1. The following icons are absolutely designed by Midas independently in 2007-SEP. They are not in common use in the LCD industry yet but just used for marking out Midasproducts' characteristics quickly and simply without any special meaning. Midas reserves the composing right and copyright.
No one else is allowed to adopt these icons without Midas approval.
2. The ISO9001 logo used in this document is authorized by SGS (www.sgs.com). Midas had already successfully passed the strict and professional ISO9001:2000 Quality Management System Certification and got the certificate (No.: CN07/00404)
3. The technologies/techniques/crafts which denoted by the following icons are not exclusively owned by Midas, but also shared by Midas LCD strategic cooperators, however all these technologies/techniques/crafts have been finally confirmed by Midas professional engineers and QC department.
4. As the difference in test standard and test conditions, also Midas insufficient familiarity with the actual LCD using environment, all the referred information in this DATASHEET (including the icons) only have two functions: 4.1: providing quick reference when you are judging whether or not the product meets your requirements.
4.2: listing out definitely the tolerance.

SAMPLE APPROVAL document rather than consider this DATASHEET as the standard for judging whether or not the LCD meets your requirements. Once you instruct Midas to a mass-production without definite demand for providing sample before, Midas will disclaim all responsibility if the mass-production is proved not meeting with your requirements.
5. The sequence of the icons is random and doesn't indicate the importance grade.

6. Icons explanation

Midas 2006 version logo.Midas is an integrated manufacturer of flat panel display (FPD). Midas supplies TN, HTN, STN, FSTN monochrome
LCD panel; COB, COG, TAB LCD module; and all kinds of LED backlight.

FAST RESPONSE TIME

This icon on the cover indicates the product is with high response speed; Otherwise not.

HIGH CONTRAST

This icon on the cover indicates the product is with high contrast; Otherwise not.

WIDE VIEWING SCOPE

This icon on the cover indicates the product is with wide viewing scope; Otherwise not.

RoHS COMPLIANCE
This icon on the cover indicates the product meets ROHS requirements; Otherwise not.

PROTECTION CIRCUIT

This icon on the cover indicates the product is with protection circuit; Otherwise not.

LONG LIFE VERSION

This icon on the cover indicates the product is long life version (over 9K hours guaranteed); Otherwise not.

Anti UV VERSION

This icon on the cover indicates the product is against UV line. Otherwise not.

OPERATION TEMPERATURE RANGE

This icon on the cover indicates the operating temperature range $(X-Y)$.

TWICE SELECTION OF LED MATERIALS

This icon on the cover indicates the LED had passed Midas twice strict selection which promises the product's identical color and brightness; Otherwise not.
3TIMEs 100\% QC EXAMINATION
This icon on the cover indicates the product has passed Midas thrice 100\% QC.
Otherwise not.
$\mathrm{VIcm}=3.0 \mathrm{~V}$
This icon on the cover indicates the product can work at 3.0 V exactly; otherwise not.

N SERIES TECHNOLOGY (2008 developed)
New structure, new craft, new
technology and new materials inside both LCD module and LCD panel to improve the "RainBow"

Midas Passive OLED Part Number System

MC	OC	057/21605 A W	$\text { * } \quad \mathbf{M}$	Y *
	2	$3 \quad 4$	$6 \quad 7$	89
1	$=$	MC:	Midas Components	
2	=		OC: OLED Character	OG: OLED Graphic
3	=	Size / No of Characters an	ad Character Height	
4	$=$	Series		
5	$=$	Operating Temp Range:	B: -40+70Deg C W: -4	+80 Deg C
6	=		Blank:Not applicable	or No of Pixels (320240)
7	$=$	Mode:	M: Transmissive S: S	unlight Readable (transmissive)
8	=	Colour:	Y: Yellow G: Green W: White RGB: Red	$\begin{aligned} & \text { R: Red B: Blue } \\ & \text { l, Green, Blue } \end{aligned}$
9	$=$	Driver Chip/Controller:	Blank: General I: I E: Multi-European C	aracter Set

1. Revision History

DATE	VERSION	REVISED PAGE NO.	Note
$2011-03-23$	1		First issue

2. General Specification

The Features is described as follow:
■ Module dimension: $85.0 \times 36.0 \times 10.0($ max. $) \mathrm{mm}^{3}$
■ View area: $66.0 \times 16.0 \mathrm{~mm}^{2}$
■ Active area: $56.95 \times 11.85 \mathrm{~mm}^{2}$
■ Number of dots: 16 Character $x 2$ Line
■ Pixel size: $0.55 \times 0.65 \mathrm{~mm}^{2}$
■ Pixel pitch: $0.60 \times 0.70 \mathrm{~mm} 2$
■ Character size: $2.95 \times 5.55 \mathrm{~mm} 2$
■ Character pitch:3.6 $\times 6.3 \mathrm{~mm} 2$

- Duty: $1 / 16$
- Emitting Color: Yellow

4. Interface Pin Function

No.	Symbol	I/O	Function
1	VSS	0 V	Ground
2	VDD	5.0 V	Supply Voltage for logic
3	NC	-	
4	RS	H / L	H: DATA, L: Instruction code
5	R/W	H / L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	E	H,H \rightarrow L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	NC	-	
16	NC	-	

※Brightness Control

Brightness(nits)	Power consumption(measured with random texts)
125 (typical)	$150 \mathrm{~mW}\left(5 \mathrm{~V}^{*} 30 \mathrm{~mA}\right)$

Notes: 1. When random texts pattern is running, averagely, at any instance, about $1 / 2$ of pixels will be on.
2. You can to use the display off mode to make long life.

5. Outline Dimension

6. Function Description

REGISTERS

IC provides two types of 8-bitregisters, namely: Instruction Register (IR) and Data Register (DR).
The register is selected using the RS Pin. When the RS pin is set to " 0 ", the Instruction Register Type is selected. When RS pin is set to "1", the Data Register Type is selected. Please refer to the table below.

RS	R/WB	Operation
0	0	Instruction regis ter write as an internal operation.
0	1	Read busy flag (DB7) and address counter (DB0 to DB6)
1	0	Data register write as an internal operation (DR to DDRAM or CGRAM)
1	1	Data register read as an intemal operation (DDRAM or CGRAM to DR)

INSTRUCTION REGISTER(IR)

The Instruction Register is used to store the instruction code (i.e. Display Clear, Cursor Home and others), Display Data RAM (DDRAM) Address, and the Character Generator RAM (CGRAM) Address. Instruction register can only be written from the MPU.

DATA REGISTER (DR)

The Data Register is used as a temporary storage for data that are going to be written into the DDRAM or CGRAM as well as those data that are going to be read from the DDRAM or CGRAM.

BUSY FLAG (BF)

The Busy Flag is used to determine whether IC is idle or internally operating. When IC is performing some internal operations, the Busy Flag is set to " 1 ". Under this condition, the no other instruction will not be accepted. When RS Pin is set to " 0 " and R/WB Pin is set to " 1 ", the Busy Flag will be outputted to the DB7 pin. When IC is idle or has completed its previous internal operation, the Busy Flag is set to " 0 ". The next instruction can now be processed or executed.

ADDRESS COUNTER (AC)

The address counter is used to assign the Display Data RAM (DDRAM) Address and the Character Generator RAM (CGRAM) Address. When Address information is written into the Instruction Register (IR), this Address information is sent from the Instruction Register to the Address Counter. At the same time, the nature of the Address (either CGRAM or DDRAM) is determined by the instruction. After writing into or reading from the DDRAM or CGRAM, the Address Counter is automatically increased or decreased by 1 (for Write or Read Function). It must be noted that when the RS pin is set to " 0 " and R/WB is set to " 1 ", the contents of the Address Counter are outputted to the pins -- DB0 to DB6.

DISPLAY DATA RAM (DDRAM)

The Display Data RAM (DDRAM) is used to store the Display Data which is represented as 8 -bit character code. The Display Data RAM supports an extended capacity of 128×8-bits or 128
characters.
The Display Data RAM Address (ADD) is set in the Address Counter as a hexadecimal.

