PR01/02/03

Vishay BCcomponents

Power Metal Film Resistors

FEATURES

- High power in small packages (1 W/0207 size to 3 W/0617 size)
- Different lead materials for different applications
- Defined interruption behaviour
- Lead (Pb)-free solder contacts
- Pure tin plating provides compatibility with lead (Pb)-free and lead containing soldering processes
- Compatible with "Restriction of the use of Hazardous Substances" (RoHS) directive 2002/95/EC (issue 2004)

APPLICATIONS

All general purpose power applications

A homogeneous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or copper-clad iron are welded to the end-caps. The resistors are coated with a red, nonflammable lacquer which provides electrical, mechanical and climatic protection. This coating is not resistant to aggressive fluxes. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215", and "IEC 60068-2-45".

	VALUE					
DESCRIPTION	PR01	PR0	2	PR03		
	PRUI	Cu-lead	FeCu-lead	Cu-lead	FeCu-lead	
Resistance range (2)	0.22 Ω to 1 $M\Omega$	0.33 Ω to 1 $M\Omega$	1 Ω to 1 $M\Omega$	0.68 Ω to 1 M Ω	1 Ω to 1 $M\Omega$	
Resistance tolerance and series		± 1 % (E24, E9	6 series); ± 5 % (E	24 series) ⁽¹⁾		
Maximum dissipation at T_{amb} = 70 °C:						
<i>R</i> < 1 Ω	0.6 W	1.2 W	-	1.6 W	-	
$1 \Omega \leq R$	1 W	2 W	1.3 W	3 W	2.5 W	
Thermal resistance (R _{th})	135 K/W	75 K/W	115 K/W	60 K/W	75 K/W	
Temperature coefficient			≤ ± 250 x 10 ⁻⁶ /K			
Maximum permissible voltage (DC or RMS)	350 V	500	V	750	V	
Basic specifications		IEC 6	60115-1 and 6011	5-4		
Climatic category (IEC 60068)			55/155/56			
Stability after:						
load	$\Delta R \max := (5 \% R + 0.1 \Omega)$					
climatic tests	$\Delta R \text{ max.:} \pm (3 \% R + 0.1 \Omega)$					
soldering		∆ <i>R</i> ma	ax.: ± (1 % <i>R</i> + 0.0	5 Ω)		

Notes:

⁽¹⁾ 1 % tolerance is available for R_n -range from 1 R upwards.

⁽²⁾ Ohmic values (other than resistance range) are available on request.

• *R* value is measured with probe distance of 24 ± 1 mm using 4- terminal method.

Vishay BCcomponents

12NC INFORMATION

The resistors have a 12-digit numeric code starting with 23 For 5 % tolerance:

- The next 7 digits indicate the resistor type and packing
- The remaining 3 digits indicate the resistance value:
 - The first 2 digits indicate the resistance value
 - The last digit indicates the resistance decade

For 1 % tolerance:

- The next 6 digits indicate the resistor type and packing
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value
 - The last digit indicates the resistance decade

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
0.22 to 0.91 Ω	7
1 to 9.76 Ω	8
10 to 97.6 Ω	9
100 to 976 Ω	1
1 to 9.76 kΩ	2
10 to 97.6 kΩ	3
100 to 976 kΩ	4
1 MΩ	5

12NC Example

The 12NC for resistor type PR02 with Cu leads and a value of 750 Ω with 5 % tolerance, supplied on a bandolier of 1000 units in ammopack, is: 2306 198 53751.

