

Midas Components Limited Electra House 32 Southtown Road Great Yarmouth Norfolk NR31 0DU England Telephone Fax Email Website +44 (0)1493 602602 +44 (0)1493 665111 sales@midasdisplays.com www.midasdisplays.com

S	pecification
Part Number:	
Version:	
Date:	
	Revision

design • manufacture • supply

T ÔV€HÍ ÕFGY HG€GI €ŠT Š

Revisio	n History		
Ver.	Date	Page	Description
1.0	Jun.30,2008		First issue
2.0	Oct.9,2009	P.6	3.2 Outward Form
	A ×9	P.9	Addition Note 4. PIN ASSIGNMENT
	<u> </u>	г.э	ChangelComment
		P.11	17.1.1 Display Module
			Addition "Pull down resister value" rating
			Change ^I "Standby Current"
			"Other input with constant voltage"
			→"MODE="VSS",Other input with constant voltage & MODE="VDD",Other input with constant voltage"
		P.44	I11.1 Defective Display and Screen Quality
			Change Before
			Liner 3.0mm <length, 0.08mm<width="" n="0</td"></length,>
			length \leq 3.0mm, width \leq 0.08mm Ignored
			After
			Liner 3.0mm <length 0.08mm<width="" and="" n="0<br">length\leq3.0mm or width \leq0.08mm lgnored</length>
		P.46	length≦3.0mm or width≦0.08mm Ignored
			Electrostatic discharge test (Non operation)
			Change "EIAJ ED-4701 C-111"→"EIAJ ED-4701/300"
			Change "FPC tension test" " +/- 90-degree"→" - 90-degree"
		D (7	Change "FPC bend test" "+/-180-degree"→"-180-degree"
		P.47 P.49	Change ₁ "Tension Test Method for FPC cable","Bend Test Method for FPC cable" 14.1 Cautions for Handling LCD panels
		F.49	Addition Comment (10)
		P.51	Change 14.5 Precautions for Peeling off the Protective film
3.0	Apr.1,2010	All	Change, It is a company name change from CASIO COMPUTER CO., LTD.
	B		to T ãaæ ÁÔ[{] [} ^ } o.
			Construction of the second sec
	des	ICI	• manufacture • supply
		9	

Contents

1.	Applicat	tion	••••	4
2.	Outline	Specifications		
	2.1	Features of the Products	••••	4
	2.2	Display Method	••••	5
3.	Dimens	ions and Shape		
	3.1	Dimensions	••••	5
	3.2	Outward Form	••••	6
	3.3	Serial Label (S-Label)	••••	7
4.	Pin Ass	ignment	••••	8
5.		e Maximum Rating	••••	10
6.	Recomr	nended Operating Conditions	••••	10
7.	Charact	eristics		
	7.1	DC Characteristics	••••	11
	7.2	AC Characteristics	• • • • • • • • • •	13
	7.3	Input Timing	• • • • • • • • • •	16
	7.4	Driving Timing Chart	• • • • • • • • • •	17
	7.5	Example of Driving Timing Chart	• • • • • • • • • •	18
8.	Descrip	tion of Operation		
	8.1	Power Supply	• • • • • • • • • •	20
	8.2	Serial Communication	••••	21
	8.3	Display Data Transfer	••••	33
	8.4	Standby (Power Save) Sequence	••••	34
	8.5	Power On Sequence	• • • • • • • • • •	36
	8.6	Other Functions		38
9.	Circuit			
	9.1	"MODE"="VSS"	• • • • • • • • • •	39
	9.2	"MODE"="VDD"		40
	9.3	LED Circuit	•••••	41
10.	Charact			
	10.1	Optical Characteristics	• • • • • • • • • • •	42
	10.2	Temperature Characteristics		43
11.		of Judgment		
	11.1	Defective Display and Screen Quality	••••	44
	11.2	Screen and Other Appearance	• • • • • • • • • •	45
12.	Reliabili			46
13.		Specifications		48
14.		g Instruction		
	14.1	Cautions for Handling LCD panels	••••	49
	14.2	Precautions for Handling	••••	50
	14.3	Precautions for Operation	••••	50
	14.4	Storage Condition for Shipping Cartons	••••	51
	14.5	Precautions for Peeling off the Protective film	••••	51
APPEN	DIX		••••	52

BOOKBINDING AREA

DOC.