	High Order Bits								Low Order Bits		
Address Counter (hex)	AC6	AC5	AC4	AC3	AC2	AC1	AC0				

An example of a DDRAM Address $=39$ is given below.

DDRAM Address: 39

AC6	AC5	AC4	AC3	AC2	AC1	AC0
0	1	1	1	0	0	1

1-LINE DISPLAY ($\mathrm{N}=0$)

When the number of characters displayed is less than 128 , the first character is displayed at the head position. The relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position (digit)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\ldots \ldots \ldots \ldots .$.	$\mathbf{1 2 6}$	$\mathbf{1 2 7}$	$\mathbf{1 2 8}$
DDRAM address (hexadecimal)	00	01	02	03	$\ldots \ldots \ldots \ldots$	7 D	7 E	7 F

For example, when only 8 characters are displayed in one Display Line, the relationship between theDDRAM Address and position on the OLED Panel is shown below.

Display Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
DDRAM address	00	01	02	03	04	05	06	07
Shift left	01	02	03	04	05	06	07	08
Shift right	$7 F$	00	01	02	03	04	05	06

2-LINE DISPLAY (N=1)

Case 1: The Number of Characters displayed is less than 64×2 lines
When the number of characters displayed is less than 64×2 lines, then the first character of the first and second lines are displayed starting from the head. It is important to note that every line reserve 64 x8bits DDRAM space. $1^{\text {st }}$ line is 00 to 3 F , second line is 40 to 7 F . Please refer the figure below.

Display Position	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\ldots \ldots \ldots$.	$\mathbf{6 1}$	$\mathbf{6 2}$	$\mathbf{6 3}$	$\mathbf{6 4}$
DDRAM Address (hexadecimal)	00	01	02	03	$\ldots \ldots \ldots$.	3 C	3D	3 E	3 F
	40	41	42	43	$\ldots \ldots \ldots$.	7 C	7 D	7 E	7 F

To illustrate, for 2-line x 20 characters display, the relationship between the DDRAM address and position of the OLED panel is shown below.

Display Position	1	2	3	4	18	19	20
DDRAM address (hexadecimal)	00	01	02	03	11	12	13
	40	41	42	43	51	52	53
Shift left	01	02	03	04	19	20	21
	41	42	43	44	52	53	54
Shift right	3F	00	01	02	\ldots	10	11	12
	7F	40	41	42	50	51	52

Case 2: 40-Character $x 2$ Lines Display
IC(Master) can be extended to display 40 characters $\times 2$ lines by cascade the other IC(Slave).
When there is a Dis play Shift operation, the DDRAM Address is also shifted. Please refer to the example below.

Display Position	1	2	3	4	5	6	7	8	9	10	11	\cdots	37	38	39	40
DDRAM address	00	01	02	03	04	05	06	07	08	09	0A	24	25	26	27
	40	41	42	43	44	45	46	47	48	49	4A	64	65	66	67
	IC display (Master)								Cas cade $2^{\text {nd }}$ IC(Slave)							
Shift left	01	02	03	04	05	06	07	08	09	0A	0B	25	26	27	28
	41	42	43	44	45	46	47	48	49	4A	4B	65	66	67	68
Shift right	3F	00	01	02	03	04	05	06	07	08	09	...	23	24	25	26
	7F	40	41	42	43	44	45	46	47	48	49	63	64	65	66

SLAVE MODE DATA INPUT

When IC is under slave mode, display data is send from the other IC(master).The input data "D" is shifted at the falling edge of CL

M/S	Mode	D	CL	LAT
H	Master	Output	Output	Output
L	Slave	Input	Input	Input

BIDIRECTIONAL SHIFT REGISTER BLOCK

This block shifts the serial data at the falling edge of CL. When SHL is set "H", the data input from D is shifted from bit100 to bit1 (When IC is "master" mode, D is output; When IC is "slave" mode, D is input). When SHL is set " L ", the data input is shifted from bit1 to bit100.

Condition 1 : SHL="H"

Page 11 , Total 56 Pages

Condition 2 : SHL="L

CHARACTER GENERATOR ROM (CGROM)

The Character Generator ROM (CGROM) is used to generate either 5×8 dots or 5×10 dots character patterns from 8 -bit character codes. IC build in three set of font tables as "Westem European", "English Japanese" and "English Russian". User can use software to select suitable font table (Default "English Japanese").

CHARACTER GENERATOR RAM (CGRAM)

The Character Generator RAM (CGRAM) is used to generate either 5×8 dot or 5×10 dot character patterns. It can generate eight 5×8 dot character patterns or four 5×10 dot character patterns. The character patterns generated by the CGRAM can be rewritten. User-defined character patterns for the CGRAM are supported.

RELATIONSHIP BETWEEN CGRAM ADDRESS, DDRAM CHARACTER CODE AND CGRAM CHARACTER PATTERNS (FOR 5 X 8 DOT CHARACTER PATTERN)

Ch	ara	act	C	ode														ar	AM	P	atte				
	DR	AM	Da							CGR	RA	M A	Add	ress				GR	AM	Da					
71		5	14		2			0		54		3	2		10		7	6	5	4	3	2	1	0	
High						Lo	w			ligh				Low									Lo		
													0	0	0			${ }^{*}$	*	1	1	1	1	0	Character pattern 1
													0	0	1		*	*	*	1	0	0	0	1	
													0	1	0		*	*	*	1	0	0	0	1	
0	0	0	0		0	0		0	0		0	0	0	1	1		*	*	*	1	1	1	1	0	
													1	0	0		*		*	1	0	1	0	0	
													1	0	1		*	*	*	1	0	0	1	0	
													1	1	0		*	*	*	1	0	0	0	1	
													1	1	1		*	*	*	0	0	0	0	0	Cursor Position
													0	0	0		*	*	*	1	0	0	0	1	Character pattern 2
													0	0	1		*	*	*	0	1	0	1	0	
													0	1	0		*	*	*	1	1	1	1	1	
0	0	0	0	*	0	0		1	0	-	0	1	0	1	1		*	*	*	0	0	1	0	0	
													1	0	0		*	*	*	1	1	1	1	1	
													1	0	1		*	*	*	0	0	1	0	0	
													1	1	0		*	*	*	0	0	1	0	0	
													1	1	1		*	*	*	0	0	0	0	0	Cursor position
0	0	0	0	*																			.		Character pattern 3~7
						
					\|.		*	*	*	
													0	0	0		*	*	*	0	0	0	0	0	Character pattern 8
													0	0	1		*	*	*	0	1	0	1	0	
													0	1	0		*	*	*	0	0	0	0	0	
0	0	0	0		1	1		1	1	1	1	1	0	1	1		*	*	*	0	0	0	0	0	
													1	0	0		*	*	*	1	0	0	0	1	
													1	0	1		*	*	*	0	1	1	1	0	
													1	1	0		*	*	*	0	0	1	0	0	
													1	1	1		*	*	*	0	0	0	0	0	Cursor position

Notes:

1. * $=$ Not Relevant
2. The character pattem row positions correspond to the CGRAM data bits -- 0 to 4 , where bit 4 is in the left position.
3. Character Code Bits 0 to 2 correspond to the CGRAM Address Bits 3 to 5 (3 bits: 8 types)
4. If the CGRAM Data is set to " 1 ", then the selection is displayed. If the CGRAM is set to " 0 ", there no selection is made.
5. The CGRAM Address Bits 0 to 2 are used to define the character pattern line position. The 8th line is the cursor position and its display is formed by the logical ORw ith the cursor. The 8th line CGRAM data bits 0 to 4 must be set to " 0 ". If any of the 8 th line CGRAM data bits 0 to 4 is set to " 1 ", the corresponding display location will light up regardless of the cursor position 6. When the Character Code Bits 4 to 7 are set to " 0 ", then the CGRAM Character Pattem is selected .It must be noted that Character Code Bit 3 is not relevant and will not have any effect on the character display. Because of this, the first Character Pattern shown above (R) can be displayed when the Character Code is 00 H or 08 H .