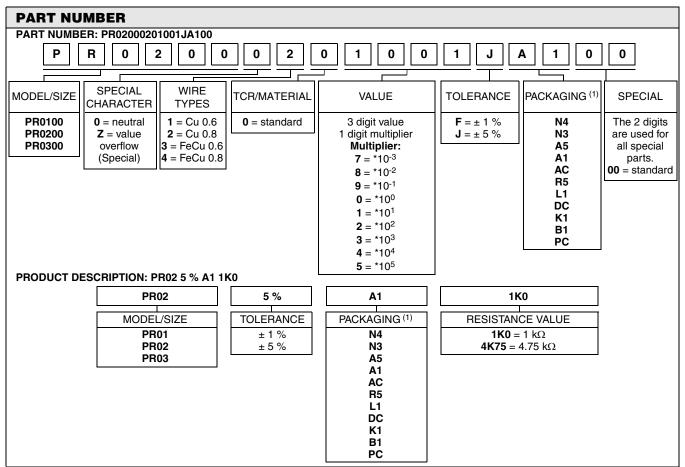
12N	12NC - resistor type and packaging ⁽¹⁾ . Preferred types in bold									
				ORDERING CODE 23 (BANDOLIER)						
		TOI		A	ММОРАСК			REEL		
TYPE	LEAD Ø mm	TOL (%)				STRAIGH	T LEADS			
		()	HADIAL	RADIAL TAPED		52 mm	63 mm	52 mm		
			4000 units	3000 units	5000 units	1000 units	500 units	5000 units		
PR01	Cu 0.6	1	-	-	22 196 1	06 191 2	-	06 191 5		
		5	06 197 03	-	22 193 14	06 197 53	-	06 197 23		
PR02	Cu 0.8	1	-	22 197 2	-	22 197 1	-	06 192 5		
		5	-	06 198 03	-	06 198 53	-	06 198 23		
	FeCu 0.6	5	-	-	-	22 194 54	-	-		
PR03	Cu 0.8	5	-	-	-	-	22 195 14	-		
		1	_	-	-	_	06 199 6	_		
	FeCu 0.6	5	_	-	-	_	22 195 54	_		

Notes:

⁽¹⁾ Other packaging versions are available on request.

				ORDERING CODE 23	(LOOSE IN BOX)		
ТҮРЕ	LEAD Ø	TOL		DOUBLE H	KINK		
ITPE	mm	(%)	PITCH = 17.8 mm	PITCH = 25.4 mm	PITCH ^{(2) (3) (4)}		
				1000 units	500 units	1000 units	500 units
PR01	Cu 0.6	5	22 193 03	-	-	-	
	FeCu 0.6	5	22 193 43	-	22 193 53 ⁽²⁾	-	
PR02	Cu 0.8	5	22 194 23	-	-	-	
	FeCu 0.6	5	22 194 83	-	-	-	
	FeCu 0.8	5	-	_	22 194 63 ⁽³⁾	-	
PR03	Cu 0.8	5	-	22 195 23	-	-	
	FeCu 0.6	5	_	22 195 83	_	-	
	FeCu 0.8	5	_	_	_	22 195 63 ⁽⁴⁾	

Notes:

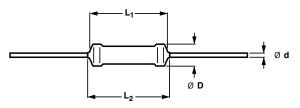

(2) PR01 pitch 12.5 mm.

(3) PR02 pitch 15.0 mm.

⁽⁴⁾ PR03 pitch 20.0 mm, with reversed kinking direction as opposed to the drawing for the type with double kink figure.

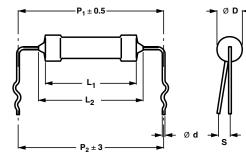
Power Metal Film Resistors

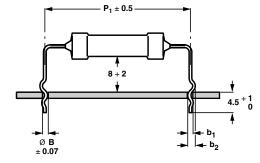
Note:


⁽¹⁾ Please refer to table PACKAGING for details.

• The PART NUMBER is shown to facilitate the introduction of a unified part numbering system for ordering products.

PACKAGING						
CODE	PIECES	DESCRIPTION	MODEL/SIZE			
N4	4000	Bandolier in ammopack radial taped	PR01			
N3	3000	Bandolier in ammopack radial taped	PR02			
A5	5000	Bandolier in ammopack straight leads 52 mm	PR01			
A1	1000	Bandolier in ammopack straight leads 52 mm	PR01, PR02			
AC	500	Bandolier in ammopack straight leads 63 mm	PR03			
R5	5000	Bandolier on reel straight leads 52 mm	PR01, PR02			
L1	1000	Loose in box with Double Kink, pitch 17.8 mm	PR01, PR02			
DC	500	Loose in box with Double Kink, pitch 25.4 mm	PR03			
K1	1000	Loose in box with Double Kink, pitch 12.5 mm	PR01			
B1	1000	Loose in box with Double Kink, pitch 15.0 mm	PR02			
PC	500	Loose in box with Double Kink, pitch 20.0 mm	PR03			




