Midas Passive OLED Part Number System

MC	OC	057/21605 A W		M		
1	2	$3 \quad 45$	6	7	89	
1	$=$	MC:	Midas Com	ponents		
2	$=$		OC: OLED	Character	OG: OLED	Graphic
3	$=$	Size / No of Characters an	ad Character	Height		
4	$=$	Series				
5	$=$	Operating Temp Range:	B: $-40+70 \mathrm{D}$	eg C W: -4	+80 Deg C	
6	$=$		Blank:Not	applicable	or No of	Pixels (320240)
7	$=$	Mode: \square	M: Transm	$\text { nissive } S: S$	Sunlight Reada (transmissive)	able
8	$=$	Colour:	Y: Yellow W: White	G: Green RGB: Red	R: Red , Green, Blue	B: Blue
9	$=$	Driver Chip/Controller:	Blank: Gen E: Multi-E	$\begin{aligned} & \text { neral I: } \mathrm{I}^{2} \mathrm{C} \\ & \text { uropean Cha } \end{aligned}$	${ }^{2} \mathrm{C}$ haracter Set	

History of Version

Version	Contents	Date	Note
00	NEW VERSION	2012/05/06	Spec.
01	Update Power up Sequence	2012/06/25	Spec.

Contents

Page

(1)DIMENSION 5
(2)ABSOLUTE MAXIMUMRATING 6
2.1 Electrical Absolute Ratings 6
2.2 Environmental Absolute Maximum Ratings 6
(3)ELECTRICAL CHARACTERISTICS 7
(4)OPTICAL CHARACTERISTICS 7
(5)MECHANICAL SPECIFICATION 8
(6)INTERFACE PIN ASSIGNMENT 8
(7) $I^{2} C$ INTERFACE: (FOR $I^{2} C$ Version) 9
(8)BLOCK DIAGRAM 10
(9)POWER SUPPLY 10
(10)FUNCTIONAL SPECIFICATION 11
Table 10-1: Fundamental Command Table 11
Table 10-2: Extended Command Table 14
Table 10-3: OLED Command Table 15
(11)POWER DOWN AND POWER UP SEQUENCE 17
(12) 6800-SERIES MCU PARALLEL INTERFACE TIMING CHARACTERISTICS 18
(13)APPLICATION 20
(14)SSD1311 CGROM CHARACTER CODE 22
(15)PRECAUTIONS IN USE OF OLED MODULES-1 25
Modules 25
Handling Precautions 25
Storage Precautions 26
Designing Precautions 26
(16)PRECAUTIONS IN USE OF OLED MODULES-2 27
PRECAUTIONS WHEN DISPOSING OF THE OLED DISPLAY MODULES 27
Other Precautions 27

(2)ABSOLUTE MAXIMUMRATING

2.1 Electrical Absolute Ratings

Item	Symbol	Min.	Typ.	Max.	Unit	Notes
Power Supply for Logic	V_{DD}	-0.3	5.0	5.5	Volt	1,2
Input Voltage for I/O Pins	V_{I}	-0.3	5.0	5.5	Volt	1,2
Life Time $\left(100 \mathrm{~cd} / \mathrm{m}^{2}\right)$		---	70,000	---	Hour	3

Note 1: All the above voltages are on the basis of "VSS $=0 \mathrm{~V}$ ".
Note 2: When this module is used beyond the above absolute maximum ratings, permanent breakage of the module may occur.

Note $3: \mathrm{Ta}_{\mathrm{a}}=25^{\circ} \mathrm{C}, 25 \%$ Checkerboard.
Software configuration follows Section ACTUAL APPLICATION EXAMPLE Initialization. End of lifetime is specified as 50% of initial brightness reached. The average operating lifetime at room temperature is estimated by the accelerated operation at high temperature conditions.
2.2 Environmental Absolute Maximum Ratings

Item	Wide Temperature				
	Operating			Storage	
	Min,	Max.	Min,	Max.	
Ambient Temperature	$-40^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$	$+90^{\circ} \mathrm{C}$	

Note : The defined temperature ranges do not include the polarizer. The maximum withstood temperature of the polarizer should be $85^{\circ} \mathrm{C}$.

