Enhanced Product

FEATURES

Specified from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
 $0.9 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ maximum input offset voltage drift
 $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum gain drift ($\mathbf{G}=1$)
 Low power
 2.3 mA maximum supply current
 Low noise
 $3.2 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ maximum input voltage noise at $1 \mathbf{k H z}$
 $200 \mathrm{fA} / \sqrt{ } \mathrm{Hz}$ current noise at 1 kHz
 Excellent ac specifications
 2 MHz bandwidth ($\mathbf{G}=100$)
 $0.6 \mu \mathrm{~s}$ settling time to $0.001 \%(G=10)$
 80 dB minimum CMRR at $20 \mathrm{kHz}(\mathbf{G}=1)$
 High precision dc performance
 84 dB CMRR minimum ($G=1$)
 2 nA maximum input bias current
 Inputs protected to $\mathbf{4 0} \mathbf{V}$ from opposite supply
 Gain set with a single resistor ($\mathbf{G}=1$ to $\mathbf{1 0 , 0 0 0}$)
 ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard)
Military temperature range ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)
Controlled manufacturing baseline
One assembly/test site
One fabrication site
Enhanced product change notification
Qualification data available on request

GENERAL DESCRIPTION

The AD8421-EP is a low cost, low power, extremely low noise, ultralow bias current, high speed instrumentation amplifier that is ideally suited for a broad spectrum of signal conditioning and data acquisition applications. This product features extremely high CMRR, allowing it to extract low level signals in the presence of high frequency common-mode noise over a wide temperature range.

The 10 MHz bandwidth, $35 \mathrm{~V} / \mu \mathrm{s}$ slew rate, and 0.6μ s settling time to $0.001 \% ~(G=10)$ allow the AD8421-EP to amplify high speed signals and excel in applications that require high channel count, multiplexed systems. Even at higher gains, the current feedback architecture maintains high performance; for example, at $G=100$, the bandwidth is 2 MHz and the settling time is $0.8 \mu \mathrm{~s}$. The AD8421-EP has excellent distortion performance, making it suitable for use in demanding applications such as vibration analysis.

PIN CONNECTION DIAGRAM

Figure 2. Noise Density vs. Source Resistance

The AD8421-EP delivers $3 \mathrm{nV} / \sqrt{ } \mathrm{Hz}$ input voltage noise and $200 \mathrm{fA} / \sqrt{ } \mathrm{Hz}$ current noise with only 2 mA quiescent current, making it an ideal choice for measuring low level signals. For applications with high source impedance, the AD8421-EP employs innovative process technology and design techniques to provide noise performance that is limited only by the sensor.

The AD8421-EP uses unique protection methods to ensure robust inputs while still maintaining very low noise. This protection allows input voltages up to 40 V from the opposite supply rail without damage to the part.
A single resistor sets the gain from 1 to 10,000 . The reference pin can be used to apply a precise offset to the output voltage.

The AD8421-EP is specified over the military temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. It is available in an 8 -lead MSOP package.
Additional application and technical information can be found in the AD8421 data sheet.

[^0]
TABLE OF CONTENTS

Features .. 1
General Description ... 1
Revision History .. 2
Specifications.. 3
Absolute Maximum Ratings... 6
Thermal Resistance .. 6
REVISION HISTORY
5/13-Revision 0: Initial Version
ESD Caution 6
Pin Configuration and Function Descriptions 7
Typical Performance Characteristics. 8
Outline Dimensions 18
Ordering Guide 18

SPECIFICATIONS

$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.
Table 1.

Parameter	Test Conditions/Comments	Min	Typ	Max

${ }^{1}$ Total voltage noise $=\sqrt{ }\left(\mathrm{e}_{\mathrm{ni}}{ }^{2}+\left(\mathrm{e}_{\mathrm{no}} / \mathrm{G}\right)^{2}+\mathrm{e}_{\mathrm{RG}}{ }^{2}\right)$. See the AD8421 data sheet for more information.
${ }^{2}$ Total RTI $\mathrm{V}_{\text {os }}=\left(\mathrm{V}_{\text {osI }}\right)+\left(\mathrm{V}_{\text {oso }} / \mathrm{G}\right)$.
${ }^{3}$ These specifications do not include the tolerance of the external gain setting resistor, R_{G}. For $G>1$, add R_{G} errors to the specifications given in this table.
${ }^{4}$ Input voltage range of the AD8421-EP input stage only. The input range can depend on the common-mode voltage, differential voltage, gain, and reference voltage. See the Typical Performance Characteristics section for more information.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	$\pm 18 \mathrm{~V}$
Output Short-Circuit Current Duration	Indefinite
Maximum Voltage at $-I \mathrm{~N}$ or $+\mathrm{IN}^{1}$	$-\mathrm{V}_{\mathrm{s}}+40 \mathrm{~V}$
Minimum Voltage at -IN or +IN	$+\mathrm{V}_{\mathrm{s}}-40 \mathrm{~V}$
Maximum Voltage at REF	$+\mathrm{V}_{\mathrm{s}}+0.3 \mathrm{~V}$
Minimum Voltage at REF	$-\mathrm{V}_{\mathrm{s}}-0.3 \mathrm{~V}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
ESD	
\quad Human Body Model	2 kV
Charged Device Model	1.25 kV
\quad Machine Model	0.2 kV