DIMENSIONS

Type with straight leads

DIMENSIONS - straight lead type and relevant physical dimensions; see straight leads outline							
ТҮРЕ	Ø D MAX.	L ₁ MAX.	L ₂ MAX.	Ø d (mm)			
	(mm)	(mm)	(mm)	Cu	FeCu		
PR01	2.5	6.5	8.5	0.58 ± 0.05	-		
PR02	3.9	10.0	12.0	0.78 ± 0.05	0.58 ± 0.05		
PR03	5.2	16.7	19.5	0.78 ± 0.05	0.58 ± 0.05		

Type with double kink

Dimensions in millimeters

DIME	DIMENSIONS - double kink lead type and relevant physical dimensions; see double kinked outline									
TYPE LEAD STYL	LEAD STYLE	Ø d (mm)		b ₁	b ₂	Ø D MAX.	P ₁	P ₂	S MAX.	ØB
		Cu	FeCu	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
PR01	double kink large pitch	0.58 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	2.5	17.8	17.8	2	0.8
FNUI	double kink small pitch	-	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	2.5	12.5	12.5	2	0.8
PR02	double kink large pitch	0.78 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.45 + 0.25/- 0.20	3.9	17.8	17.8	2	0.8
FNU2	double kink small pitch	-	0.78 ± 0.05	1.30 + 0.25/- 0.20	1.65 + 0.25/- 0.20		15.0	15.0	2	1.0
PR03	double kink large pitch	0.78 ± 0.05	0.58 ± 0.05	1.10 + 0.25/- 0.20	1.65 + 0.25/- 0.20	5.2	25.4	25.4	2	1.0
F HU3	double kink small pitch	-	0.78 ± 0.05	1.30 + 0.25/- 0.20	2.15 + 0.25/- 0.20		22.0	20.0	2	1.0

MASS PER 100 UNITS					
ТҮРЕ	MASS (g)				
PR01 Cu 0.6 mm	21.2				
PR01 FeCu 0.6 mm	20.7				
PR02 Cu 0.8 mm	50.4				
PR02 FeCu 0.6 mm	40.6				
PR02 FeCu 0.8 mm	49.6				
PR03 Cu 0.8 mm	119.2				
PR03 FeCu 0.6 mm	107.9				
PR03 FeCu 0.8 mm	118.5				

MARKING

The nominal resistance and tolerance are marked on the resistor using four colored bands in accordance with IEC publication 60062, "Color codes for fixed resistors".

OUTLINES

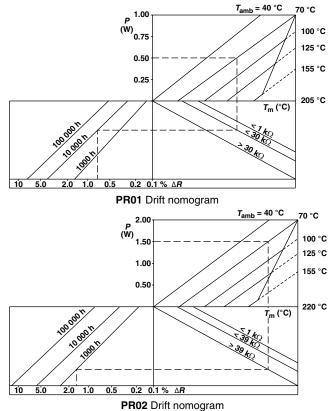
The length of the body (L_1) is measured by inserting the leads into holes of two identical gauge plates and moving these plates parallel to each other until the resistor body is clamped without deformation ("IEC publication 60294").

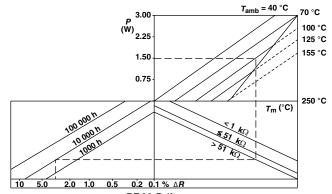
FUNCTIONAL DESCRIPTION

PRODUCT CHARACTERIZATION

MOUNTING

The resistors are suitable for processing on automatic insertion equipment and cutting and bending machines.


MOUNTING PITCH						
TYPE	LEAD STYLE	PITCH				
TIFE	LEAD STILE	mm	е			
	straight leads	12.5 ⁽¹⁾	5 (1)			
PR01	radial taped	4.8	2			
FNUI	double kink large pitch	17.8	7			
	double kink small pitch	12.5	5			
	straight leads	15.0 ⁽¹⁾	6 ⁽¹⁾			
PR02	radial taped	4.8	2			
F NUZ	double kink large pitch	17.8	7			
	double kink small pitch	15.0	6			
	straight leads	23.0 (1)	9 (1)			
PR03	double kink large pitch	25.4	10			
	double kink small pitch	20.0	8			


Note:

⁽¹⁾ Recommended minimum value.

