MCR12LD, MCR12LM, MCR12LN

Preferred Device

Silicon Controlled Rectifiers Reverse Blocking Thyristors

Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave, silicon gate-controlled devices are needed.

Features

- Blocking Voltage to 800 Volts
- On-State Current Rating of 12 Amperes RMS at 80°C
- High Surge Current Capability 100 Amperes
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- High Immunity to dv/dt 100 V/µsec Minimum at 125°C
- Pb-Free Packages are Available*

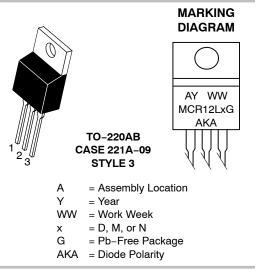
MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{array}{l} \mbox{Peak Repetitive Off-State Voltage (Note 1)} \\ (T_J = -40 \ to \ 125^\circ C, \ Sine \ Wave, \\ 50 \ to \ 60 \ Hz, \ Gate \ Open) & MCR12LD \\ MCR12LM \\ MCR12LN \end{array}$	V _{DRM,} V _{RRM}	400 600 800	V
On-State RMS Current (180° Conduction Angles; T _C = 80°C)	I _{T(RMS)}	12	A
Average On-State Current (180° Conduction Angles; T _C = 80°C)	I _{T(AV)}	7.6	A
Peak Non-repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T_J = 125°C)	I _{TSM}	100	A
Circuit Fusing Consideration (t = 8.3 ms)	l ² t	41	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 ms, T_C = 80°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ s, T _C = 80°C)	I _{GM}	2.0	A
Operating Junction Temperature Range	TJ	-40 to 125	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



ON Semiconductor®

http://onsemi.com

SCRs 12 AMPERES RMS 400 thru 800 VOLTS

PIN ASSIGNMENT			
1	Cathode		
2	Anode		
3	Gate		
4	Anode		

ORDERING INFORMATION

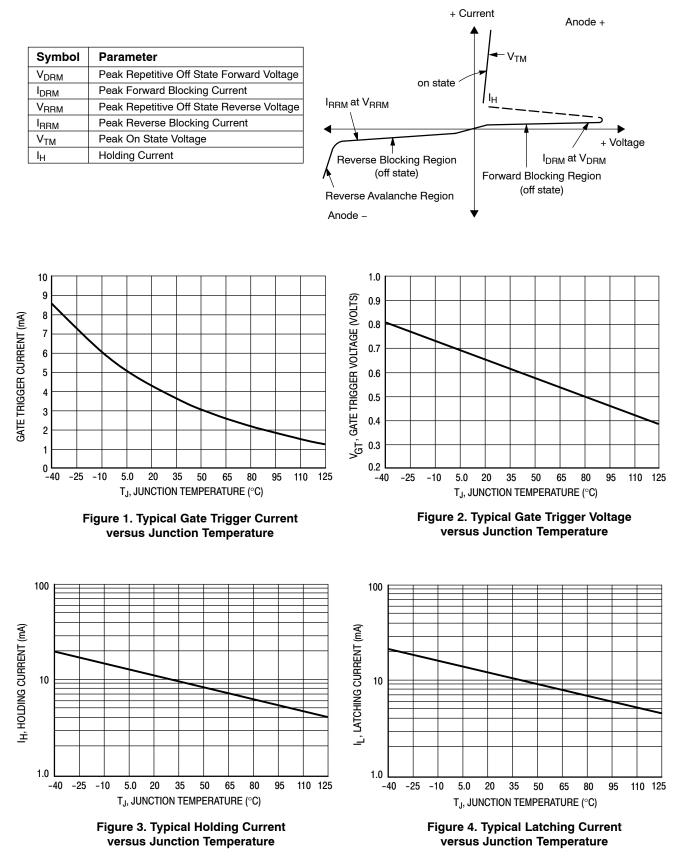
Device	Package	Shipping
MCR12LD	TO-220AB	50 Units / Rail
MCR12LDG	TO-220AB (Pb-Free)	50 Units / Rail
MCR12LM	TO-220AB	50 Units / Rail
MCR12LMG	TO-220AB (Pb-Free)	50 Units / Rail
MCR12LN	TO-220AB	50 Units / Rail
MCR12LNG	TO-220AB (Pb-Free)	50 Units / Rail

Preferred devices are recommended choices for future use and best overall value.