(3)ELECTRICAL CHARACTERISTICS

Item	Symbol	Condition	Min.	Typ	Max.	Unit
Power Supply for Logic	$V_{\text {DD }}$	(Wide Voltage I/O Application)	2.8	5.0	5.3	Volt
Input Voltage for I/O Pins	V_{i}		2.8	5.0	5.3	Volt
Input Voltage	VIL	L level	0	-	0.2 V D	Volt
	V_{H}	H level	0.8 V D	-	$V_{\text {DD }}$	Volt
Output Voltage	VoL	L level	0	-	$0.1 \mathrm{~V}_{\mathrm{DD}}$	
	Vor	H level	0.9 VDD	-	$V_{D D}$	
Power Supply Current for OLED	IDD	Note		30		mA
Sleep Mode Current for VDD	$\mathrm{l}_{\text {do,SLEEP }}$				10	$\mu \mathrm{A}$

Note: $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, 25 \%$ Display Area Turn on. $100 \mathrm{~cd} / \mathrm{m}^{2}$
When random texts pattern is running, averagely, about $1 / 4$ of pixels will be on.
(4)OPTICAL CHARACTERISTICS

Item	Symbol	Min.	Typ	Max.	Unit
Viewing angle range			Free		Degree
Dark Room Contrast	Cr		$>10,000: 1$		
Brightness	Lbr		140	$\mathrm{~cd} / \mathrm{m}^{2}$	
Peak Emission Wavelength	C.I.E 1931	$\mathrm{X}=0.25$ $\mathrm{Y}=0.27$	$\mathrm{X}=0.29$ $\mathrm{Y}=0.31$	$\mathrm{X}=0.33$ $\mathrm{Y}=0.35$	

(5)MECHANICAL SPECIFICATION

Item	Description
Product No.	$0 \& 2 \& \quad \$: 0:($
Viewing Area	$58.22(\mathrm{~W}) \mathrm{mm} \times 13.52(\mathrm{H}) \mathrm{mm}$
Module Size	$80.0(\mathrm{~W}) \times 36.0(\mathrm{H}) \times 9.7 \mathrm{max}(\mathrm{D})$
Dot Size	$0.57(\mathrm{~W}) \mathrm{mm} \times 0.67(\mathrm{H}) \mathrm{mm}$
Dot Pitch	$0.60(\mathrm{~W}) \mathrm{mm} \times 0.70(\mathrm{H}) \mathrm{mm}$
Display Format	16 characters $(\mathrm{W}) \times 2$ lines (H)
Duty Ratio	$1 / 16$ Duty
Controller	SSD1311 or Equivalent

(6)INTERFACE PIN ASSIGNMENT

Pin No.	Symbol	External Connection	Description
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic
3	Vo	-	Contrast Adjustment
4	RS(D/C\#)	MPU	Register select signal. H: DATA, L: Command
5	R/W\# (WR\#)	MPU	6800 -interface: Read/Write select signal, R/W $=1:$ Read R/W: $=0:$ Write $8080-$-interface: Active LOW Write signal.
6	E or /RD	MPU	6800 -interface: Operation enable signal. Falling edge triggered. 8080 -interface: Active LOW Read signal.
$7-14$	DB0-DB7	MPU	$8-$ bit Bi-directional data bus lines 15
16	NC	-	No Connect

(7) $I^{2} C$ INTERFACE: (FOR I ${ }^{2} C$ Version)

Pin No.	Symbol	External Connection	Description
1	VSS	Power Supply	Ground
2	VDD	Power Supply	Supply Voltage for OLED and logic
3	Vo	-	Contrast Adjustment
4	SA0	MPU	Slave Address selection.
$5-6$	VSS	Power Supply	Ground
7	SCL	MPU	Serial Clock signal Input
8	SDAin	MPU	Serial Data Input .
9	SDAout	MPU	Serial Data Output .
$10-14$	VSS	Power Supply	Ground
15	NC	-	No Connect
16	NC	-	No Connect

(8)BLOCK DIAGRAM

Display Position	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DD RAM Address	00	01														0 F
DD RAM Address	40	41														4 F

(9)POWER SUPPLY

HW\&SW Contrast Adjustable

SW Contrast Adjustable

(10)FUNCTIONAL SPECIFICATION

COMMAND TABLE

There are three sets of command set in SSD1311: Fundamental Command Set, Extended Command Set and OLED Command Set. These three command sets can be selected by setting logic bits IS, RE and SD accordingly.