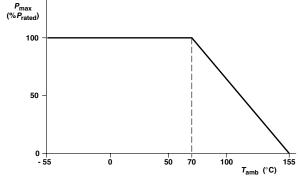
Standard values of nominal resistance are taken from the E96/E24 series for resistors with a tolerance of ± 1 % or ± 5 %. The values of the E96/E24 series are in accordance with "IEC publication 60063".

FUNCTIONAL PERFORMANCE

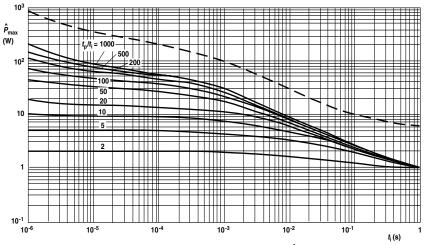
PR03 Drift nomogram

LIMI.	LIMITING VALUES							
TYPE	LEAD MATERIAL	RANGE	LIMITING VOLTAGE ⁽¹⁾ (V)	LIMITING POWER (W)				
PR01	Cu	R<1Ω 1Ω≤R	350	0.6 1.0				
PR02	Cu	R<1Ω 1Ω≤R	500	1.2 2.0				
	FeCu	1 Ω ≤ <i>R</i>		1.3				
PR03	Cu	$\frac{R < 1 \Omega}{1 \Omega \le R}$	750	1.6 3.0				
	FeCu	1Ω≤ <i>R</i>		2.5				

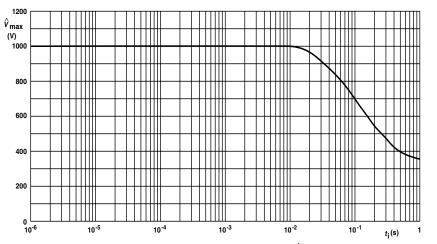
Note:


(1) The maximum voltage that may be continuously applied to the resistor element, see "IEC publication 60115-1".

The maximum permissible hot-spot temperature is 205 $^\circ C$ for PR01, 220 $^\circ C$ for PR02 and 250 $^\circ C$ for PR03.


Vishay BCcomponents

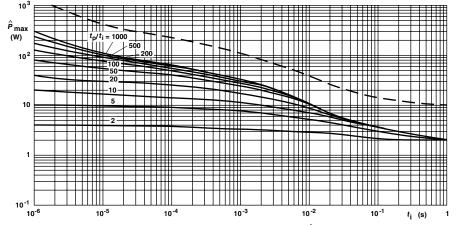
The power that the resistor can dissipate depends on the operating temperature.



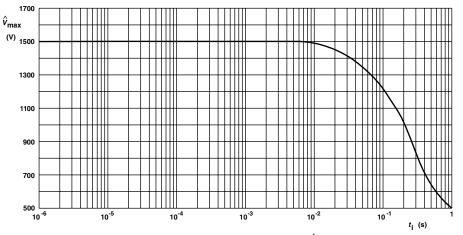
Maximum dissipation (P_{max}) in percentage of rated power as a function of the ambient temperature (T_{amb})

Derating

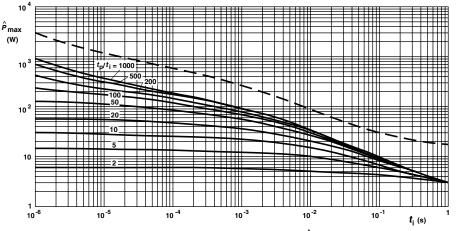
PR01 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

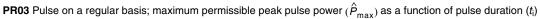


PR01 Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{V}_{max}) as a function of pulse duration (t_i)


Pulse Loading Capabilities

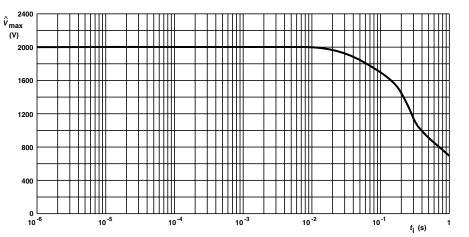
Power Metal Film Resistors





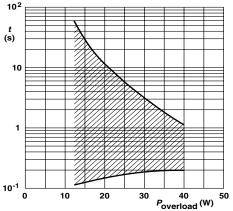
PR02 Pulse on a regular basis; maximum permissible peak pulse power (\hat{P}_{max}) as a function of pulse duration (t_i)