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for a device in free air using a 4-layer JEDEC printed circuit board (PCB).

Table 3.

Package	$\boldsymbol{\theta}_{\mathrm{JA}}$	Unit
8-Lead MSOP	138.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

${ }^{1}$ For voltages beyond these limits, use input protection resistors. See the AD8421 data sheet for more information.
${ }^{2}$ There are ESD protection diodes from the reference input to each supply, so REF cannot be driven beyond the supplies in the same way that +IN and -IN can. See the AD8421 data sheet for more information.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Enhanced Product

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	-IN	Negative Input Terminal.
2,3	R_{G}	Gain Setting Terminals. Place resistor across the RG pins to set the gain. $G=1+\left(9.9 \mathrm{k} \Omega / \mathrm{R}_{G}\right)$.
4	+IN	Positive Input Terminal.
5	$-V_{S}$	Negative Power Supply Terminal.
6	REF	Reference Voltage Terminal. Drive this terminal with a low impedance voltage source to level shift the output.
7	$V_{\text {out }}$	Output Terminal.
8	$+V_{S}$	Positive Power Supply Terminal.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted.

Figure 4. Typical Distribution of Input Offset Voltage

Figure 5. Typical Distribution of Input Bias Current

Figure 6. Typical Distribution of PSRR $(G=1)$

Figure 7. Typical Distribution of Output Offset Voltage

Figure 8. Typical Distribution of Input Offset Current

Figure 9. Typical Distribution of $\operatorname{CMRR}(G=1)$

Figure 10. Input Common-Mode Voltage vs. Output Voltage; $V_{s}= \pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}(\mathrm{G}=1)$

Figure 11. Input Common-Mode Voltage vs. Output Voltage; $V_{S}= \pm 2.5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}(G=1)$

Figure 12. Input Common-Mode Voltage vs. Output Voltage;
$V_{s}= \pm 12 \mathrm{~V}$ and $\pm 15 \mathrm{~V}(G=100)$

Figure 13. Input Common-Mode Voltage vs. Output Voltage;
$V_{S}= \pm 2.5 \mathrm{~V}$ and $\pm 5 \mathrm{~V}(\mathrm{G}=100)$

Figure 14. Input Overvoltage Performance; $G=1,+V_{s}=5 V,-V_{s}=0 \mathrm{~V}$

Figure 15. Input Overvoltage Performance; $G=1, V_{s}= \pm 15 \mathrm{~V}$

Figure 16. Input Overvoltage Performance; $+V_{s}=5 V,-V_{s}=0 V, G=100$

Figure 17. Input Overvoltage Performance; $V_{s}= \pm 15 \mathrm{~V}, \mathrm{G}=100$

Figure 18. Input Bias Current vs. Common-Mode Voltage

Figure 19. Positive PSRR vs. Frequency

Figure 20. Negative PSRR vs. Frequency

Figure 21. Gain vs. Frequency

Figure 22. CMRR vs. Frequency

Figure 23. CMRR vs. Frequency, $1 \mathrm{k} \Omega$ Source Imbalance

Figure 24. Change in Input Offset Voltage (Vosi) vs. Warm-Up Time

Figure 25. Input Bias Current vs. Temperature

Figure 26. Gain vs. Temperature ($G=1$)

Figure 27. CMRR vs. Temperature $(G=1)$

Figure 28. Supply Current vs. Temperature $(G=1)$

Figure 29. Short-Circuit Current vs. Temperature $(G=1)$

Figure 30. Slew Rate vs. Temperature, $V_{s}= \pm 15 \mathrm{~V}(G=1)$

Figure 31. Slew Rate vs. Temperature, $V_{S}= \pm 5 \mathrm{~V}(G=1)$

Figure 32. Input Voltage Limit vs. Supply Voltage

Figure 33. Output Voltage Swing vs. Load Resistance

Figure 34. Output Voltage Swing vs. Output Current

Figure 35. Gain Nonlinearity $(G=1), R_{L}=10 \mathrm{k} \Omega, 2 \mathrm{k} \Omega$