DATASHEET STATEMENT

- The following icons are absolutely designed by Midas independently in 2007-SEP. They are not in common use in the LCD industry yet but just used for marking out Midasproducts' characteristics quickly and simply without any special meaning. Midas reserves the composing right and copyright. No one else is allowed to adopt these icons without Midas approval.
- 2. The ISO9001 logo used in this document is authorized by SGS (www.sgs.com). Midas had already successfully passed the strict and professional ISO9001:2000 Quality Management System Certification and got the certificate (No.: CN07/00404)
- 3. The technologies/techniques/crafts which denoted by the following icons are not exclusively owned by Midas, but also shared by Midas LCD strategic cooperators, however all these technologies/techniques/crafts have been finally confirmed by Midas professional engineers and QC department.
- 4. As the difference in test standard and test conditions, also Midas insufficient familiarity with the actual LCD using environment, all the referred information in this DATASHEET (including the icons) only have two functions:
 4.1: providing quick reference when you are judging whether or not the product meets your requirements.
 4.2: listing out definitely the tolerance.

SAMPLE APPROVAL document rather than consider this DATASHEET as the standard for judging whether or not the LCD meets your requirements. Once you instruct Midas to a mass-production without definite demand for providing sample before, Midas will disclaim all responsibility if the mass-production is proved not meeting with your requirements.

- 5. The sequence of the icons is random and doesn't indicate the importance grade.
- 6. Icons explanation

Midas 2006 version logo.Midas is an integrated manufacturer of flat panel display (FPD). Midas supplies TN, HTN, STN, FSTN monochrome LCD panel; COB, COG, TAB LCD module; and all kinds of LED backlight.

FAST RESPONSE TIME

This icon on the cover indicates the product is with high response speed; Otherwise not.

ſ			
	H	С	

HIGH CONTRAST

This icon on the cover indicates the product is with high contrast; Otherwise not.

WIDE VIEWING SCOPE

This icon on the cover indicates the product is with wide viewing scope; Otherwise not.

RoHS COMPLIANCE

This icon on the cover indicates the product meets ROHS requirements; Otherwise not.

3TIMEs 100% QC EXAMINATION This icon on the cover indicates the product

has passed Midas thrice 100% QC. Otherwise not.

VIcm = 3.0V

This icon on the cover indicates the product can work at 3.0V exactly; otherwise not.

PROTECTION CIRCUIT

This icon on the cover indicates the product is with protection circuit; Otherwise not.

LONG LIFE VERSION

This icon on the cover indicates the product is long life version (over 9K hours guaranteed); Otherwise not.

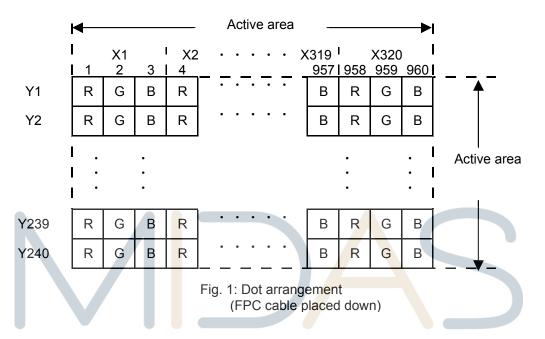
Anti UV VERSION

This icon on the cover indicates the product is against UV line. Otherwise not.

OPERATION TEMPERATURE RANGE

This icon on the cover indicates the operating temperature range (X-Y).