PR02 Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{V}_{max}) as a function of pulse duration (t_i)

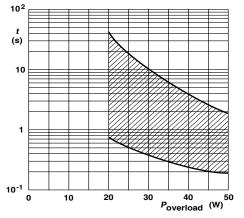


Pulse Loading Capabilities

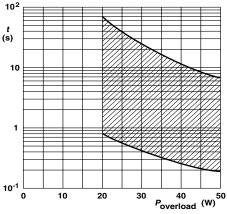
www.vishay.com 112



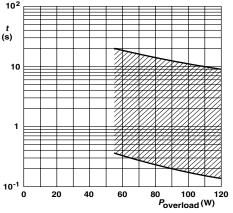
Vishay BCcomponents


PR03 Pulse on a regular basis; maximum permissible peak pulse voltage (\hat{V}_{max}) as a function of pulse duration (t_i)

PR01 Time to interruption as a function of overload power for range: 0 R 22 $\leq R_n < 1 R$

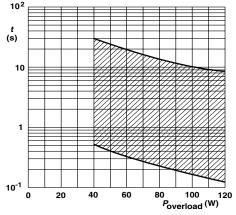

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

PR01 Time to interruption as a function of overload power for range: 1 $R \le R_n \le 15 R$

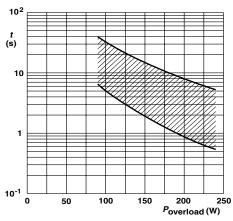

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

Interruption Characteristic

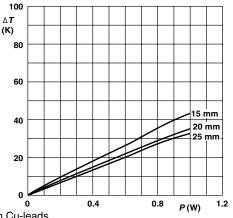
PR01 Time to interruption as a function of overload power for range: 16 $R \le R_n \le 560 R$


This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

PR02 Time to interruption as a function of overload power for range: 0.33 $R \le R_n < 5 R$


This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

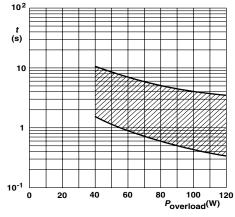
Power Metal Film Resistors


PR02 Time to interruption as a function of overload power for range: $5 R \le R_n < 68 R$

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

PR03 Time to interruption as a function of overload power for range: 0.68 $R \le R_n \le 560 R$

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

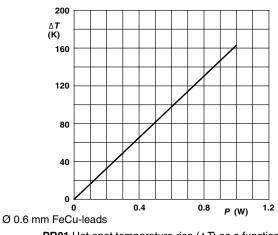


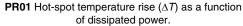
Ø 0.6 mm Cu-leads

Minimum distance from resistor body to PCB = 1 mm

PR01 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

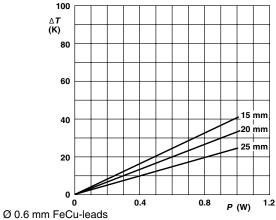
Application Information


PR02 Time to interruption as a function of overload power for range: 68 $R \le R_n \le 560 R$

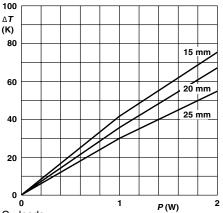

This graph is based on measured data under constant voltage conditions; the data may deviate according to the applications.

Interruption Characteristics

PR01 Hot-spot temperature rise (ΔT) as a function of dissipated power.