Page 13 ,Total 56 Pages

Notes:

1. * $=$ Not Relevant
2. The character pattern row positions correspond to the CGRAM data bits -- 0 to 4 , where bit 4 is in the left position.
3. Character Code Bits 1 and 2 correspond to the CGRAMAddress Bits -4 and 5 respectively (2 bits: 4 types)
4. If the CGRAM Data is set to " 1 ", then the selection is displayed. f the CGRAM is set to " 0 ", there no selection is made.
5. The CGRAM Address Bits 0 to 3 are used to define the character pattern line position. The 11th line is the cursor position and its display is formed by the logical ORw ith the cursor. The 11th line CGRAMdata bits 0
to 4 must be set to " 0 ". If any of the 11 th line CGRAM data bits 0 to 4 is set to " 1 ", the corresponding display location will light up regardless of the cursor position.
6. When the Character Code Bits 4 to 7 are set to " 0 ", then the CGRAM Character Pattern is selected. It must be noted that Character Code Bit - 0 and 3 are not relevant and w ill not have any effect on the character display. Because of this, the Character Pattern shown above (\$) can be displayed when the Character Code is $00 \mathrm{H}, 01 \mathrm{H}, 08 \mathrm{H}$ or 09 H .

TIMING GENERATION CIRCUIT

The timing signals for the internal circuit operations (i.e. DDRAM, CGRAM, and CGROM) are generated by the Timing Generation Circuit. The timing signals for the MPU internal operation and the RAM Read for Display are generated separately in order to prevent one from interfering with the other. This means that, for example, when the data is being written into the DDRAM, there will be no unwanted interference such as flickering in areas other than the display area.

OLED DRIVER CIRCUIT

IC provides 16 Common Drivers and 100 Segment Driver Outputs. When a character font and the number of lines to be displayed have been selected, the corresponding Common Drivers output the waveform automatically. A non-selection waveform will be outputted by the rest of the Common outputs.

CURSOR/BLINK CONTROL CIRCUIT

The cursor or character blinking is generated by the Cursor / Blink Control Circuit. The cursor or the blinking will appear with the digit located at the Display Data RAM (DDRAM) Address Set in the Address Counter (AC).

	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Address counter	0	0	0	0	1	1	1

CASE 1: FOR 1-LINE DISPLAY

Example: When the Address Counter (AC) is set to 0 EH , the cursor position is dis played at DDRAM Address 0EH.

Dis play position	1	2	3	4	5	14	15	\ldots	19	20
DDRAM address (hexadecimal)	00	01	02	03	04	\ldots	0D	OE	12	13

Notes:
The cursor or blinking appears when the Address Counter (AC) selects the Character Generator RAM (CGRAM). When the AC selects CGRAM Address, then the cursor or the blinking is displayed in a irrelevant and meaningless position.

CASE 2: FOR 2-LINE DISPLAY
Example: When the Address Counter (AC) is set to 46 H , the cursor position is displayed at DDRAM Address 46H.

Displayposition	1	2	3	4	5	6	7	8	$\ldots \ldots$	19	20
DDRAM address (hexadecimal)	00	01	02	03	04	05	06	07	$\ldots \ldots$	09	13
	40	41	42	43	44	45	46	47	$\ldots \ldots$	49	53

Cursor Position

Notes:

The cursor or blinking appears when the Address Counter (AC) selects the Character Generator RAM (CGRAM). When the AC selects CGRAM Address, then the cursor or the blinking is displayed in an irrelevant and meaningless position.

CHARACTER MODE ADDRESSIN

IC provides two kind of character mode. User can fill in 128 characters data ($\mathrm{N}=0$, one line) or 64 characters data per line ($N=1$, two line) in embedded RAM to display graphic. Character mode address can be controlled by DDRAM address instruction.

Address Fomat	$\mathrm{DB7}$	$\mathrm{DB6}$	DB 5	$\mathrm{DB4}$	DB 3	DB 2	DB 1	DB 0
CA(Character Address)	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

(1)1-Line condition ($\mathrm{N}=0$)

1	2	3	4	125	126	127	128
\circ 0 0 0 0 \vdots 11	$\overline{8}$ 0 8 8 0 0	0 8 8 8 11 0	$\begin{aligned} & \overline{8} \\ & 0 \\ & 0 \\ & \frac{0}{1} \\ & \hline 0 \end{aligned}$						$\frac{\underset{N}{V}}{\underset{\sim}{V}}$

(2)2-Line condition ($\mathrm{N}=1$)

1	2	3	4	\ldots	61	62	63	64
8 8 8 8 \vdots 1	$\overline{0}$ 0 0 \vdots	\circ 8 8 8 \vdots 0	$\overline{5}$ 0 0 0 0 0			은 $\frac{5}{5}$ $\frac{6}{41}$ 0			
8 8 8 $\frac{8}{\pi}$ 4	$\overline{0}$ 8 $\frac{8}{2}$ $\stackrel{11}{4}$		$\stackrel{\rightharpoonup}{8}$ 8 $\stackrel{3}{7}$ $\stackrel{11}{c}$			$\stackrel{8}{5}$ $\stackrel{y}{7}$ $\underset{3}{7}$			

Page 16 , Total 56 Pages

GRAPHIC MODE ADDRESSING

IC provides not only character mode but also graphic mode. User can fill in 100×16 data in embedded RAM to display graphic. Graphic mode addressing is different from character mode. Use DDRAM address instruction to set X-axis address of Graphic mode and CGRAM address instruction to set Y -axis of Graphic mode.

Address Fom at	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
GXA(Graphic X-axis Address)	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
GYA(Graphic Y-axis Address)	0	1	0	0	0	0	0	CGA0

7. CHARACTER GENERATOR ROM(CGROM)

WIN0010 provides three set of character font. Character font can be selected by programming FT.
ENGLISH_JAPANESE CHARACTER FONT TABLE(default FT[1:0]= 00)

Amater				umm			umblum		nutumb				
u	$\stackrel{\text { \% }}{\text { \%in }}$	8	,	-	-		,	-	P		-		
u		7		1	T	8\%	.	-	$\stackrel{\circ}{\circ}$	7	78		
	\%			2		6	67	8	\cdots	1.	9		
	\%	7		B	C	58	0	7	-1]	0	7		8
				4	B	T18	\% ${ }^{\text {t }}$	\%	8	T	1	71	-
	$\%$			5	E	Ue	Ei	18	8	-1	1		
	\%			6	F		for	18	47	圌			
				7	E		\$0	P	${ }^{18} 7$	7	8		(1)
				8		81	$1 \times$	\bigcirc	* 1	0	7	,	,
	\%			${ }^{9} 9$		11	1.1	T	\%	17	1		
	$\stackrel{\text { \% }}{\text { mim }}$			v	T	Z 3	17	${ }^{\text {B }}$	8	+ ${ }^{\text {W }}$	1	1	$1{ }^{7}$
	$\stackrel{\square}{0}$			3	1	Le	1. 1	6	8	+	E		
				\checkmark	W	$\times 1$	111	-	B ${ }^{\text {P }}$	\%	3		-
			-	\#	1	18	\%1	-	-	17	1	\%	$\underline{1}$
				P1	N		19	${ }^{8} 8$	d_{i}	E			
				7	T	[180	\% ${ }^{\text {\% }}$	${ }^{2}$	T 1	8	$1{ }^{1}$		