Table 10-1: Fundamental Command Table

1. Fundamental Command Set

Command	IS	RE	SD	Instruction Code										Description
				D/C\#	$\begin{array}{\|l\|} \hline \mathbf{R} / \mathbf{W} \# \\ \text { (WR\#) } \end{array}$	D7	D6	D5	D4	D3	D2	D1	D0	
Clear Display	X	X	0	0	0	0	0	0	0	0	0	0	1	Write " 20 H " to DDRAM and set DDRAM address to " 00 H " from AC.
Return Home	X	0	0	0	0	0	0	0	0	0	0	1	*	Set DDRAM address to " 00 H " from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.
Entry Mode Set	X	0	0	0	0	0	0	0	0	0	1	I/D	S	Assign cursor / blink moving direction with DDRAM address. I/D = "1": cursor/ blink moves to right and DDRAM address is increased by 1 (POR) I/D = "0": cursor/ blink moves to left and DDRAM address is decreased by 1 Assign display shift with DDRAM address. $S=$ "1": make display shift of the enabled lines by the DS4 to DS1 bits in the shift enable instruction. Left/ right direction depends on I/D bit selection. $S=$ "0": display shift disable (POR)
	X	1	0	0	0	0	0	0	0	0	1	BDC	BDS	Common bi-direction function. BDC = "0": COM31 -> COM0 BDC = "1": COM0 -> COM31 Segment bi-direction function. BDS = "0": SEG99 -> SEG0, BDS = "1": SEG0 -> SEG99
Display ON / OFFControl	X	0	0	0	0	0	0	0	0	1	D	C	B	Set display/cursor/blink ON/OFF $\begin{aligned} & \mathrm{D}=\text { = } 1 ": \text { display ON, } \\ & \mathrm{D}=\text { "0": display OFF (POR), } \\ & \mathrm{C}=" 1 ": \text { cursor ON, } \\ & \mathrm{C}=\text { "0": cursor OFF (POR), } \\ & \mathrm{B}=" 1 ": \text { blink ON, } \\ & \mathrm{B}=\text { "0": blink OFF (POR). } \end{aligned}$ Note: It is recommended to turn off the cursor and blinking effects when updating internal RAM contents for better visual performance;

1. Fundamental Command Set														
Command	IS	RE	SD	Instruction Code										Description
				D/C\#	R/W\#	D7	D6	D5	D4	D3	D2	D1	D0	
Extended Function Set	X	1	0	0	0	0	0	0	0	1	FW	B/W	NW	Assign font width, black/white inverting of cursor, and 4-line display mode control bit. FW = "1": 6-dot font width, FW = "0": 5-dot font width (POR), $\mathrm{B} / \mathrm{W}=$ = 1 ": black/white inverting of cursor enable, $\mathrm{B} / \mathrm{W}=$ = 0 ": black/white inverting of cursor disable (POR) NW = "1": 3-line or 4-line display mode (POR) NW = "0": 1-line or 2-line display mode
Cursor or Display Shift	0	0	0	0	0	0	0	0	1	S/C	R/L	*	*	Set cursor moving and display shift control bit, and the direction, without changing DDRAM data. S/C = "1": display shift, S/C = "0": cursor shift, R/L = "1": shift to right, R/L = "0": shift to left
Double Height (4- line) / Display-dot shift	0	1	0	0	0	0	0	0	1	UD2	UD1	*	DH'	UD2~1: Assign different doubt height format ($\mathrm{POR}=11 \mathrm{~b}$) $\begin{aligned} & \mathrm{DH}^{\prime}=\text { " } 1 ": \text { display shift enable } \\ & \mathrm{DH}^{\prime}=\text { " } 0 \text { ": dot scroll enable (POR) } \end{aligned}$
Shift Enable	1	1	0	0	0	0	0	0	1	DS4	DS3	DS2	DS1	DS[4:1] $=1111 \mathrm{~b}(\mathrm{POR})$ when $\mathrm{DH}^{\prime}=1 \mathrm{~b}$ Determine the line for display shift. DS1 $=$ " $1 / 0^{\prime \prime}: 1^{\text {st }}$ line display shift enable/disable DS2 = " $1 / 0$ ": $2^{\text {nd }}$ line display shift enable/disable DS3 $=$ " $1 / 0$ ": $3^{\text {rd }}$ line display shift enable/disable DS4 $=$ " $1 / 0^{\prime}: 4^{\text {th }}$ line display shift enable/disable.
Scroll Enable	1	1	0	0	0	0	0	0	1	HS4	HS3	HS2	HS1	HS[4:1] $=1111 \mathrm{~b}(\mathrm{POR})$ when $\mathrm{DH}^{\prime}=0 \mathrm{~b}$ Determine the line for horizontal smooth scroll. HS1 = " $1 / 0^{0}: 1^{\text {st }}$ line dot scroll enable/disable HS2 = " $1 / 0^{\prime}: 2^{\text {nd }}$ line dot scroll enable/disable HS3 = " $1 / 0$ ": $3^{\text {rd }}$ line dot scroll enable/disable HS4 $=$ " $1 / 0^{\prime}: 4^{\text {th }}$ line dot scroll enable/disable.

