MC74HC125A, MC74HC126A

Quad 3-State Noninverting Buffers

High-Performance Silicon-Gate CMOS

The MC74HC125A and MC74HC126A are identical in pinout to the LS125 and LS126. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.
The HC125A and HC126A noninverting buffers are designed to be used with 3-state memory address drivers, clock drivers, and other bus-oriented systems. The devices have four separate output enables that are active-low (HC125A) or active-high (HC126A).

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7 A Requirements
- Chip Complexity: 72 FETs or 18 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free/BFR Free and are RoHS Compliant

LOGIC DIAGRAM

HC125A

Active-Low Output Enables

HC126A
Active-High Output Enables

PIN $14=V_{C C}$
PIN $7=$ GND

MC74HC125A, MC74HC126A

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 35	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air $\begin{array}{r}\text { SOIC Package } \dagger \\ \text { TSSOP Package } \dagger\end{array}$	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds		
(SOIC or TSSOP Package)			

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $V_{\text {out }}$ should be constrained to the range GND $\leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{Cc}}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating: SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
	(Referenced to GND)		-55	+125
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature, All Package Types	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	1000
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time	${ }^{\circ} \mathrm{C}$		
	(Figure 1)	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	500
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	400

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	V_{cc} V	Guaranteed Limit			Unit			
				$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$				
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V			
V_{IL}	Maximum Low-Level Input Voltage	$\begin{array}{\|l} \hline V_{\text {out }}=0.1 \mathrm{~V} \\ \left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.8 \end{gathered}$	V			
V_{OH}	Minimum High-Level Output Voltage	$\begin{array}{\|l} \hline V_{\text {in }}=V_{\text {IH }} \\ \left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{array}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V			
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}}$ $\mid \\|_{\text {out }} \leq 3.6 \mathrm{~mA}$ $\\|_{\text {out }} \mid \leq 60.0 \mathrm{~mA}$$\leq 7.8 \mathrm{~mA}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.2 \\ & 3.7 \\ & 5.2 \\ & \hline \end{aligned}$				
$\mathrm{V}_{\text {OL }}$	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V			
		$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IL}}$ $\\|_{\text {out }} \leq 3.6 \mathrm{~mA}$ $\\|_{\text {out }} \leq 6.0 \mathrm{~mA}$ $\\|_{\text {out }} \leq 7.8 \mathrm{~mA}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$				
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {cc }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$			
loz	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{\text {in }}=V_{\text {IL }}$ or $V_{I H}$ $V_{\text {out }}=V_{C C}$ or $G N D$	6.0	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$			
$I_{\text {cc }}$	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\text {out }}=0 \mu \mathrm{~A} \\ & \hline \end{aligned}$	6.0	4.0	40	160	$\mu \mathrm{A}$			

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}\right)$

	Parameter	$\underset{\mathrm{VC}}{\mathrm{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit
Symbol			$\begin{gathered} -55 \text { to } \\ 25^{\circ} \mathrm{C} \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\begin{aligned} & \hline \mathrm{tPLH}^{\prime}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 90 \\ & 36 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 115 \\ & 45 \\ & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & 135 \\ & 60 \\ & 27 \\ & 23 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}}, \\ & \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Maximum Propagation Delay, Output Enable to Y (Figures 2 and 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 120 \\ 45 \\ 24 \\ 20 \end{gathered}$	$\begin{aligned} & 150 \\ & 60 \\ & 30 \\ & 26 \end{aligned}$	$\begin{gathered} \hline 180 \\ 80 \\ 36 \\ 31 \end{gathered}$	ns
$\begin{aligned} & \hline \text { tpZL, } \\ & \mathrm{t}_{\mathrm{PzH}} \end{aligned}$	Maximum Propagation Delay, Output Enable to Y (Figures 2 and 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 90 \\ & 36 \\ & 18 \\ & 15 \end{aligned}$	$\begin{aligned} & 115 \\ & 45 \\ & 23 \\ & 20 \end{aligned}$	$\begin{aligned} & \hline 135 \\ & 60 \\ & 27 \\ & 23 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 22 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 28 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 34 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF
$\mathrm{C}_{\text {out }}$	Maximum 3-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF
	Power Dissipation Capacitance (Per Buffer)*		Typical @ $25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$			pF
$\mathrm{C}_{\text {PD }}$			30			

*Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$.