WESTERN EUROPEAN CHARACTER FONT TABLEI（FT［1：0］＝01）

	แu	แ上	แи				нни แни		แнн нแ	нแแ пแн	пแน		мп nпи	M	мин нин		
แı	$\underset{\substack{\text { and } \\ \text { nil }}}{ }$								B / B			$\\|_{i}$	\％	－	P		
	${ }_{\substack { \text { and } \\ \begin{subarray}{c}{\infty{ \text { and } \\ \begin{subarray} { c } { \infty } } \\{\hline}\end{subarray}}$											雷					
แи												罱					
	${ }_{\substack{\text { and } \\ \text { ent }}}^{\substack{\text { a }}}$																
						EiFe	費		E月 el				菐				
	$\underset{\substack { \text { and } \\ \begin{subarray}{c}{\text { anm }{ \text { and } \\ \begin{subarray} { c } { \text { anm } } }\end{subarray}}{\substack{\text { a }}}$						蓸		求				E			\％	
									Bien en en		$\mathbb{B n}$						
	${ }_{\substack{\text { a } \\ \text { c．m }}}^{\substack{0}}$								$8 \operatorname{en⿻}$					${ }^{2}$			
	$\underset{\substack { \infty \\ \begin{subarray}{c}{\text { cim }{ \infty \\ \begin{subarray} { c } { \text { cim } } }\end{subarray}}{\substack{\text { cid }}}$			I			霽		$\operatorname{He⿻}_{6}$					I			
							\square								哴	，	
	${ }^{\text {and }}$					E(1)	$\stackrel{\omega}{\vec{W}}$						\％	，	－		
						霽霛			$\underline{4}$					H18	S		
							荲							\＃${ }^{\text {P }}$	S䫀	T	
	${ }_{\substack { \text { and } \\ \begin{subarray}{c}{\text { min }{ \text { and } \\ \begin{subarray} { c } { \text { min } } } \\{\text {（10）}}\end{subarray}}$					霛農					崰罡輏	${ }^{-10}$		W	P10		
											W		Bie				

ENGLISH＿RUSSIAN CHARACTER FONT TABLE（FT［1：0］＝10）

$4 \text { hit }$	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	HHHH
LLIL	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (1) } \\ \hline \end{gathered}$					$\begin{aligned} & \text { \# } \\ & \text { 英 } \end{aligned}$		弗		目囲	$\begin{array}{\|c} \because \\ \# \\ \# \end{array}$				且皿	
LLIL	$\begin{gathered} \infty \\ \text { RMM } \\ \text { (2) } \end{gathered}$						目㬰	目且			\square					
LLHL	$\begin{gathered} \infty \\ R, \\ \text { RAM } \\ \text { (3) } \end{gathered}$	㢄相													\square	
LLHH	$\begin{gathered} \infty \\ R \Delta M \\ \text { (4) } \end{gathered}$								\square						丑	
LHLL	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (5) } \end{gathered}$															
LHLH	∞ RaM （6）			丑												事
LHHL	C RAM （7）															
LHHH	∞ RaM （3）			费								\＃册				相
HLLL	$\begin{gathered} \infty \\ R A M \\ \text { (9) } \end{gathered}$										\square					
HLLH	$\begin{aligned} & \infty \\ & R A M \\ & \text { (10) } \end{aligned}$	\＃표 표 표	弗目					弗								
HLHL	$\begin{aligned} & \infty \\ & R A M \\ & (11) \end{aligned}$	표 표 표				半半										
HLHH	$\begin{aligned} & C 6 \\ & R A M \\ & (12) \end{aligned}$		\square						弗							
HHLL	$\begin{aligned} & \infty \\ & R A M \\ & (13) \end{aligned}$				弗				兰							
HHLH			业曲	册曲				豆			目		弗	$\#$ $\#$ $\#$		
HHHL	$\begin{aligned} & C B \\ & R A M \\ & (15) \end{aligned}$															
HHHH	$\begin{gathered} \infty \\ R A M \\ (16) \end{gathered}$				弗			曲			弗					\＃

WESTERN EUROPEAN CHARACTER FONT TABLE II（FT［1：0］＝11）

	LLIL	LLLH	LLHL	LLHH	LHLL	내내	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHL	HHHL	HHHH
LLIL	$\begin{gathered} \infty \\ \text { RaM } \\ \text { (1) } \end{gathered}$															
LLIL	$\begin{aligned} & \infty \\ & \mathrm{R} \mu \mathrm{M} \\ & \text { (2) } \end{aligned}$						軘井	墶								
LLHL	$\begin{aligned} & \infty \\ & \text { R } \quad \mathrm{M} \\ & (3) \end{aligned}$															
LLHH	$\begin{gathered} \infty \\ \mathrm{RMM} \\ \text { R } \\ \hline(4) \\ \hline \end{gathered}$							目丑								
ㄴHLL	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (5) } \end{gathered}$							世田	目㗐：	研						
LHLH	$\begin{gathered} \infty \\ \underset{\sim}{\mathrm{RAM}} \\ (\mathrm{f}) \end{gathered}$				曲			弗								
LHHL	$\begin{gathered} \alpha, \\ \text { RAM } \\ (r) \end{gathered}$				\square			兰								
LHHH	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (} \mathrm{s}) \end{gathered}$							\＃\＃	표				\＃\＃	甘丑 \＃ 弗		
HLLL	$\begin{gathered} \infty \\ R, \\ R M \\ (9) \end{gathered}$									身			\＃费	\＃\＃		
HLLH	$\begin{gathered} \infty \\ \text { RAM } \\ (10) \end{gathered}$		且					\＃\＃					\square	联兑		
HLHL	$\begin{gathered} C S \\ \text { R } A M \\ (11) \end{gathered}$				弗百	\qquad		\＃弗				目目		E\#		
HLHH	$\begin{gathered} \infty \\ \mathrm{R} \Delta \mathrm{M} \\ (12) \end{gathered}$					左	\square				辰：		弗			
HHLL	$\begin{aligned} & \infty \\ & \text { RAM } \\ & (13) \end{aligned}$	\＃\＃\＃											弗			吊
HHLH	$\begin{aligned} & \infty \\ & \text { RAM } \\ & \text { (14) } \end{aligned}$		\＃\＃	\＃\＃						北						
HHHL	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (15) } \end{gathered}$						\square			프를						\qquad
HHHH	$\begin{gathered} \infty \\ \text { RAM } \\ \text { (16) } \end{gathered}$									㖺						\square

8. Instruction Sets

Instruction	Code										Description	Max. Execution Time when fsp or fosc = 250 KHz
	RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire di splay. Sets DDRAM Addre ss 0 into the	6.2 ms
Return Home	0	0	0	0	0	0	0	0	1	0	Sets DDRAM Addre ss 0 into the Address Counter. Returns shifted displayto original position. DDRAM contents remain unch ang ed.	0
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move di rection and specifies display shift. (The se operations are performed during data write and read.)	0
Display ON/OFF Control	0	0	0	0	0	0	1	D	C	B	Sets entire Display (D) ON/OFF. S ets Cursor (C) ON/OFF. Sets Blinking (B) of Cursor	0
Cursorl Display S hift/ Mode/ Pwr	0	0	0	0	0	1	S/C	R / L $P W R$	0 1	0 1	Moves cursor \& shifts displ a y without ch an ging DDRAM contents. Sets Graphic/Character Mode	0
Function Set	0	0	0	0	1	DL	N	F	FT1	FT0	Sets interface data length (DL). Sets nu mber of di splay lines (N). Sets Character Font (F).	0
et CGRAM Add ress	0	0	0	1	ACG	ACG	ACG	ACG	ACG	ACG	Sets CGRAM Address. CGRAM data is sent and re cei ved after this setting.	0
et DDRAM Address	0	0	1	ADD	Sets DDRA M Address. The DDRAM data Is sent and received after this	0						
ead Busy Add ress	0	1	BF	AC	Reads Busy Flag (B F) indicating th at internal operation is being performed. Reads Address Counter contents.	0						
Write data into the CGRAM or DDRAM	1	0			D ata						Writes data into the CGRAM or DDRAM	0
Read Data from the CGRAM or DDRAM	1	1			d Data						Read data from the CGRAM or DDRAM	0

9. Timing Characteristics

AC CHARACTERISTICS

Read / Write Characteristics (8080-series MPU)