MCR12LD, MCR12LM, MCR12LN

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$\begin{array}{c} R_{\theta JC} \\ R_{\theta JA} \end{array}$	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C


ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS		,		71	I	
Peak Repetitive Forward or Reverse Blocking Current (V _D = Rated V _{DRM} and V _{RRM} ; Gate Open)	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	I _{DRM} , I _{RRM}			0.01 2.0	mA
ON CHARACTERISTICS						
Peak Forward On-State Voltage (Note 2) (I _{TM} = 24 A)		V _{TM}	-	-	2.2	V
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$		I _{GT}	2.0	4.0	8.0	mA
Holding Current (V _D = 12 V, Gate Open, Initiating Current = 200 mA)		I _H	4.0	10	20	mA
Latch Current (V _D = 12 V, Ig = 20 mA)		١L	6.0	12	30	mA
Gate Trigger Voltage (Continuous dc) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$		V _{GT}	0.5	0.65	0.8	V
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage $(V_D = Rated V_{DRM}, Exponential Waveform, Gate Open, T_J = 125^{\circ}$	C)	dv/dt	100	250	-	V/µs
Critical Rate of Rise of On–State Current IPK = 50 A; Pw = 40 μsec; diG/dt = 1 A/μsec, Igt = 50 mA		di/dt	-	-	50	A/μs

2. Indicates Pulse Test: Pulse Width \leq 1.0 ms, Duty Cycle \leq 2%.

MCR12LD, MCR12LM, MCR12LN

Voltage Current Characteristic of SCR

MCR12LD, MCR12LM, MCR12LN

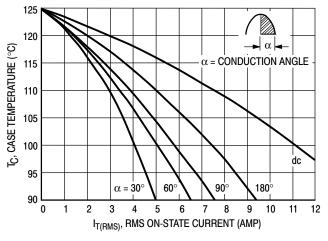


Figure 5. Typical RMS Current Derating

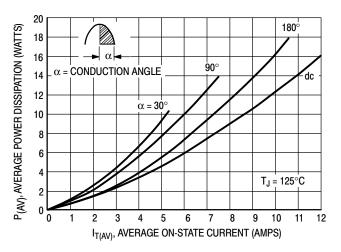


Figure 6. On-State Power Dissipation

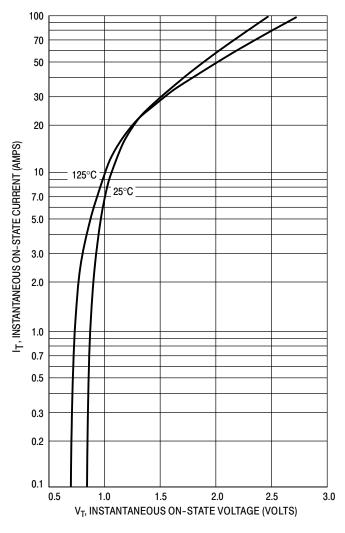


Figure 7. Typical On–State Characteristics

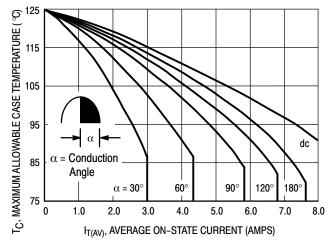
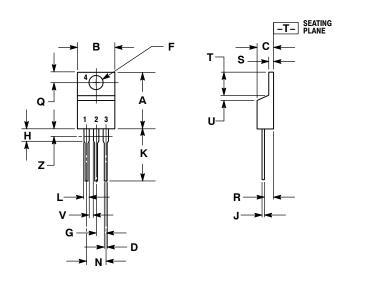



Figure 8. Average Current Derating

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 ISSUE AF

Y14.5M, 1982. Controlling Dimension: Inch. Dimension z Defines a zone where Al Body and Lead Irregularities are Allowed.				
	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.014	0.025	0.36	0.64
κ	0.500	0.562	12.70	14.27
Г	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
C	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Ζ		0.080		2.04

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.

2.

STYLE 3: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons and science to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NTE5428 NTE5448 NTE5457 NTE5511 T1500N16TOF VT T720N18TOF T880N14TOF T880N16TOF TS110-7UF TT104N12KOF-A TT104N12KOF-K TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-16RIA100 VS-22RIA20 VS-2N5206 VS-2N685 VS-40TPS08A-M3 VS-ST230S12P1VPBF 057219R CLB30I1200HB T1190N16TOF VT T1220N22TOF VT T201N70TOH T830N18TOF TD92N16KOF-A TT250N12KOF-K VS-2N692 VS-2N689 VS-25RIA40 VS-16RIA120 VS-10RIA120 VS-30TPS08PBF NTE5427 NTE5442 VS-2N690 VS-ST300S20P0PBF TT251N16KOF-K VS-22RIA100 VS-16RIA40 CR02AM-8#F00 VS-ST110S12P0VPBF TD250N16KOF-A VS-ST110S16P0 VS-10RIA10 VS-16TTS08-M3 TS110-7A1-AP T930N36TOF VT T2160N24TOF VT