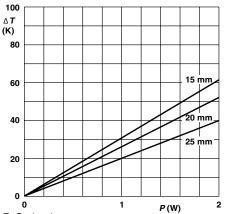


For technical questions, contact: ff3dresistors@vishay.com


PR01/02/03

Vishay BCcomponents

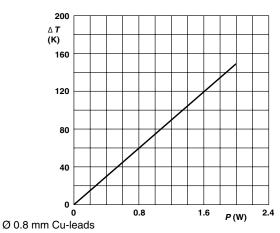
Minimum distance from resistor body to PCB = 1 mm


PR01 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

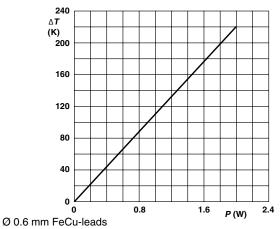
Ø 0.8 mm Cu-leads

Minimum distance from resistor body to PCB = 1 mm

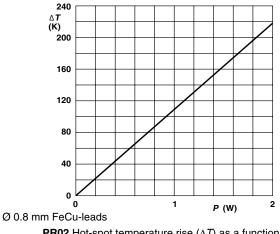
PR02 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.



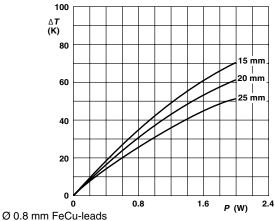
Ø 0.6 mm FeCu-leads

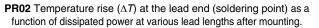

Minimum distance from resistor body to PCB = 1 mm

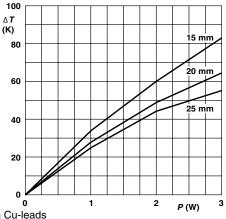
PR02 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.


Application Information

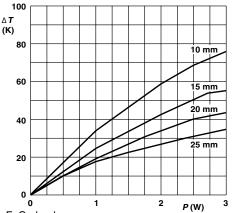
PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.


PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.


PR02 Hot-spot temperature rise (ΔT) as a function of dissipated power.


Power Metal Film Resistors

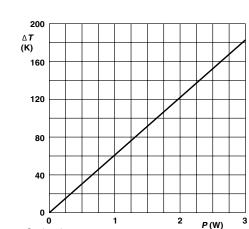
Minimum distance from resistor body to PCB = 1 mm



Ø 0.8 mm Cu-leads

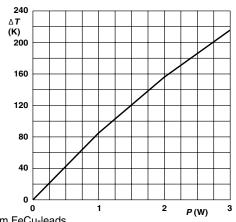
Minimum distance from resistor body to PCB = 1 mm

PR03 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

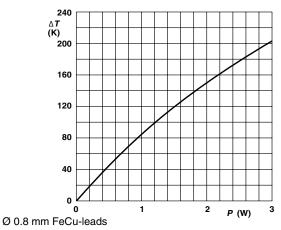


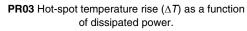
Ø 0.6 mm FeCu-leads

Minimum distance from resistor body to PCB = 1 mm


PR03 Temperature rise (ΔT) at the lead end (soldering point) as a function of dissipated power at various lead lengths after mounting.

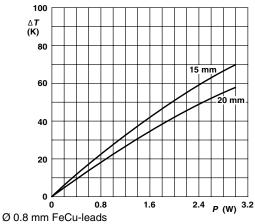
Application Information

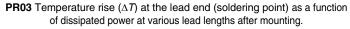

Ø 0.8 mm Cu-leads

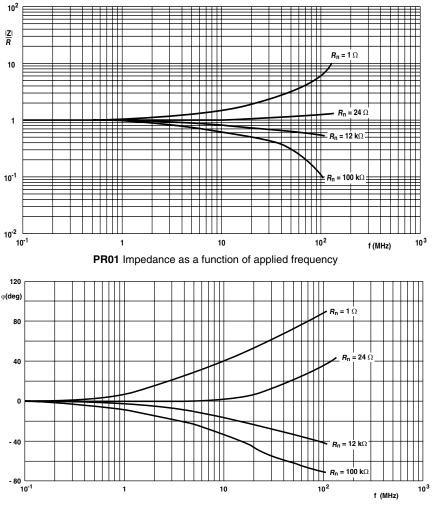

PR03 Hot-spot temperature rise (ΔT) as a function of dissipated power.

Ø 0.6 mm FeCu-leads

PR03 Hot-spot temperature rise (ΔT) as a function of dissipated power.