MC74HC125A, MC74HC126A

SWITCHING WAVEFORMS

Figure 1.
*Includes all probe and jig capacitance
Figure 3. Test Circuit

Figure 2.

*Includes all probe and jig capacitance
Figure 4. Test Circuit

(1/4 OF THE DEVICE)

MC74HC125A, MC74HC126A

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74HC125ADG	SOIC-14 NB (Pb-Free)	55 Units / Rail
MC74HC125ADR2G	SOIC-14 NB ($\mathrm{Pb}-\mathrm{Free}$)	2500 / Tape \& Reel
MC74HC125ADTG	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	96 Units / Rail
MC74HC125ADTR2G	TSSOP-14 ($\mathrm{Pb}-\mathrm{Free}$)	2500 / Tape \& Reel
MC74HC126ADG	$\begin{gathered} \hline \text { SOIC-14 NB } \\ \text { (Pb-Free) } \end{gathered}$	55 Units / Rail
MC74HC126ADR2G	$\begin{gathered} \hline \text { SOIC-14 NB } \\ (\text { Pb-Free }) \end{gathered}$	2500 / Tape \& Reel
MC74HC126ADTR2G	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel
NLV74HC125ADG*	SOIC-14 NB (Pb -Free)	55 Units / Rail
NLV74HC125ADR2G*	$\begin{gathered} \hline \text { SOIC-14 NB } \\ (\text { Pb-Free }) \end{gathered}$	2500 / Tape \& Reel
NLV74HC125ADTG*	TSSOP-14 ($\mathrm{Pb}-\mathrm{Free}$)	55 Units / Rail
NLV74HC125ADTR2G*	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel
NLV74HC126ADR2G*	SOIC-14 NB ($\mathrm{Pb}-\mathrm{Free}$)	2500 / Tape \& Reel
NLV74HC126ADTR2G*	$\begin{aligned} & \hline \text { TSSOP-14 } \\ & \text { (Pb-Free) } \end{aligned}$	2500 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable

MC74HC125A, MC74HC126A

PACKAGE DIMENSIONS

TSSOP-14
CASE 948G
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC74HC125A, MC74HC126A

PACKAGE DIMENSIONS

SOIC-14 NB
CASE 751A-03

ISSUE K

DETAIL A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	1.35	1.75	0.054	0.068
A1	0.10	0.25	0.004	0.010
A3	0.19	0.25	0.008	0.010
b	0.35	0.49	0.014	0.019
D	8.55	8.75	0.337	0.344
E	3.80	4.00	0.150	0.157
e	1.27 BSC		0.050	
BSC				
H	5.80	6.20	0.228	0.244
h	0.25	0.50	0.010	0.019
L	0.40	1.25	0.016	0.049
M	0°	7°	0°	7°

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

> ON Semiconductor and the ©N are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: $303-675-2175$ or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Buffers \& Line Drivers category:
Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :
5962-9217601MSA 634810D 875140G HEF4022BP HEF4043BP NL17SG125DFT2G NL17SZ126P5T5G NLU1GT126CMUTCG NLU3G16AMX1TCG NLV27WZ125USG MC74HCT365ADTR2G BCM6306KMLG 54FCT240CTDB Le87401NQC Le87402MQC 028192B 042140C 051117G 070519XB 065312DB 091056E 098456D NL17SG07DFT2G NL17SG17DFT2G NL17SG34DFT2G NL17SZ07P5T5G NL17SZ125P5T5G NLU1GT126AMUTCG NLV27WZ16DFT2G 5962-8982101PA 5962-9052201PA 74LVC07ADR2G MC74VHC1G125DFT1G NL17SH17P5T5G NL17SZ125CMUTCG NLV17SZ07DFT2G NLV37WZ17USG NLVHCT244ADTR2G NC7WZ17FHX 74HCT126T14-13 NL17SH125P5T5G NLV14049UBDTR2G NLV37WZ07USG 74VHC541FT(BE) RHFAC244K1 74LVC1G17FW4-7 74LVC1G126FZ4-7 BCM6302KMLG 74LVC1G07FZ4-7 74LVC1G125FW4-7