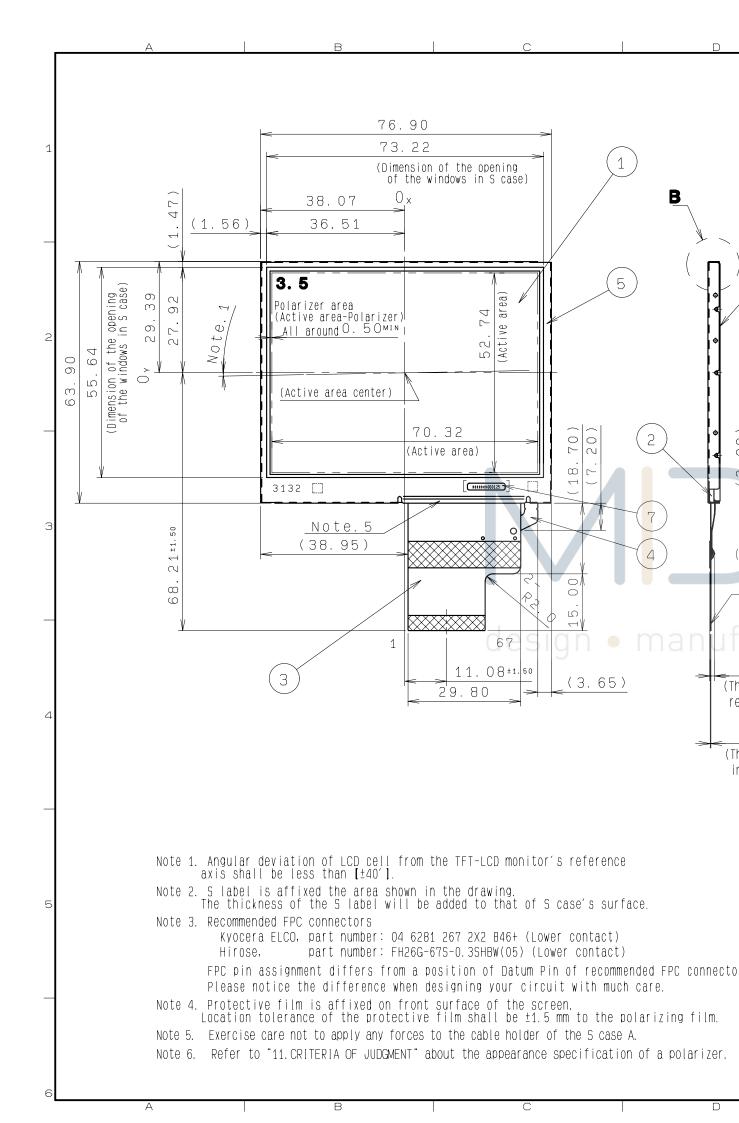
TWICE SELECTION OF LED MATERIALS


This icon on the cover indicates the LED had passed Midas twice strict selection which promises the product's identical color and brightness; Otherwise not.

N SERIES TECHNOLOGY (2008 developed) New structure, new craft, new technology and new materials inside both LCD module and LCD panel to improve the "RainBow"

2.2 Display Method

Items	Specifications	Remarks
Display type TN type 262,144 colors or 16,777,216 colors		
	Transmissive type, Normally white	
Driving method	a-Si TFT Active matrix	
	Line-scanning, Non-interlace	
Dot arrangement	RGB stripe arrangement	Refer to fig. 1
Signal input method	6-bit or 8-bit RGB, parallel input	
Backlight type	High bright white LED	



3. DIMENSIONS AND SHAPE

3.1 Dimensions

gn • manufacture • supply

Items	Specifications	Unit	Remarks
Outline dimensions	76.90[H] × 63.90[V] × 3.13[D]	mm	Exclude FPC cable
Active area	70.32[H] × 52.74[V]	mm	8.79cm diagonal
Number of dots	960[H] × 240[V]	dot	
Dot pitch	73.25[H] × 219.75[V]	μm	
Surface hardness of the	3	Н	Load: 2.0N
polarizer			
Weight	33.0	g	Include FPC cable

3.3 Serial Label (S-Label)

1) Display Items

S-label indicates the least significant digit of manufacture year (1 digit), manufacture month with below alphabet (1 letter), model code (5 characters), serial number (6 digits).

- * Contents of Display
 - <u>* * *****</u> ****** a b c d

	Contents of display							
а	The least significan	The least significant digit of manufacture year						
b	Manufacture month	Jan-A Feb-B	May-E Jun-F	Sep-I Oct-J				
		Mar-C Apr-D	Jul-G Aug-H	Nov-K Dec-L				
С	Model code	35DSC (Made in Japan) 35DTC (Made in China) 35DVC (Made in Malaysia)						
d	Serial number							

* Example of indication of Serial label (S-label)

Made in Japan

8H35DSC000125

means "manufactured in Japan in August 2008, model 35DS, C specifications, serial number 000125"

•Made in China

8H35DTC000125

means "manufactured in China in August 2008, model 35DT, C specifications, serial number 000125"

•Made in Malaysia

8H35DVC000125

means "manufactured in Malaysia in August 2008, model 35DV, C specifications, serial number 000125"

2) Location of Serial Label (S-label) Refer to 3.2 "Outward Form".

