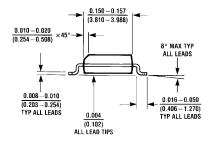
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

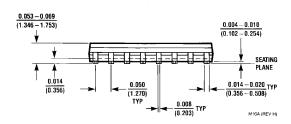
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

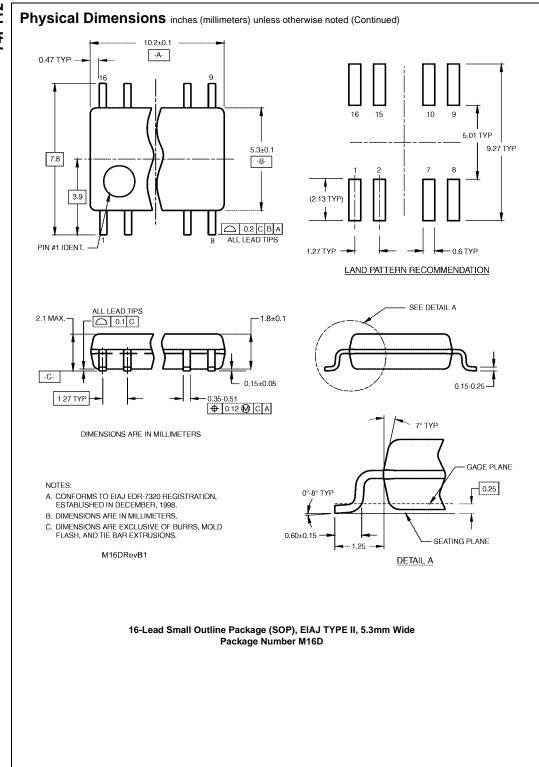

Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5			V	Min	I _{OH} = -1 mA	
	Voltage	5% V _{CC}	2.7					$I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW	10% V _{CC}			0.5	V	N.45	I 00 A	
	Voltage				0.5	V	Min	I _{OL} = 20 mA	
I _{IH}	Input HIGH				5.0	^	May	1/ 2.71/	
	Current				5.0	μА	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current				7.0	^	Max	1/ 7.01/	
	Breakdown Test				7.0	μА	IVIAX	V _{IN} = 7.0V	
I _{CEX}	Output HIGH				50		Max		
	Leakage Current				50	μА	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test		4.75			V	0.0	All other pins grounded	
l _{OD}	Output Leakage				3.75	^	0.0	V _{IOD} = 150 mV	
	Circuit Current				3.73	μА	0.0	All other pins grounded	
I _{IL}	Input LOW Current				-0.6			$V_{IN} = 0.5V (J_n, K_n)$	
					-2.4	mA	Max	$V_{IN} = 0.5V (\overline{CP}_n)$	
					-3.0			$V_{IN} = 0.5V (\overline{C}_{Dn}, \overline{S}_{Dn})$	
los	Output Short-Circuit Current	l	-60		-150	mA	Max	V _{OUT} = 0V	
Іссн	Power Supply Current			12	19	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			12	19	mA	Max	V _O = LOW	

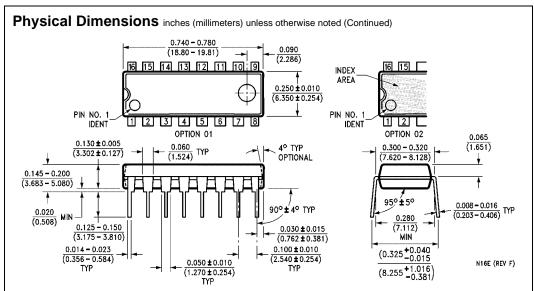

AC Electrical Characteristics


Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	85	105		80		MHz
t _{PLH}	Propagation Delay	2.0	5.0	6.5	2.0	7.5	no
t _{PHL}	\overline{CP}_{n} to Q_{n} or \overline{Q}_{n}	2.0	5.0	6.5	2.0	7.5	ns
t _{PLH}	Propagation Delay	2.0	4.5	6.5	2.0	7.5	20
t _{PHL}	\overline{C}_{Dn} , \overline{S}_{Dn} to \overline{Q}_n , \overline{Q}_n	2.0	4.5	6.5	2.0	7.5	ns


AC Operating Requirements

		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
Symbol	Parameter					
		Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	4.0		5.0		
t _S (L)	J_n or K_n to \overline{CP}_n	3.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		115
t _H (L)	J_n or K_n to \overline{CP}_n	0		0		
t _W (H)	CP Pulse Width	4.5		5.0		ns
t _W (L)	HIGH or LOW	4.5		5.0		115
t _W (L)	Pulse Width, LOW \overline{c}_{Dn} or \overline{S}_{Dn}	4.5		5.0		ns
t _{REC}	Recovery Time \overline{S}_{Dn} , \overline{C}_{Dn} to \overline{CP}	4.0		5.0		ns





16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Flip Flops category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

5962-8955201EA MC74HC11ADTG MC10EP29MNG MC74HC11ADTR2G NLV14013BDTR2G NLV14027BDG NLX1G74MUTCG
703557B 746431H 5962-90606022A 5962-9060602FA NLV14013BDR2G M38510/30104BDA M38510/07106BFA M38510/06101B2A NLV74HC74ADR2G TC4013BP(N,F) NLV14013BDG NLV74AC32DR2G NLV74AC74DR2G MC74HC73ADG
CY74FCT16374CTPACT MC74HC11ADR2G 74LVT74D,118 74VHCT9273FT(BJ) MM74HC374WM 74ALVCH162374PAG
TC7WZ74FK,LJ(CT CD54HCT273F HMC853LC3TR HMC723LC3CTR MM74HCT574MTCX MM74HCT273WM SN74LVC74APW
SN74LVC74AD MC74HC73ADTR2G MC74HC11ADG SN74ALVTH16374GR M74HCT273B1R M74HC377RM13TR
M74HC374RM13TR M74HC175B1R M74HC174RM13TR 74ALVTH16374ZQLR 74ALVTH32374ZKER 74AUP1G74DC,125
74VHC374FT(BJ) 74VHC9273FT(BJ) NLV14013BCPG