Figure 1. Read / Write Characteristics (8080-series MPU)
$\left(\mathrm{VDD}=4.7\right.$ to $\left.5.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Address setup time Address hold time	RS	$\begin{aligned} & \text { tAS80 } \\ & \text { tAH80 } \end{aligned}$	$\begin{gathered} 20 \\ 0 \end{gathered}$	-	-	ns	
System cycle time		tCY80	500	-	-	ns	
Pulse width (WRB)	RW_WRB	tPW80(W)	250	-	-	ns	
Pulse width (RDB)	E_RDB	tPW80(R)	250	-	-	ns	
Data setup time Data hold time	$\begin{gathered} \text { DB7 } \\ \text { to } \\ \text { DB0 } \end{gathered}$	$\begin{aligned} & \text { tDS80 } \\ & \text { tDH80 } \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	-	-	ns	
Read access time Output disable time		$\begin{aligned} & \hline \text { tACC80 } \\ & \text { toD80 } \end{aligned}$	10	-	180	ns	$\begin{gathered} \mathrm{CL}= \\ 100 \mathrm{pF} \\ \hline \end{gathered}$

Read / Write Characteristics (6800-series Microprocessor)

Figure 2. Read / Write Characteristics (6800-series MPU)
(VDD $=4.7$ to $5.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
$\begin{array}{l}\text { Address setup time } \\ \text { Address hold time }\end{array}$	RS	$\begin{array}{c}\text { tAS68 } \\ \text { tAH68 }\end{array}$	$\begin{array}{c}20 \\ 0\end{array}$	-	-	ns	
System cycle time		tCY68	500	-	-	ns	
Pulse width (E)	E_RDB	tPW68(W)	250	-	-	ns	
Pulse width (E)	E_RDB	tPW68(R)	250	-	-	ns	
Data setup time	$\begin{array}{l}\text { DB7 } \\ \text { to } \\ \text { Data hold time }\end{array}$	$\begin{array}{c}\text { tDS68 } \\ \text { tDH68 }\end{array}$	40				
toD68							$)$

Serial Interface Characteristics

Figure 3. Serial Interface Characteristics
(VDD $=4.7$ to $5.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Serial clock cycle	DB5	tCYS	300	-	-		
SCL high pulse width	(SCL)	twHS	100	-	-		
SCL low pulse width		tWLS	100	-	-		
CSB setup time	CSB	tCSS	150	-	-	ns	
CSB hold time	tCHS	150	-	-	n		
Data setup time	DB7	tDSS	100	-	-	ns	
Data hold time	(SDI)	tDHS	100	-	-	ns	
Read access time	DB6	tACCS	-	-	80	ns	

Serial Interface Characteristics

10. Initializing of OLED Module

(1)8-bit mode

(2)4-bit mode

INSTRUCTIONS

IC Instruction Register (IR) and Data Register (DR) are the only registers that can be controlled by the MPU. Prior to the commencement of it internal operation, IC temporarily stores the control information to its Instruction Register (IR) and Data Register (DR) in order to easily facilitate interface with various types of MPU. The internal operations of the IC are determined by the signals (RS, R/WB, DB0 to DB7) that are sent from the MPU. These signals are categorized into 4 instructions types, namely:

1, Function Setting Instructions (i.e. Dis play, Format, Data Length etc.)
2. Internal RAM Address Setting Instructions
3. Data Transfer with Internal RAM Instructions
4. Miscellaneous Function Instructions

The generally used instructions are those that execute data transfers with the internal RAM. However, when the internal RAM addresses are auto incremented/decremented by 1 after each Data Write, the program load of the MPU is lightened. The Display Shift Instruction can be executed at the same time as the Display Data Write, thereby minimizing system development time with maximum programming efficiency. When an instruction is being executed for an internal operation, only the Busy Flag/Address Read Instruction can be performed. The other instructions are not valid. It should be noted that during the execution of an instruction, the Busy Flag is set to "1". The Busy Flag is set to " 0 " when the instructions are can be accepted and executed. Therefore, the Busy Flag should be checked to make certain that BF = "0" before sending another instruction from the MPU. If not, the time between the first instruction and the next instruction is longer than the time it takes to execute the instruction itself.

Instruction	Code										Description	Max. Execution Time when fsp or fosc = 250 KHz
	RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Clears entire di splay. Sets DDRAM Address 0 into the	6.2 ms
Return Home	0	0	0	0	0	0	0	0	1	0	Sets DDRAM Address 0 into the Address Counter. Returns shifted displayto origin al po sition. DDRAM contents remain unch ang ed.	0
Entry M ode Set	0	0	0	0	0	0	0	1	I/D	S	Sets cursor move direction and specifies display shift. (The se operations are performed during data write and read.)	0
Display ON/OFF Control	0	0	0	0	0	0	1	D	C	B	Sets entire Display (D) ON/OFF. S ets Cursor (C) ON/OFF. Sets Blinking (B) of Cursor	0
Cursorl Display S hift/ Mode/ Pwr	0	0	0	0	0	1	S/C G/C	R / L $P W R$	0 1	0 1	Moves cursor \& shifts displ a y wit ho ut ch an ging DDRAM contents. Sets Graphi c/ Character Mode	0
Function Set	0	0	0	0	1	DL	N	F	FT1	FT0	Sets interface data length (DL). Sets nu mber of di splay lines (N). Sets Character Font (F).	0
et CGRAM Add ress	0	0	0	1	ACG	ACG	AC G	ACG	ACG	ACG	Sets CGRAM Address CGRAM data is sent and received afterthis setting.	0
et DDRAM Add ress	0	0	1	ADD	Sets DDRAM Address. The DDRAM data Is sent and received after this	0						
ead Busy Add ress	0	1	BF	AC	Reads Busy Flag (BF) indicating that internal operation is being performed. Reads Address Counter contents.	0						
Write data into the CGRAM or DDRAM	1	0			te Data						Writes data into the CGRAM or DDRAM	0
Read Data from the CGRAM or DDRAM	1	1			d Data						Read data from the CGRAM or DDRAM	0

Notes:

1. After the CGRAMDDDRAM Read or Write Instruction has been executed, the RAM Address Counter is incremented or decremented by 1. After the Busy Flag is turned OFF, the RAM Address is updated.
2. $/ / D=$ Increment/Decrement Bit

- //D="1": Increment
- l/D="0": Decrement

3. $\mathrm{S}=$ Shift Entire Display Control Bit. When $\mathrm{S}={ }^{\prime} 0$ ", shift function disable.
4. $B F=$ Busy Flag

- BF="1": Internal Operating in Progress
- BF="0": No Internal Operation is being executed, next instruction can be accepted.

5. R/L=Shift Right/Left

- R/L="1": Shift to the Right
$-R / L=" 0 "$: Shift to the Left

6. $\mathrm{S} / \mathrm{C}=$ Display Shift/Cursor Move

- S/C="1": Display Shift
- S/C="0": Cursor Move

7. $G / C=G r a p h i c / C h a r a c t e r ~ m o d e ~ s e l e c t i o n . ~ G / C=" 0 ", ~ C h a r a c t e r ~ m o d e ~ i s ~ s e l e c t e d . ~ G / C=" 1 ", ~ G r a p h i c ~ m o d e ~ i s ~$ selected.
8. $\mathrm{PWR}=$ Internal DCDC on/of control. $\mathrm{PWR}=1$ " 1 , DCDC on. $\mathrm{PWR}=$ "0", DCDC off.
9. DDRAM=Display Data RAM
10. CGRAM=Character Generator RAM
11. ACG=CGRAM Address
12. ADD=Address Counter Address (corresponds to cursor address)
13. AC=Address Counter (used for DDRAM and CGRAM Addresses)
14. F=Character Pattern Mode

- F="1": 5 x 10 dots
- F="0": 5 x 8 dots

15. $\mathrm{N}=$ Number of Lines Displayed

- N="1": 2 -Line Display
- N="0": 1-Line Display

16. tADD is the time period starting when the Busy Flag is turned OFF up to the time the Address Counter is updated. Please refer to the diagram below .