4. PIN ASSIGNMENT

No.	Symbol	Function					
_	-,	MODE(No.34pin) = "VSS"	MODE(No.34pin) = "VDD"				
1	VCOM	Common-electrode driving signal					
2	D27	Display data input for (B)	Display data input for (B)				
3	D26	00h for black display	00h for black display				
4	D25	D20:LSB D27:MSB	D22:LSB D27:MSB				
5	D24		Driver IC carries out gamma conversion				
6	D23	Driver IC carries out gamma conversion	internally.				
7	D22	internally.					
8	D21		Short to VSS				
9	D20		Short to VSS				
10	D17	Display data input for (G)	Display data input for (G)				
11	D16	00h for black display	00h for black display				
12	D15	D10:LSB D17:MSB	D12:LSB D17:MSB				
13	D14		Driver IC carries out gamma conversion				
14	D13	Driver IC carries out gamma conversion	internally.				
15	D12	internally.					
16	D11		Short to VSS				
17	D10		Short to VSS				
18	D07	Display data input for (R)	Display data input for (R)				
19	D06	00h for black display	00h for black display				
20	D05	D00:LSB D07:MSB	D02:LSB D07:MSB				
21	D04		Driver IC carries out gamma conversion				
22	D03	Driver IC carries out gamma conversion	internally.				
23	D02	internally.					
24	D01		Short to VSS				
25	D00		Short to VSS				
26	BLON	Logic signal output for external backlight circuitry	OPEN				
27	CS/STBY	CS:Chip select input for serial communication	ST <mark>B</mark> Y:Stan <mark>by</mark> signal				
		(Lo: active)	(Lo:Normal operation, Hi:Stanby operation)				
28	DI/DE	DI:Data input for serial communication	DE:Input data effective signal				
29	SCK/REV	SCK:Clock input for serial communication	REV:Right/Left & Up/Down Display reverse				
			(Lo:Normal Display,Hi:Reverse Display)				
30	VSYNC	Vertical sync signal input	Vertical sync signal input(negative polarity)				
31	HSYNC	Horizontal sync signal input	Horizontal sync signal input(negative polarity)				
32	CLK	Clock input for display	Clock input for display				
	do	cian manufact	(DATA sampling at the CLK falling edge)				
33	VSS	O GND II - III alla la Cl	ure - Supply				
34	MODE	Input specification selection input					
35	POCB	Power on clear (Lo: active)					
36	NC	OPEN					
37	RVDD	Internal power supply					
38	COMDC	Common-electrode drive DC output					
39	NC	OPEN					
40	VSREF	Built-in DAC reference supply					
41	C1P	Contacting terminal of capacitor for charge pump					
42	C1M	Contacting terminal of capacitor for charge pump					
43	C2M	Contacting terminal of capacitor for charge pu	mp				
44	C2P	Contacting terminal of capacitor for charge pu	mp				
45	VDD	Power supply input					
-							

(9/54)

No.	Symbol	Function
46	COMOUT	Square wave output for common-electrode
47	VDD2	Internal power supply
48	VSS	GND
49	VSS	GND
50	VSS	GND
51	C3M	Contacting terminal of capacitor for charge pump
52	C3P	Contacting terminal of capacitor for charge pump
53	C4M	Contacting terminal of capacitor for charge pump
54	C4P	Contacting terminal of capacitor for charge pump
55	VVCOM	Voltage output for COMOUT
56	NC	OPEN
57	NC	OPEN
58	VGH	Positive supply for gate driver
59	C5P	Contacting terminal of capacitor for charge pump
60	C5M	Contacting terminal of capacitor for charge pump
61	VGL	Negative supply for gate driver
62	BLL2	LED drive power source 2 (Cathode side)
63	BLH2	LED drive power source 2 (Anode side)
64	NC	OPEN
65	NC	OPEN
66	BLH1	LED drive power source 1 (Anode side)
67	BLL1	LED drive power source 1 (Cathode side)

- Recommended connector

: KYOCERA ELCO 6281 series [04 6281 267 2x2 846+] : HIROSE ELECTRIC FH26 series [FH26G-67S-0.3SHBW(05)]

- Please make sure to check a consistency between pin assignment in "3.2 Outward Form" and your connector pin assignment when designing your circuit. Inconsistency in input signal assignment may cause a malfunction.
- Since FPC cable has gold plated terminals, gilt finish contact shoe connector is recommended.

5. ABSOLUTE MAXIMUM RATING

						VSS=0V
Item	Symbol	Condition	Ra	Rating		Applicable terminal
	-		MIN	MAX		
Supply voltage	VDD	Ta=25° C	-0.3	6.0	V	VDD
Input voltage 1 for logic	VI1		-0.3	VDD+0.3	V	POCB,CLK,VSYNC,HSYNC
						D[27:00],MODE
Input voltage 2 for logic	VI2		-0.3	6.0	V	CS/STBY,DI/DE,SCK/REV
LED forward current	IL	Ta = 25°C	-	35	mA	BLH1 - BLL1
		Ta = 70°C	_	15		BLH2 - BLL2
Storage temperature range	Tstg		-30	80	°C	
Storage humidity range	Hstg		Non condensi	ng in an	%	
			environmental moisture at			
			or less than 40°C90%RH			

Note: Please set "Power-on" and "Power-off" sequences in accordance with the "standby sequence" described later.