1. Fundamental Command Set

Command	IS	RE	SD	Instruction Code										Description
				D/C\#	R/W\#	D7	D6	D5	D4	D3	D2	D1	D0	
Function Set	\mathbf{X}	0	0	0	0	0	0	1	*	N	DH	$\begin{gathered} \text { RE } \\ \mathbf{(0)} \end{gathered}$	IS	Numbers of display line, N when N = "1" (POR): 2-line ($\mathrm{NW}=0 \mathrm{~b}$) / 4-line ($\mathrm{NW}=1 \mathrm{~b}$), when $\mathrm{N}=00$ ": 1 -line ($\mathrm{NW}=0 \mathrm{~b}$) / 3-line ($\mathrm{NW}=1 \mathrm{~b}$) DH = " $1 / 0$ ": Double height font control for 2-line mode enable/ disable (POR=0) Extension register, RE ("0") Extension register, IS
	X	1	0	0	0	0	0	1	*	N	BE	$\begin{aligned} & \text { RE } \\ & \text { (1) } \end{aligned}$	REV	CGRAM blink enable $\mathrm{BE}=1 \mathrm{~b}$: CGRAM blink enable $\mathrm{BE}=0 \mathrm{~b}:$ CGRAM blink disable (POR) Extension register, RE ("1") Reverse bit REV = "1": reverse display, REV = "0": normal display (POR)
Set CGRAM address	0	0	0	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter $(\mathrm{POR}=000000)$
Set DDRAM Address	X	0	0	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter (POR=000 0000)
Set Scroll Quantity	X	1	0	0	0	1	*	SQ5	SQ4	SQ3	SQ2	SQ1	SQ0	Set the quantity of horizontal dot scroll. (POR=00 0000) Valid up to $\mathrm{SQ}[5: 0]=110000 \mathrm{~b}$
Read Busy Flag and Address/ Part ID	X	X	0	0	1	BF	$\left\lvert\, \begin{gathered} \text { AC6 } \\ 1 \\ \text { ID6 } \end{gathered}\right.$	$\begin{gathered} \text { AC5 } \\ \text { / } \\ \text { ID5 } \end{gathered}$	$\begin{gathered} \text { AC4 } \\ 1 \\ \text { ID4 } \end{gathered}$	$\begin{gathered} \text { AC3 } \\ \text { / } \\ \text { ID3 } \end{gathered}$	$\begin{gathered} \text { AC2 } \\ \text { / } \\ \text { ID2 } \end{gathered}$	$\begin{gathered} \text { AC1 } \\ \text { / } \\ \text { ID1 } \end{gathered}$	$\begin{array}{\|c} \hline \text { AC0 } \\ 1 \\ \text { ID0 } \end{array}$	Can be known whether during internal operation or not by reading BF. The contents of address counter or the part ID can also be read. When it is read the first time, the address counter can be read. When it is read the second time, the part ID can be read. $\begin{aligned} & \mathrm{BF}=\text { "1": busy state } \\ & \mathrm{BF}=\text { " } 0 \text { ": ready state } \end{aligned}$
Write data	X	X	0	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM / CGRAM).
Read data	X	\mathbf{X}	0	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM / CGRAM).