BUSY SINGAL
(DB7)

ADDRESS COUNTER
(DB0 TO DB6)

INSTRUCTION DESCRIPTION

CLEAR DISPLAY INSTRUCTION

RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	0	1

This instruction is used to clear the Display Write Space 20H in all DDRAM Addresses. That is, the character pattern for the Character Code 20H must be a BLANK pattern. It then sets the DDRAM Address 0 into the Address Counter and reverts the display to its original state (if the display has been shifted). The display will be cleared and the cursor or blinking will go to the left edge of the display. If there are 2 lines displayed, the cursor or blinking will go to the first line 's left edge of the display. Under the Entry Mode, this instruction also sets the I/D to 1 (Increment Mode). The S Bit of the Entry
Mode does not change.
RETURN HOME INSTRUCTION

RS	RWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	0	1	$*$

Note: * $=$ Not Relevant

This instruction is used to set the DDRAM Address 0 into the Address Counter and revert the display to its original status (if the display has been shifted). The DDRAM contents do not change. The cursor or blinking will go to the left edge of the display. If there are 2 lines displayed, the cursor or blinking will go to the first line's left edge of the dis play.

ENTRY MODE SET INSTRUCTION

The Entry Mode Set Instruction has two controlling bits: I/D and S. Please refer to the table below.

RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	0	1	I/D	S

I/D IS THE INCREMENT/DECREMENT BIT.

When I/D is set to "1", the DDRAM Address is incremented by "1" when a character code is written into or read from the DDRAM. An increment of 1 will move the cursor or blinking one step to the right. When I/D is set to " 0 ", the DDRAM is decremented by 1 when a character code is written into or read from the DDRAM. A decrement of 1 will move the cursor or blinking one step to the left.

S: SHIFT ENTIRE DISPLAY CONTROL BIT

This bit is used to shift the entire display. When S is set to "1", the entire display is shifted to the right(when $I / D=" 0$ ") or left (when $I / D=" 1 "$). When S is set to " 0 ", the dis play is not shifted.
$E x 1: I / D=1, S=1$

		1	2	3	4	-
Initial display						
	1	2	3	4	A	$_$

$E x 2: I / D=0, S=1$

DISPLAY ON/OFF CONTROL INSTRUCTION

The Display On / OFF Instruction is used to turn the display ON or OFF. The controlling bits are D, Cand B.

RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	0	1	D	C	B

D: DISPLAY ON/OFF BIT

When D is set to " 1 ", the display is tumed ON. When D is set to " 0 ", the display is turned OFF and the display data is stored in the DDRAM. The display data can be instantly displayed by setting D to "1".

C: CURSOR DISPLAY CONTROL BIT

When C is set to " 1 ", the cursor is displayed. In a 5×8 dot character font, the cursor is displayed via the 5 dots in the 8th line. In a 5×10 dot character font, it is displayed via 5 dots in the 11 th line. When C is set to " 0 ", the cursor display is disabled. During a Display Data Write, the function of the I/D and others will not be altered even if the cursor is not present. Please refer to the figure below.
5×8 Dot Character Font

Cursor $\underset{r}{ }$

领 Cursor

5×10 Dot Character Font

B: BLINKING CONTROL BIT

When B is set to ' 1 ', the character specified by the cursor blinks. The blinking feature is displayed by switching between the blank dots and the displayed character at a speed of 409.6 ms intervals whenthe fcp or fosc is 250 kHz . Please refer to the figure below.

Figure 1

Figure 2

Note: Figures 1 and 2 are alternately displayed
The cursor and the blinking can be set to display at thesame time. The blinking frequency depends on the fosc or the reciprocal of fcp. To illustrate, when fosc=TBD Hz, then, the blinking frequency $=409.6 \times 250 / 270=379.2 \mathrm{~ms}$

CURSOR/DISPLAY SHIFT INSTRUCTION

This instruction is used to shift the cursor or display position to the left or right without writing or reading the Display Data. This function is used to correct or search the display. Please refer to the table below.

RS	RWWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	0	1	S/C	R/L	0	0
0	0	0	0	0	1	G/C	PWR	1	1

S/C	R/L	Shift Function
0	0	Shifts the curs or position to the left. (AC is decremented by 1).
0	1	Shifts cursor pos ition to the right. (AC incremented by 1).
1	0	Shifts entire display to the left. The cursor follows the dis play shift.
1	1	Shifts the entire display to the right. The cursor follows the display shift.

In a 2-line Display, the cursor moves to the second line when it passes the 40th digit of the first line. The first and second line displays will shift at the same time. When the displayed data is shifted repeatedly, each line moves only horizontally. The second line display does not shift into the first line position. The Address Counter (AC) contents will not change if the only action performed is a Display Shift.

G/C: GRAPHIC MODE / CHARACTER MODE SELECTION

This bit is used to select the display mode for further process.
When $G / C=1$, the GRAPHIC MODE will be selected.
When $G / C=0$, the CHARACTER MODE will be selected.

PWR: ENABLE/DISABLE INTERNAL POWER

This bit is used to turn ON or turn OFF the internal power.
When $\mathrm{PWR}=1$, the internal power is turned ON.
When $P W R=0$, the internal power is turned OFF.

FUNCTION SET INSTRUCTION

The Function Set Instruction has three controlling 3 bits, namely: DL, N and F. Please refer to the table below.

RS	RWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	1	DL	N	F	FT1	FT0

DL: INTERFACE DATA LENGTH CONTROL BIT

This is used to set the interface data length. When DL is set to "1", the data is sent or received in 8 -bit length via the DB0 to DB7 (for an 8-Bit Data Transfer). When DL is set to " 0 ", the data is sent or received in 4-bit length via DB4 to DB7 (for a 4-Bit Data Transfer). When the 4-bit data length is selected, the data must be sent or received twice.

N: NUMBER OF DISPLAY LINE

This is used to set the number of displaylines. When $N=" 1$ ", the 2 -line display is selected. When N is set to " 0 ", the 1 -line display is selected.

F: CHARACTER FONT SET

This is used to set the character font set. When F is set to " 0 ", the 5×8 dot character font is selected. When F is set to " 1 ", the 5×10 dot character font is selected. It must be noted that the character font setting must be performed at the head of the program before executing any instructions other than the Busy Flag and Address Instruction. Otherwise, the Function Set Instruction cannot be executed unless the interface data length is changed.

FT1, FT0: FONT TABLE SELECTION

These two bits are used to select one font table out of the three for further process.
When $(\mathrm{FT} 1, \mathrm{FT} 0)=(0,0)$, the ENGLISH_JAPANESE CHARACTER FONT TABLE will be selected.
$(\mathrm{FT} 1, \mathrm{FT} 0)=(0,1)$, the WESTERN EUROPEAN CHARACTER FONT TABLE will be selected.
$(\mathrm{FT} 1, \mathrm{FT} 0)=(1,0)$, the ENGLISH_RUSSIAN CHARACTER FONT TABLE will be selected.

$$
(\mathrm{FT} 1, \mathrm{FTO})=(1,1), \mathrm{N} / \mathrm{A}
$$

Note: The default setting for FT1 and FT0 is 0 and 0 respectively which means the default Font Table is ENGLISH_JAPANESE CHARACTER FONT TABLE.

SET CGRAM ADDRESS INSTRUCTION

This instruction is used to set the CGRAM Address binary AAAAAA into the Address Counter. Data is then written to or read from the MPU for CGRAM.

RS	RWWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	ACG	ACG	ACG	ACG	ACG	ACG

Note: ACG is the CGRAM address

SET DDRAM ADDRESS INSTRUCTION

This instruction is used to set the DDRAM Address binary AAAAAAA into the Address Counter. The data is written to or read from the MPU for the DDRAM. If 1-line display is selected ($\mathrm{N}=0 \mathrm{O} 0$ "), then AAAAAAA can be 00 H to 4 FH . When the 2-line display is selected, then AAAAAAA can be 00 H to 27 H for the first line and 40 H to 67 H for the second line.