6. RECOMMENDED OPERATING CONDITIONS

							VSS=0V
Item Symbol		Condition Rating			g Ur		Applicable terminal
			MIN	TYP	MAX		
Supply voltage	VDD		2.7	3.0	3.6	V	VDD
Input voltage 1 for logic	VI1	VDD=2.7~3.6V	0	_	VDD	V	POCB,CLK,VSYNC
							HSYNC,D[27:00]
							MODE
Input voltage 2 for logic	VI2		0	_	5.5	V	CS/STBY,DI/DE
							SCK/REV
Common-electrode	VCOMDC	MODE="VSS"					
center voltage		VC <mark>O</mark> MDC[5:0]	1.48	1.86	2.24	V	COMDC
Note 1		=16h~3Ch					
		MODE="VDD"	1.48	1.86	2.24	V	
Operational temperature	Тор	Not <mark>e</mark> 2	-20	+25	+70	°C	Surface of panel
range Note 3							
Operating humidity	Нор	Ta <mark>≦</mark> 30°C	20	—	80	%	
range		Ta <mark>></mark> 30°C	Non conde	nsing in an			
			environmental moisture at or less				
			than 30°C8	30%RH.			

Note 1: Common-electrode center voltage indicates that optimum VCOMDC value lies within the bound of these voltages, but it does not mean that the whole range of voltages are the optimum VCOMDC value. This product must to be used with optimized VCOMDC value.

Note 2: This monitor is operatable in this temperature range. With regard to optical characteristics, refer to Item 10."CHARACTERISTICS".

Note 3: Acceptable Forward Current to LED is up to 15mA, when Ta=+70°C. Do not exceed Allowable Forward Current shown on the chart below.

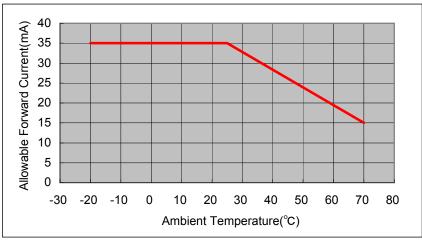


Fig. 2: Allowable Forward Current

7. CHARACTERISTICS 7.1 DC characteristics

7.1.1 Display Module

7.1.1 D	ispiay ivi		(Un	less otherwi	se noted, Ta	a=25° C,	VDD=3.0V,VSS=0V)
Item	Item Symbol Condition			Rating			Applicable terminal
	-		MIN	TYP	MAX		
Schmitt	VP	VDD=2.7~3.6V	0.47×VDD	0.60×VDD	0.73×VDD	V	CS/STBY,DI/DE
Threshold							SCK/REV,VSYNC
voltage	VN		0.30×VDD	0.43×VDD	0.56×VDD	V	HSYNC,D[27:00] CLK,POCB
	VH		0.08×VDD	0.17×VDD	0.27×VDD	V	
Input Signal	VIH		0.7×VDD	_	VDD	V	MODE
Voltage	VIL		0	—	0.3×VDD	V	
Pull up resister value	Rpu		45	91	182	kΩ	POCB
Pull down resister value	Rpd		45	91	182	kΩ	MODE
Output	VDD2		4.8	5.6	6.1	V	VDD2
Voltage1							
Output	VGH		12.5	13.3	13.5	V	VGH
Voltage2							
Output	VGL		-13.5	-13.3	-12.5	V	VGL
Voltage3							
Output		lo = -1.0mA	VDD - 0.5	—	VDD	V	BLON
Voltage4	-	lo = 1.0mA	0	_	0.5	V	
Operating Current		fCLK=6.75MHz Color bar display BRIGHT[5:0],CONTRAST[3:0]	-	8.0	15.0	mA	VDD
		= Initial value					
Standby Current		MODE="VSS",Other input with constant voltage.	-	11.0	30.0	μA	VDD
Current		MODE="VDD", Other input with constant voltage.	-	44.0	96.0	μA	

At "MODE" = "VSS"

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

			(011	looo ouriorm		<u> </u>	100 0.01,100 01)
Item	Symbol	Condition	1tac	Rating	Unit	Applicable terminal	
U I	EDIY		MIN	TYP	MAX	uμ	Οty
VcomDC	VCOMDC	VCOMDC[5:0]=00h	0.94	1.04	1.14		COMDC
Adjusted value		VCOMDC[5:0]=1Fh	1.56	1.66	1.76	V	
		VCOMDC[5:0]=3Ch	2.14	2.24	2.34		