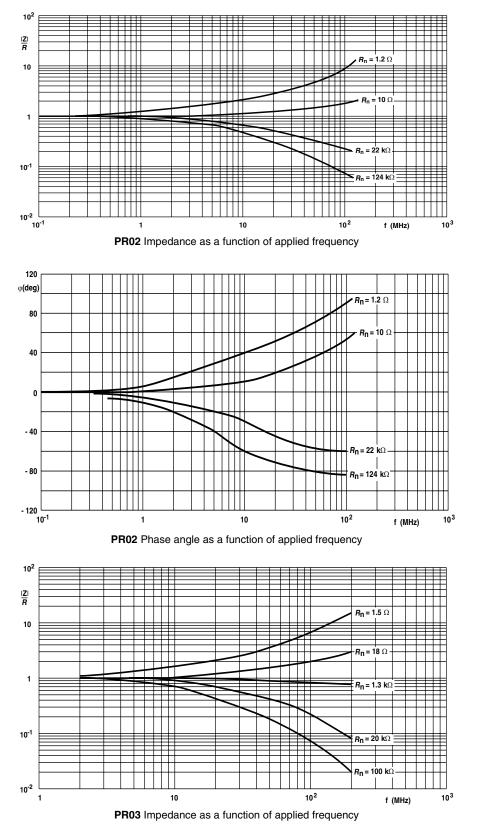





Vishay BCcomponents

PR01/02/03

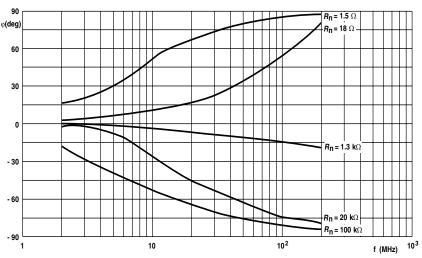
Minimum distance from resistor body to PCB = 1 mm



PR01 Phase angle as a function of applied frequency

Application Information

Power Metal Film Resistors



Application Information

Vishay BCcomponents

PR03 Phase angle as a function of applied frequency

Application Information

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to

"IEC 60068-1", subclause 5.3.

In the Test Procedures and Requirements table, tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for our method of specifying.

All soldering tests are performed with mildly activated flux.

TEST PROCEDURES AND REQUIREMENTS								
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS				
TESTS IN	TESTS IN ACCORDANCE WITH THE SCHEDULE OF IEC PUBLICATION 60115-1							
4.4.1		visual examination		no holes; clean surface; no damage				
4.4.2		dimensions (outline)	gauge (mm)	see Straight & Kinked Dimensions tables				
4.5		resistance (refer note on first page for measuring distance)	applied voltage (+ 0/- 10 %): $R < 10 \Omega: 0.1 V$ $10 \Omega \le R < 100 \Omega: 0.3 V$ $100 \Omega \le R < 1 k\Omega: 1 V$ $1 k\Omega \le R < 10 k\Omega: 3 V$ $10 k\Omega \le R < 100 k\Omega: 10 V$ $100 k\Omega \le R < 1 M\Omega: 25 V$ $R = 1 M\Omega: 50 V$	<i>R - R_{nom}: max. ± 5 %</i>				
4.18	20 (Tb)	resistance to soldering heat	thermal shock: 3 s; 350 °C; 3 mm from body	$\Delta R \text{ max.:} \pm (1 \% R + 0.05 \Omega)$				
4.29	45 (Xa)	component solvent resistance	isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202 F"	no visual damage				
4.17	20 (Ta)	solderability	2 seconds; 235 °C	good tinning; no damage				