RS	RWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	1	ADD						

Note: ADD = DDRAM Address

READ BUSY FLAG AND ADDRESS INSTRUCTION

This instruction is used to read the Busy Flag (BF) to indicate if IC is internally operating on a previously received instruction. If BF is set to "1", then the internal operation is in progress and the next instruction will not be accepted. If the BF is set to " 0 ", then the previously received instruction has been executed and the next instruction can be accepted and processed. It is important to check the BF status before proceeding to the next write operation. The value of the Address Counter in binary AAAAAAA is simultaneously read out. This Address Counter is used by both the CGRAM and the DDRAM and its value is determined by the previous instruction. The contents of the address are the same as for the instructions -- Set CGRAM Address and

Set DDRAM Address.

RS	RWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	1	BF	AC						

Notes:

1. $B F=$ Busy Flag
2. $\mathrm{AC}=$ Address Counter

WRITE DATA TO CGRAM / DDRAM INSTRUCTION

This instruction writes 8-bit binary data -- DDDDDDDD to the CGRAM or the DDRAM. The previous CGRAM or DDRAM Address setting determines whether a data is to be written into the CGRAM or the DDRAM. After the write process is completed, the address is automatically incremented or decremented by 1 in accordance with the Entry Mode instruction. It must be noted that the Entry Mode instruction also determines the Display Shift.

RS	RWB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	0	D	D	D	D	D	D	D	D

READ DATA FROM THE CGRAM OR DDRAM INSTRUCTION

This instruction reads the 8-bit binary data -- DDDDDDDD from the CGRAM or the DDRAM. The Set CGRAM Address or Set DDRAM Address Set Instruction must be executed before this instruction can be performed, otherwise, the first Read Data will not be valid.

RS	R/WB	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
1	1	D	D	D	D	D	D	D	D

MPU INTERFACE

IC provides High-speed 8-bit parallel bi-directional interface with 6800-series or 8080-series and serial interface. User can choice by signal "PS" and "C68".

68 - series interface

(a) 8-BIT mode(Not available for serial mode)

When IC interfaces with an 8-bit MPU, DB0 to DB7 are used. The 8-bit data transfer starts from the four high order bits --DB4 to DB7 followed by the four low order bits -- DB0 to DB3.An example of a Busy Flag Check Timing in an 8-Bit MPU Interface is given in the diagram.

(b) 4-BIT mode (Not a vailable for serial mode)

IC can be configured to interface with a 4-bit MPU and is selected via a program. If the I/O port of the 4 -Bit MPU from which IC is connected to, is capable of transferring 8 bits, then an 8 -bit data transfer operation is executed. Otherwise, two 4-bit data transfer operations are needed to satisfy one complete data transfer Under the 4-bit data transfer, DB4 to DB7 are used as bus lines. DB0 to DB3 are disabled. The data transfer between IC and MPU is completed after two 4-bit data have been transferred. The Busy Flag must be checked (one instruction) after completion of the data transfer (that is, 4-bit data has been transferred twice.). The Busy Flag must be checked after two 4-bits data transfer has been completed. Please refer to the diagram below or a 4-bit data transfer timing sequence.

where:

1. IR7=Instruction Bit 7
2. IR3=Instruction Bit 3
3. AC3=Address Counter 3

From the above timing diagram, it is important to note that the Busy Flag Check and the data transfer are both executed twice.

80 - series interface
(a) 8-BIT mode

(b) 4-BIT mode

Serial interface

3-Line series Write/Read

CB

5 DI

500

AC CHARACTERISTICS

Read / Write Characteristics (8080-series MPU)

Figure 1. Read / Write Characteristics (8080-series MPU)
(VDD $=4.7$ to $5.3 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Address setup time Address hold time	RS	$\begin{aligned} & \text { tAS80 } \\ & \text { tAH80 } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	ns	
System cycle time		tcY80	300	-	-	ns	
Pulse width (WRB)	RW_WRB	tPW80(W)	80	-	-	ns	
Pulse width (RDB)	E_RDB	tPW80(R)	80	-	-	ns	
Data setup time Data hold time	$\begin{gathered} \text { DB7 } \\ \text { to } \\ \text { DB0 } \end{gathered}$	$\begin{aligned} & \text { tDS80 } \\ & \text { tDH80 } \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 15 \end{aligned}$	-	-	ns	
Read access time Output disable time		$\begin{gathered} \text { tACC80 } \\ \text { toD80 } \end{gathered}$	10	-	$\begin{aligned} & 140 \\ & 100 \\ & \hline \end{aligned}$	ns	$\begin{gathered} \mathrm{CL}= \\ 100 \mathrm{pF} \end{gathered}$

Read / Write Characteristics (6800-series Microprocessor)

Figure 2. Read / Write Characteristics (6800-series MPU)
$\left(\mathrm{VDD}=4.7\right.$ to $5.3 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Address setup time Address hold time	RS	$\begin{aligned} & \hline \text { tAS68 } \\ & \text { tAH68 } \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	-	-	ns	
System cycle time		tCY68	300	-	-	ns	
Pulse width (E)	E_RDB	tPW68(W)	80	-	-	ns	
Pulse width (E)	E_RDB	tPW68(R)	80	-	-	ns	
Data setup time Data hold time		$\begin{aligned} & \hline \text { tDS68 } \\ & \text { tDH68 } \end{aligned}$	$\begin{gathered} 40 \\ 0 \\ \hline \end{gathered}$	-	-	ns	
Read access time Output disable time		$\begin{aligned} & \text { tACC68 } \\ & \text { toD68 } \end{aligned}$	5	-	$\begin{aligned} & 70 \\ & 50 \end{aligned}$	ns	$\begin{gathered} \hline \mathrm{CL}= \\ 100 \mathrm{pF} \end{gathered}$

Serial Interface Characteristics

Figure 3. Serial Interface Characteristics
(VDD $=4.7$ to $5.3 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$)

Item	Signal	Symbol	Min.	Typ.	Max.	Unit	Remark
Serial clock cycle	DB5	tCYS	250	-	-	ns	
SCL high pulse width	(SCL)	twHS	100	-	-		
SCL low pulse width		tWLS	100	-	-		
CS1B setup time	CSB	tCSS	150	-	-	ns	
CS1B hold time	tCHS	150	-	-			
Data setup time	DB7	tDSS	100	-	-	ns	
Data hold time	(SDI)	tDHS	100	-	-		
Read access time	DB6	tACCS	-	-	50	ns	

11. Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit	Notes
Operating Temperature	T_{OP}	-40	+80	${ }^{\circ} \mathrm{C}$	
Storage Temperature	T_{ST}	-40	+80	${ }^{\circ} \mathrm{C}$	
Input Voltage	V_{I}	-0.3	VDD	V	
Supply Voltage For Logic	$\mathrm{VDD}_{\mathrm{SS}}$	-0.3	5.3	V	

12. Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	VDD-VSS	-	3.0	5.0	5.3	V
Input High Volt.	VIH	-	0.9 VDD	-	VDD	V
Input Low Volt.	VIL	-	GND	-	0.1 VDD	V
Output High Volt.	VOH	$\mathrm{IOH}=-0.5 \mathrm{~mA}$	0.8 VDD	-	VDD	V
Output Low Volt.	VOL	IOL=0.5mA	GND	-	0.2 VDD	V
Supply Current	IDD	VDD=5V	-	30	-	mA
CIEx(Yellow)		$\mathrm{x}, \mathrm{y}($ CIE1931)	0.44	0.48	0.52	
CIEy(Yellow)		$\mathrm{x}, \mathrm{y}($ CIE1931)	0.46	0.50	0.54	

13. Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	$(\mathrm{V}) \theta$		160			deg
	$(\mathrm{H}) \varphi$		160			deg
Contrast Ratio	CR	Dark	$2000: 1$		-	-
Response Time	T rise	-		10		$\mu \mathrm{~s}$
	T fall	-		10		$\mu \mathrm{~s}$
Supply Voltage For Logic 5V 50% CheckBoard Brightness	With polarizer		125		nits	
Supply Voltage For Logic 3V 50% CheckBoard Brightness		With polarizer		80		nits

14. OLED Lifetime

ITEM	Conditions	Typ	Remark
Operating Life Time	Ta $=25^{\circ} \mathrm{C}$ /nitial 50% checkboard brightness 125 nits	$100,000 \mathrm{Hrs}$	Note

Notes:

1. Simulation pattern for operation test: interchanging with 50% checkboard.

The brightness decay does not exceed 50\%
2. You can use the display off mode to make long life.
3. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.