(Unless otherwise noted, Ta=25°C,VDD=3.0V,VSS=0V)

ltem	Symbol	Conditio	on		Rating	,	Unit
	-			MIN	TYP	MAX	
BRIGHT	VLCD	BRIGHT[5:0]=00h	D[*7:*0]=00h	4.10	4.25	4.40	
Adjusted value		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.92	1.07	1.22	
		BRIGHT[5:0]=1Ah	D[*7:*0]=00h	3.58	3.73	3.88	V
		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.40	0.55	0.70	
		BRIGHT[5:0]=2Eh	D[*7:*0]=00h	3.18	3.33	3.48	
		CONTRAST[3:0]=Eh	D[*7:*0]=FFh	0.00	0.15	0.30	
CONTRAST	VLCD	CONTRAST[3:0]=0h		1.35	1.50	1.65	
Adjusted value		VLCD(D[*7:*0]=00h)-VL0	CD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Eh		3.03	3.18	3.33	V
		VLCD(D[*7:*0]=00h)-VL0	CD(D[*7:*0]=FFh)				
		CONTRAST[3:0]=Fh		3.15	3.30	3.45]
		VLCD(D[*7:*0]=00h)-VL0	CD(D[*7:*0]=FFh)				

(11/54)

7.1.2 Backlight

Item	Symbol	Condition		Rating	Unit	Applicable terminal	
			MIN	TYP	MAX		
Forward current	IL25	Ta=25°C	-	20.0	35.0	mA	BLH1 - BLL1
	IL70	Ta=70°C	-	-	15.0	mA	BLH2 - BLL2
Forward voltage	VL	Ta=25°C, IL=20.0mA	-	9.6	10.5	V	
Estimated Life	LL	Ta=25°C, IL=20.0mA	-	(50,000)	-	hr	
of LED		Note1					

Note1: - The lifetime of the LED is defined as a period till the brightness of the LED decreases to the half of its initial value.

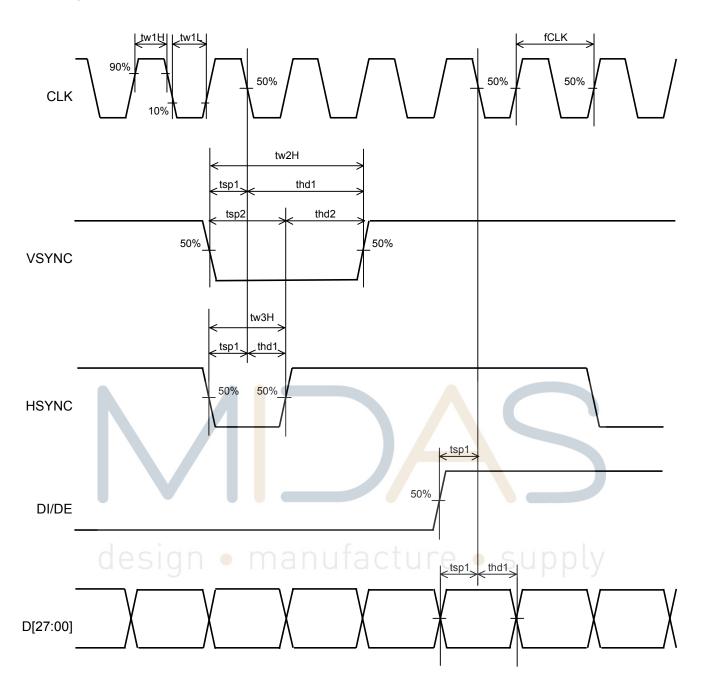
- This figure is given as a reference purpose only, and not as a guarantee.

- This figure is estimated for an LED operating alone.

- As the performance of an LED may differ when assembled as a monitor together with a TFT panel due to different environmental temperature.