Table 10-2: Extended Command Table

2. Extended C	Com	man	, S														
Command	IS	RE		Instruction Code											Description		
				$\mathrm{D} / \mathrm{C} \#\left(\begin{array}{l} \text { R/W } \\ (\mathrm{WR} \#) \end{array}\right.$		Hex	D7	D6	D5	D4	D3	D2	D1	D0			
Function Selection A	$\begin{aligned} & \mathbf{X} \\ & \mathbf{X} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 71 \\ \mathrm{~A}[7: 0] \end{gathered}$	$\left(\left.\begin{array}{c} 0 \\ \mathrm{~A}_{7} \end{array} \right\rvert\,\right.$	$\begin{gathered} 1 \\ \mathrm{~A}_{6} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{5} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{4} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{3} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{2} \end{gathered}$	$\begin{gathered} 0 \\ \mathrm{~A}_{1} \end{gathered}$	$\begin{gathered} 1 \\ \mathrm{~A}_{0} \end{gathered}$	$\mathrm{A}[7: 0]=00 \mathrm{~h}$, Disable internal V_{DD} regulator at 5 V I/O application mode $\mathrm{A}[7: 0]=5 \mathrm{Ch}$, Enable internal V_{DD} regulator at 5 V I/O application mode (POR)		
	X	1	0	0	0	72	0	1	1	1	0		$\begin{gathered} 1 \\ \hline 010 \end{gathered}$	$\begin{array}{\|c\|} \hline 0 \\ \text { OPO } \end{array}$	OP[1:0]: Select	the chara tor	no. of
															OP[1:0]	CGROM	CGRAM
															00b	240	8
															01b	248	8
															10b	250	6
															11b	256	0
															RO[1:0]: Select	character	OM
Selection B															RO[1		OM
															00b		A
															01 b		B
															10b	-	C
															11 b	-	valid
								-					A		Note: It is reco disply (cmd 08h) CGRAM and d while clear disp recommended to	mended) before s fining cha lay (cmd 0 sent after	turn off the ting no. of acter ROM, h) is wards
OLED Characterization	X	1	X	0	0	78/79	0	1	1	1	1	0	0	SD	Extension registe SD = 0b: OLED (POR) SD = 1b: OLED Details refer to T	$\begin{aligned} & \mathrm{r}, \mathrm{SD} \\ & \text { command se } \\ & \text { command se } \\ & \text { able 10-3. } \end{aligned}$	is disabled is enabled

Notes

(1) POR stands for Power On Reset Values.

Table 10-3: OLED Command Table

3. OLED Command Set

Note

(1) POR stands for Power On Reset Values.
(2) The locked OLED driver IC MCU interface prohibits all commands access except logic bit SD is set to $\mathbf{1 b}$.
(3) Refer to Table 10-1 and

Table 10-2 for the details of logic bits IS, RE and SD.

(11)Power down and Power up Sequence

To protect OEL panel and extend the panel life time, the driver IC power up/down routine should include a delay period between high voltage and low voltage power sources during turn on/off. It gives the OEL panel enough time to complete the action of charge and discharge before/after the operation.

Power up Sequence:

1. Power up $V_{D D}$
2. Send Display off command
3. Initialization
4. Clear Screen
5. Power up V_{Cc}
6. Delay 100 ms
(When V_{cc} is stable)

7. Send Display on command

Power down Sequence:

1. Send Display off command
2. Power down Vcc
3. Delay 100 ms
(When V_{Cc} is reach 0 and panel is completely discharges)
4. Power down $V_{D D}$

Note :

1) Since an ESD protection circuit is connected between V_{DD} and V_{CC} inside the driver $I C, V_{C C}$ becomes lower than $V_{D D}$ whenever $V_{D D}$ is $O N$ and $V_{C C}$ is $O F F$.
2) $V_{C C}$ should be kept float (disable) when it is OFF.
3) Power Pins ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$) can never be pulled to ground under any circumstance.
4) $V_{D D}$ should not be power down before $V_{C C}$ power down.