Power Metal Film Resistors

TEST F	ROCEDU	IRES AND REQUI	REMENTS	
IEC 60115-1 CLAUSE	IEC 60068-2 TEST METHOD	TEST	PROCEDURE	REQUIREMENTS
4.7		voltage proof on insulation	maximum voltage 500 V _{RMS} during 1 minute; metal block method	no breakdown or flashover
4.16	21 (U)	robustness of terminations:		
4.16.2	21 (Ua1)	tensile all samples	load 10 N; 10 seconds	number of failures: < 1 x 10 ⁻⁶
4.16.3	21 (Ub)	bending half number of samples	load 5 N; 4 x 90°	number of failures: < 1 x 10 ⁻⁶
4.16.4	21 (Uc)	torsion other half of samples	3 x 360° in opposite directions	no damage ΔR max.: $\pm (0.5 \% R + 0.05 \Omega)$
4.20	29 (Eb)	bump	3 x 1500 bumps in three directions; 40 g	no damage ΔR max.: $\pm (0.5 \% R + 0.05 \Omega)$
4.22	6 (Fc)	vibration	frequency 10 to 500 Hz; displacement 1.5 mm or acceleration 10 g; three directions; total 6 hours (3 x 2 hours)	no damage Δ <i>R</i> max.: ± (0.5 % <i>R</i> + 0.05 Ω)
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; 5 cycles	no visual damage PR01 : Δ <i>R</i> max.: ± (1 % <i>R</i> + 0.05 Ω) PR02 : Δ <i>R</i> max.: ± (1 % <i>R</i> + 0.05 Ω) PR03 : Δ <i>R</i> max.: ± (2 % <i>R</i> + 0.05 Ω)
4.23		climatic sequence:		
4.23.3	30 (Db)	damp heat (accelerated) 1 st cycle		
4.23.6	30 (Db)	damp heat (accelerated) remaining cycles	6 days; 55 °C; 95 to 98 % RH	$R_{ m ins}$ min.: 10 ³ M Ω ΔR max.: ± (3 % R + 0.1 Ω)
4.24.2	3 (Ca)	damp heat (steady state) (IEC)	56 days; 40 °C; 90 to 95% RH; loaded with 0.01 P _n (IEC steps: 4 to 100 V)	$R_{\text{ins}} \text{ min.: } 1000 \text{ M}\Omega$ $\Delta R \text{ max.: } \pm (3 \% R + 0.1 \Omega)$
4.25.1		endurance (at 70 °C)	1000 hours; loaded with P _n or V _{max} ; 1.5 hours ON and 0.5 hours OFF	$\Delta R \max$: ± (5 % R + 0.1 Ω)
4.8.4.2		temperature coefficient	at 20/LCT/20 °C and 20/UCT/20 °C (TC x 10 ⁻⁶ /K)	≤ ± 250
OTHER T	ESTS IN ACC	ORDANCE WITH IEC 60	115 CLAUSES AND IEC 60068 TEST METHO	D
4.17	20 (Tb)	solderability (after ageing)	8 hours steam or 16 hours 155 °C; leads immersed 6 mm for 2 \pm 0.5 second in a solder bath at 235 \pm 5 °C	good tinning (≥ 95 % covered); no damage
4.6.1.1		insulation resistance	maximum voltage (DC) after 1 minute; metal block method	$R_{ m ins}$ min.: 10 ⁴ M Ω
	nendment to -1, Jan. '87	pulse load		see Pulse Load Capabilities graphs

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for vishay manufacturer:

Other Similar products are found below :

 M39006/22-0577H
 Y00892K49000BR13L
 VS-12CWQ10FNPBF
 M8340109M6801GGD03
 VS-MBRB1545CTPBF
 1KAB100E

 CRCW1210360RFKEA
 VSMF4720-GS08
 CRCW04024021FRT7
 001789X
 LT0050FR0500JTE3
 CRCW0805348RFKEA

 LVR10R0200FE03
 CRCW12063K30FKEAHP
 009923A
 CRCW2010331JR02
 CRCW25128K06FKEG
 CS6600552K000B8768
 M39003/01

 2289
 M39003/01-2784
 M39006/25-0133
 M39006/25-0228
 M64W101KB40
 M64Z501KB40
 CW001R5000JS73
 CW0055R000JE12

 CW0056K800JB12
 CW0106K000JE73
 672D826H075EK5C
 CWR06JC105KC
 CWR06NC475JC
 MAL219699001E3

 MCRL007035R00JHB00
 PTF56100K00QYEK
 PTN0805H1502BBTR1K
 RCL12252K20JNEG
 RCWL1210R130JNEA
 RH005220R0FE02

 RH005330R0FC02
 RH010R0500FC02
 132B20103
 RH1007R000FJ01
 RH2503R500FE01
 RH254R220FS03
 RH-50-40R2-1%-C02

 134D336X9075C6
 132B00301
 135D277X0025F6
 DG202BDY-T1-E3
 DG9426EDQ-T1-GE3