Figure 36. Gain Nonlinearity $(G=1), R_{L}=600 \Omega$

Figure 37. Gain Nonlinearity $(G=1000), R_{L}=600 \Omega, V_{\text {OUT }}= \pm 10 \mathrm{~V}$

Figure 38. Gain Nonlinearity ($G=1000$), $R_{L}=600 \Omega, V_{\text {OUT }}= \pm 5 \mathrm{~V}$

Figure 39. RTI Voltage Noise Spectral Density vs. Frequency

Figure 40. 0.1 Hz to 10 Hz RTI Voltage Noise ($G=1, G=1000$)

Figure 41. Current Noise Spectral Density vs. Frequency

Figure 42. 0.1 Hz to 10 Hz Current Noise

Figure 43. Large Signal Frequency Response

高
举

Figure 44. Large Signal Pulse Response and Settling Time ($G=1$), 10 V Step, $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 45. Large Signal Pulse Response and Settling Time $(G=10)$, 10 V Step, $V_{s}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 46. Large Signal Pulse Response and Settling Time ($G=100$), 10 V Step, $\mathrm{V}_{S}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 47. Large Signal Pulse Response and Settling Time $(G=1000)$, 10 V Step, $V_{S}= \pm 15 \mathrm{~V}, R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 48. Settling Time vs. Step Size $(G=1), R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF}$

Figure 49. Small Signal Pulse Response $(G=1), R_{L}=600 \Omega, C_{L}=100 \mathrm{pF}$

Figure 50. Small Signal Pulse Response $(G=10), R_{L}=600 \Omega, C_{L}=100 \mathrm{pF}$

Figure 51. Small Signal Pulse Response $(G=100), R L=600 \Omega, C L=100 \mathrm{pF}$

Figure 52. Small Signal Pulse Response $(G=1000), R_{L}=600 \Omega, C_{L}=100 \mathrm{pF}$

Figure 53. Small Signal Response with Various Capacitive Loads ($G=1$), $R_{L}=$ Infinity

Figure 54. Second Harmonic Distortion vs. Frequency $(G=1)$

Figure 55. Third Harmonic Distortion vs. Frequency $(G=1)$

Figure 56. Second Harmonic Distortion vs. Frequency $(G=1000)$

Figure 57. Third Harmonic Distortion vs. Frequency $(G=1000)$

Figure 58. THD vs. Frequency

AD8421-EP

OUTLINE DIMENSIONS

0.10

COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 59. 8-Lead Mini Small Outline Package [MSOP] (RM-8)
Dimensions shown in millimeters
ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option	Branding
AD8421TRMZ-EP	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM-8	Y4T
AD8421TRMZ-EP-R7	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead Mini Small Outline Package $[\mathrm{MSOP}]$	RM-8	Y4T

${ }^{1} Z=$ RoHS Compliant Part.

Enhanced Product	AD8421-EP

NOTES

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Instrumentation Amplifiers category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
JM38510/13501BPA MAX4460EUT+T ADA4254RU-EBZ MCP6N16-100EMF JM38510/13501BGA LMV324IYPT INA118U/2K5
LMV324IYDT EL8172ISZ-T7 AD8229HRZ TS934IYDT MAX5426BEUD MAX5426AEUD+ MAX5426CEUD+ MAX4461TESA+ TSV991IYLT TSV914AIYPT TS982IYDWT AD8422ARMZ-RL AD8422BRZ-R7 AD8422ARMZ-R7 AD8422BRMZ-R7 LT1789CS81\#TRPBF LT1167AIN8\#PBF LTC2053CMS8\#PBF LT1167CN8\#PBF LTC6800HMS8\#PBF ADR03TKSZ-EP-R7 ADP1720TRMZ5-EPR7 LT1167CS8\#TRPBF LTC6915IDE\#PBF LTC6800HDD\#PBF LT1789CS8-1\#PBF AMP02FSZ-RL LT1920CN8\#PBF LTC6915CDE\#PBF AD8237ARMZ-RL AD8426BCPZ-R7 LT1167IN8\#PBF INA188IDRJR LTC2053IDD\#PBF LT1101CN8\#PBF LT1920IS8\#PBF AD8220BRMZ-R7 LTC6915HGN\#PBF LTC2053HDD\#PBF LTC2053HMS8\#PBF LTC2053IMS8\#PBF

LT1167CS8\#PBF LT1167AIS8-1\#PBF

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2013 Analog Devices, Inc. All rights reserved. Technical Support