Reset Circuit

When RES\# input is low, the chip is initialized with the following status:

1. Display is OFF
2. 5X8 Character Mode
3. Display start position is set at display RAM address 0
4. CGRAM address counter is set at 0
5. Cursor is OFF
6. Blink is OFF
7. Contrast control register is set at 7 Fh
8. OLED command set is disabled
(12) 6800-Series MCU Parallel Interface Timing Characteristics
$\left(\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \sim 5.3 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}\right)$

Symbol	Descripti	Min	Max	Unit
tcycle	Clock Cycle Time	400	-	ns
tAS	Address Setup Time	13	-	ns
tah	Address Hold Time	17	-	ns
tosw	Write Data Setup Time	35	-	ns
tohw	Write Data Hold Time	18	-	ns
tDHR	Read Data Hold Time	13	-	ns
tor	Output Disable Time	-	90	ns
tacc	Access Time (RAM) Access Time (command)	-	200	ns
PWcsl	Chip Select Low Pulse Width (read RAM) Chip Select Low Pulse Width (read Command) Chip Select Low Pulse Width (write)	$\begin{gathered} 250 \\ 250 \\ 50 \end{gathered}$	-	ns
PWcsh	Chip Select High Pulse Width (Read) Chip Select High Pulse Width (Write)	$\begin{gathered} \hline 155 \\ \hline 55 \end{gathered}$	-	ns
tR	Rise Time	-	15	ns
tF	Fall Time	-	15	ns

Note: 6800-Series

All timings are based on 20% to 80% of VDD-VSS

(13)Application

<Power up Sequence>

(1) This command could be programmable or defined by pin configuration.
(2) This command could be programmable or defined by pin configuration.
※ (C) : Write Command
※ (D) : Write Data

If the noise is accidentally occurred at the displaying window during the operation, please reset the display in order to recover the display function.
<Power down Sequence>

<Entering Sleep Mode>

<Exiting Sleep Mode>

(14)SSD1311 CGROM CHARACTER CODE ROMA

	9123456789: $\%=\%$
	THECDEFGHTJKLNNO
	PDESTUNOXVEAONOS
	\%sbedefohijk 1mmo
	ГAПT

\%oo	
	0123456789:3 $\%$ \%
	EPECDEFGHITKLMNO
	PQRSTUNWPYZ [.]
	gbedefohi ik 1 mbo
	Farstumbx ${ }^{\text {a }}$ (13
	ARSEXEESA1 ITANE
	AAAFABECEEEET i i
	ENstsmbxGubuntep

(15)Precautions in use of OLED Modules-1

Modules
(1)Avoid applying excessive shocks to module or making any alterations or modifications to it.
(2)Don't make extra holes on the printed circuit board, modify its shape or change the components of OLED module.
(3)Don't disassemble the OLEDM.
(4)Don't operate it above the absolute maximum rating.
(5)Don't drop, bend or twist OLEDM.
(6)Soldering: only to the I/O terminals.
(7)Storage: please storage in anti-static electricity container and clean environment.

Handling Precautions
(1) Since the display panel is being made of glass, do not apply mechanical impacts such us dropping from a high position.
(2) If the display panel is broken by some accident and the internal organic substance leaks out, be careful not to inhale nor lick the organic substance.
(3) If pressure is applied to the display surface or its neighborhood of the OLED display module, the cell structure may be damaged and be careful not to apply pressure to these sections.
(4) The polarizer covering the surface of the OLED display module is soft and easily scratched. Please be careful when handling the OLED display module.
(5) When the surface of the polarizer of the OLED display module has soil, clean the surface. It takes advantage of by using following adhesion tape.

* Scotch Mending Tape No. 810 or an equivalent

Never try to breathe upon the soiled surface nor wipe the surface using cloth containing solvent such as ethyl alcohol, since the surface of the polarizer will become cloudy.
Also, pay attention that the following liquid and solvent may spoil the polarizer:

* Water
* Ketone
* Aromatic Solvents
(6) Hold OLED display module very carefully when placing OLED display module into the System housing. Do not apply excessive stress or pressure to OLED display module. And, do not over bend the film with electrode pattern layouts.
These stresses will influence the display performance. Also, secure sufficient rigidity for the outer cases.