15. Reliability

Content of Reliability Test

Env ironmental Test			
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{gathered} 80^{\circ} \mathrm{C} \\ 240 \mathrm{hrs} \end{gathered}$	-_
High Temperature Operation	Endurance test applying the electric stre ss (Voltage \& Current) and the thermal stress to the element for a long time.	$\begin{gathered} 80^{\circ} \mathrm{C} \\ 240 \mathrm{hrs} \end{gathered}$	-
Low Temperature Operation	Enduranœ test applying the electric stre ss under low temperature for a long time.	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & 240 \mathrm{hrs} \end{aligned}$	-
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	$\begin{gathered} 60^{\circ} \mathrm{C}, 90 \% \mathrm{RH} \\ 240 \mathrm{hrs} \end{gathered}$	-
Temperature Cycle	Endurance test applying the low and high temperature cycle.	$-40^{\circ} \mathrm{C} / 80^{\circ} \mathrm{C}$ 100 cycles	-
Mechanical Test			
Vibration test	Endurance test applying the vibration during transportation and using.	$\begin{gathered} 10 \sim 22 \mathrm{~Hz} \rightarrow 1.5 \mathrm{mmp}-\mathrm{p} \\ 22 \sim 500 \mathrm{~Hz} \rightarrow 1.5 \mathrm{G} \\ \text { Total } 0.5 \mathrm{hrs} \end{gathered}$	-
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction	-
Atmospheric pressure test	Endurance test applying the atmospheric pressure during transportation by air.	115 mbar 40hrs	-
Others			
Static electricity test	Endurance test applying the electric stre ss to the teminal.	$\begin{gathered} \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}=1.5 \mathrm{k} \Omega \\ \mathrm{CS}=100 \mathrm{pF} \\ 1 \mathrm{time} \end{gathered}$	-

***Supply voltage for logic system $=5 \mathrm{~V}$. Supply voltage for OLED system $=$ Operating voltage at $25^{\circ} \mathrm{C}$

Test and measurement conditions

1. All measurements shall not be started until the specimens attain to temperature stability. After the completion of the described reliability test, the samples were left at room temperature for 2 hrs prior to conducting the failure test at $23 \pm 5^{\circ} \mathrm{C} ; 55 \pm 15 \% \mathrm{RH}$.
2. All-pixels-on is used as operation test pattern.
3. The degradation of Polarizer are ignored for High Temperature storage, High Temperature/Humidity Storage, Temperature Cycle

Evaluation criteria

1. The function test is OK.
2. No observable defects.
3. Luminance: $>50 \%$ of initial value.
4. Current consumption: within $\pm 50 \%$ of initial value.

APP ENDIX:

RESIDUE IMAGE

Because the pixels are lighted in different time, the luminance of active pixels may reduce or differ from inactive pixels. Therefore, the residue image will occur. To avoid the residue image, every pixel needs to be lighted up uniformly.
16. Inspection specification

NO	Item	Criterion 1.1 Missing vertical, horízontal segment, segment contrast defect. 1.2 Missing character, dot or icon. 1.3 Display malfunction. 1.4 No function or no display. 1.5 Current consumption exceeds product specifications. 1.6 Viewing angle defect. 1.7 Mixed product types. 1.8 Contrast defect.			AQL
01	Electrical Testing				0.65
02	Black or bright spots on OLED (display only)	2.1 Bright and black spots on display $\leqq 0.25 \mathrm{~mm}$, no more than three Bright or black spots present. 2.2 Densely spaced: No more than two spots or lines within 3mm			2.5
03	Black spots, bright spots, contaminatio n (non-display)	3.1 Round type :As follow ing draw ing $\Phi=(x+y) / 2$			2.5
					2.5
04	Polarizer bubbles	If bubbles are visible, judge using black spot specifications, not easy to find, must check in specify direction.	Size Φ $\Phi \leqq 0.20$ $0.20<\Phi \leqq 0.50$ $0.50<\Phi \leqq 1.00$ $1.00<\Phi$ Tolal $\mathrm{T} Y$	Acceptable Q TY Accept no dense 3 2 0	2.5

NO	Item	Criterion	AQL
05	Scratche S	Follow NO. 3 black spots, bright spots, contamination	
06	Chipped glass	Symbols Define: x: Chip length y: Chip width z: Chip thickness k: Seal width t: Glass thickness a: OLED side length L: Electrode pad length: 6.1 General glass chip : 6.1.1 Chip on panel surface and crack between panels: \odot If there are 2 or more chips, x is total length of each chip. 6.1.2 Corner crack: \odot If there are 2 or more chips, x is the total length of each chip.	2.5

NO	Item	Criterion	AQL
07	Cracked glass	The OLED with extensive crack is not acceptable.	2.5
08	Bezel	8.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination. 8.2 Bezel must comply with job specifications.	$\begin{array}{\|l\|} \hline 2.5 \\ 0.65 \end{array}$
9	$\begin{aligned} & \mathrm{PCB} \\ & \text { COB } \end{aligned}$	9.1 COB seal may not have pinholes larger than 0.2 mm or contamination. 9.2 COB seal surface may not have pinholes through to the IC. 9.3 The height of the COB should not exceed the height indicated in the assembly diagram. 9.4 There may not be more than 2 mm of sealant outside the seal area on the PCB. And there should be no more than three places. 9.5 No oxidation or contamination PCB teminals. 9.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. 9.7 The jumper on the PCB should conform to the product characteristic chart. 9.8 If solder gets on bezel tab pads, zebra pad or screw hold pad, make sure it is smoothed down. 9.9 The Scraping testing standard for Copper Coating of PCB $X * Y<=2 m^{2}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 0.65 \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \\ & 0.65 \\ & 2.5 \\ & 2.5 \end{aligned}$
10	Soldering	10.1 No un-melted solder paste may be present on the PCB. 10.2 No cold solder joints, missing solder connections, oxidation or icide. 10.3 No residue or solder balls on PCB. 10.4 No short circuits in components on PCB.	$\begin{aligned} & \hline 2.5 \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \end{aligned}$

NO	Item	Criterion	AQL
11	General appearance	11.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. 11.2 No cracks on interface pin (OLB) of TCP. 11.3 No contamination, solder residue or solder balls on product. 11.4 The IC on the TCP may not be damaged, circuits. 11.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it causes the interface pin to sever. 11.6 The residual rosin or tin oil of soldering (component or chip com ponent) is not burned into brown or black color. 11.7 Sealant on top of the ITO circuit has not hardened. 11.8 Pin type must match type in specification sheet. 11.9 OLED pin loose or missing pins. 11.10 Product packaging must the same as specified on packaging specification sheet. 11.11 Product dimension and structure must conform to productspecification sheet.	$\begin{aligned} & 2.5 \\ & \\ & 0.65 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \\ & 2.5 \\ & \\ & 2.5 \\ & 0.65 \\ & 0.65 \\ & 0.65 \\ & \\ & 0.65 \end{aligned}$

Check Item	Classification	Criteria
No Display	Major	
Missing Line	Major	
Pixel Short	Major	
Darker Short	Major	\square
Wrong Display	Major	\square
Un-uniform B/Ax 100\% < 70\% A/C $\times 100 \%<70 \%$	Major	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