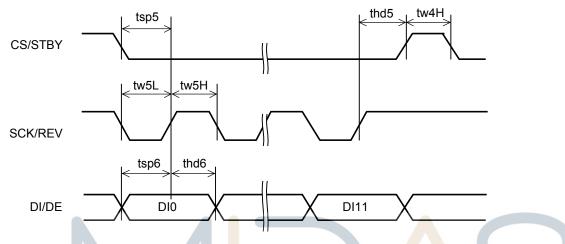
- Estimated lifetime could vary on a different temperature and usually higher temperature could reduce the life significantly.

design • manufacture • supply


7. 2. AC CHARACTERISTICS 7.2.1 Display Module

	louulo		(Unless othe	rwise noted	, Ta=25°	C,VDD=3.0V,VSS=0V)
Item	Symbol	Condition		Rating		Unit	Applicable terminal
			MIN	TYP	MAX		
CLK Low period	tw1L	0.1×VDD or less	20	—	—	ns	CLK
CLK High period	tw1H	0.9×VDD or more	20	—	—	ns	
Setup time 1	tsp1		10	—	—	ns	CLK,HSYNC,VSYNC
Hold time 1	thd1		10	—	—	ns	D[27:00],DI/DE Note1
Setup time 2	tsp2		2	—	_	CLK	VSYNC,HSYNC
Hold time 2	thd2		2	—	—	CLK	
VSYNC pulse width	tw2H		4	—	_	CLK	VSYNC
HSYNC pulse width	tw3H		2CLK	_	20 µ s		HSYNC
CLK frequency	fCLK		_	6.75	9.0	MHz	CLK

Note1: The Rating value of the terminal DI/DE is effective at "MODE" = "VDD".


design • manufacture • supply

Switching Waveform Characteristics

7.2.2 Serial Communication Block

			(Unless o	therwise no	ted. Ta=25°	C.VD	D=3.0V,VSS=0V)		
Item	Symbol	Condition	Rating Unit Applicable						
			MIN	TYP	MAX	1	Terminals		
CS setup time	tsp5		20	_	_	ns	CS/STBY		
CS hold time	thd5		20	_	_	ns	CS/STBY		
DI setup time	tsp6		20	_	-	ns	DI/DE		
DI hold time	thd6		20	_	_	ns	DI/DE		
CS pulse High period	tw4H		20	_	_	ns	CS/STBY		
SCK pulse Low period	tw5L		20	_	_	ns	SCK/REV		
SCK pulse High period	tw5H		20	—	_	ns	SCK/REV		

Note: Unless otherwise noted, each item is defined between each 50 % point of signal amplitude.

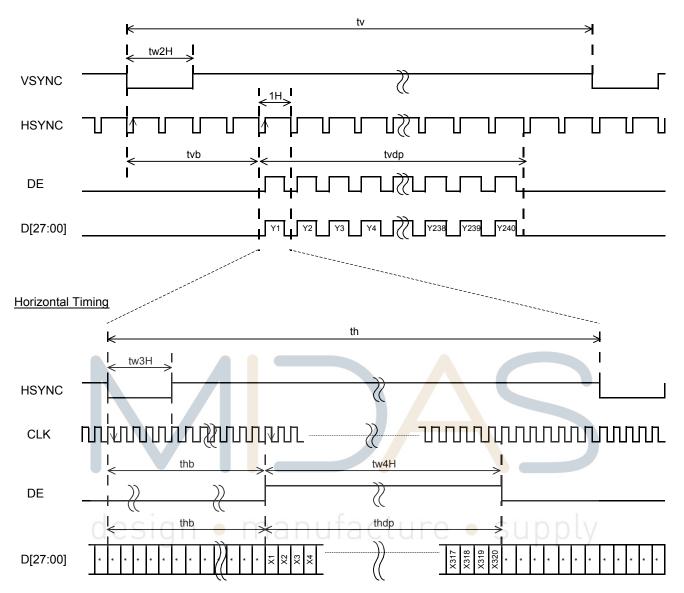
design • manufacture • supply

7.3.1 MODE = "VSS"

Item	Symbol		Rating		Unit	Applicable terminal
	-	MIN	TYP	MAX		
CLK frequency	fCLK	—	6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv	—	262	291	Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	3H	-		VSYNC,CLK
Vertical Back Porch	tvb	0 Note2	6	31	Н	VSYNC,HSYNC,D[27:00]
Vertical Display Period	tvdp	—	240	-	Н	VSYNC,HSYNC,D[27:00]
HSYNC frequency	fHSYNC	-	15.7	—	kHz	HSYNC
HSYNC Cycle	th	-	429	573	CLK	HSYNC,CLK
HSYNC Pulse Width	tw3H	2CLK	—	20 µ s		HSYNC,CLK
Horizontal Back Porch	thb	5	42	_	CLK	HSYNC,CLK,D[27:00]
Horizontal Display Period	thdp	_	320	_	CLK	D[27:00],CLK

Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency. Note2: When VDISP=0, please use odd number for the setting of the total number of lines that compose one field.