(7) Do not apply stress to the LSI chips and the surrounding molded sections.
(8) Do not disassemble nor modify the OLED display module.
(9) Do not apply input signals while the logic power is off.
(10) Pay sufficient attention to the working environments when handing OLED display
modules to prevent occurrence of element breakage accidents by static electricity.
* Be sure to make human body grounding when handling OLED display modules.
* Be sure to ground tools to use or assembly such as soldering irons.
* To suppress generation of static electricity, avoid carrying out assembly work under dry environments.
* Protective film is being applied to the surface of the display panel of the OLED display module. Be careful since static electricity may be generated when exfoliating the protective film.
(11) Protection film is being applied to the surface of the display panel and removes the protection film before assembling it. At this time, if the OLED display module has been stored for a long period of time, residue adhesive material of the protection film may remain on the surface of the display panel after removed of the film. In such case, remove the residue material by the method introduced in the above Section 5.
(12) If electric current is applied when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful to avoid the above.
Storage Precautions
(1) When storing OLED display modules, put them in static electricity preventive bags avoiding exposure to direct sun light nor to lights of fluorescent lamps. and, also, avoiding high temperature and high humidity environment or low temperature (less than $0^{\circ} \mathrm{C}$) environments.
(We recommend you to store these modules in the packaged state when they were shipped from Witical Technology Inc.
At that time, be careful not to let water drops adhere to the packages or bags nor let dewing occur with them.
(2) If electric current is applied when water drops are adhering to the surface of the OLED display module, when the OLED display module is being dewed or when it is placed under high humidity environments, the electrodes may be corroded and be careful about the above.
Designing Precautions
(1) The absolute maximum ratings are the ratings which cannot be exceeded for OLED display module, and if these values are exceeded, panel damage may be happen.
(2) To prevent occurrence of malfunctioning by noise, pay attention to satisfy the VIL and VIH specifications and, at the same time, to make the signal line cable as short as possible.
(3) We recommend you to install excess current preventive unit (fuses, etc.) to the power circuit (VDD). (Recommend value: 0.5A)
(4) Pay sufficient attention to avoid occurrence of mutual noise interference with the neighboring devices.
(5) As for EMI, take necessary measures on the equipment side basically.
(6) When fastening the OLED display module, fasten the external plastic housing section.
(7) If power supply to the OLED display module is forcibly shut down by such errors as taking out the main battery while the OLED display panel is in operation, we cannot guarantee the quality of this OLED display module.
* Connection (contact) to any other potential than the above may lead to rupture of the IC.

(16)Precautions in use of OLED Modules-2

(1)Avoid applying excessive shocks to module or making any alterations or modifications to it.
(2)Don't make extra holes on the printed circuit board, modify its shape or change the components of OLED module.
(3)Don't disassemble the OLEDM.
(4)Don't operate it above the absolute maximum rating.
(5)Don't drop, bend or twist OLEDM.
(6)Soldering: only to the I/O terminals.
(7)Storage: please storage in anti-static electricity container and clean environment.

Precautions when disposing of the OLED display modules

1) Request the qualified companies to handle industrial wastes when disposing of the OLED display modules. Or, when burning them, be sure to observe the environmental and hygienic laws and regulations.

Other Precautions

(1) When an OLED display module is operated for a long of time with fixed pattern may remain as an after image or slight contrast deviation may occur.
Nonetheless, if the operation is interrupted and left unused for a while, normal state can be restored. Also, there will be no problem in the reliability of the module.
(2) To protect OLED display modules from performance drops by static electricity rapture, etc., do not touch the following sections whenever possible while handling the OLED display modules.

* Pins and electrodes
* Pattern layouts such as the TCP \& FPC
(3) With this OLED display module, the OLED driver is being exposed. Generally speaking, semiconductor elements change their characteristics when light is radiated according to the principle of the solar battery. Consequently, if this OLED driver is exposed to light, malfunctioning may occur.
* Design the product and installation method so that the OLED driver may be shielded from light in actual usage.
* Design the product and installation method so that the OLED driver may be shielded from light during the inspection processes.
(4) Although this OLED display module stores the operation state data by the commands and the indication data, when excessive external noise, etc. enters into the module, the internal status may be changed. It therefore is necessary to take appropriate measures to suppress noise generation or to protect from influences of noise on the system design.
(5) We recommend you to construct its software to make periodical refreshment of the operation statuses (re-setting of the commands and re-transference of the display data) to cope with catastrophic noise.
(6)Resistors,capacitors and other passive components will have different appearance and color caused by the different supplier.
(7)Our company will has the right to upgrade and modify the product function.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