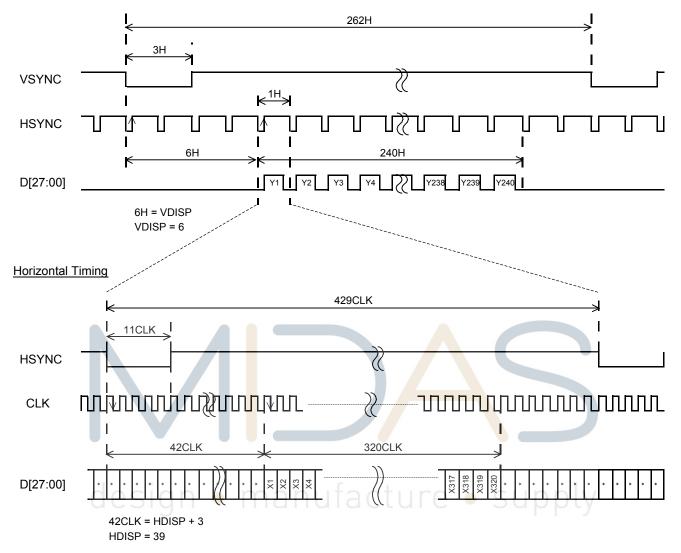
7.3.2 MODE = "VDD"


Item	Symbol		Rating		Unit	Applicable terminal
	-	MIN	TYP	MAX		
CLK frequency	fCLK	—	6.75	9.0	MHz	CLK
VSYNC Frequency Note1	fVSYNC	54	60	66	Hz	VSYNC
Number of Frame Line	tv	—	262	291	Н	VSYNC,HSYNC
VSYNC Pulse Width	tw2H	4CLK	3H	—		VSYNC,CLK
Vertical Back Porch	tvb	0 Note2	6	21 Note3	Н	VSYNC,HSYNC,DE,D[27:02]
Vertical Display Period	tvdp	—	240		Н	VSYNC,HSYNC,D[27:02]
HSYNC frequency	fHSYNC	—	15.7	—	kHz	HSYNC
HSYNC Cycle	th	—	429	573	CLK	HSYNC,CLK
HSYNC Pulse Width	tw3H	2CLK	-	20 µ s		HSYNC,CLK
Horizontal Back Porch	thb	5	42	77 Note3	CLK	HSYNC,CLK,DE,D[27:02]
DE Pulse Width	tw4H	—	320	—	CLK	DE,CLK
Horizontal Display Period	thdp	_	320	—	CLK	D[27:02],CLK

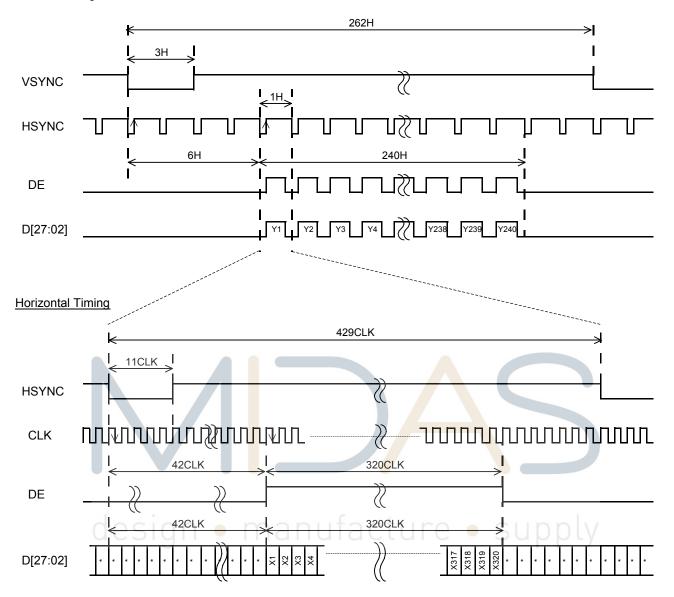
Note1: This is recommended spec to get high quality picture on display. It is customer's risk to use out of this frequency. Note2: When Vertical Back Porch is "0",please use odd number for the setting of the total number of lines that compose one field.

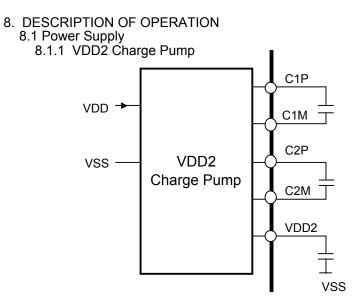
Note3: When DE keeps "Lo" for 21H and 77CLK or longer, start capturing data automatically from "22H and 78CLK".

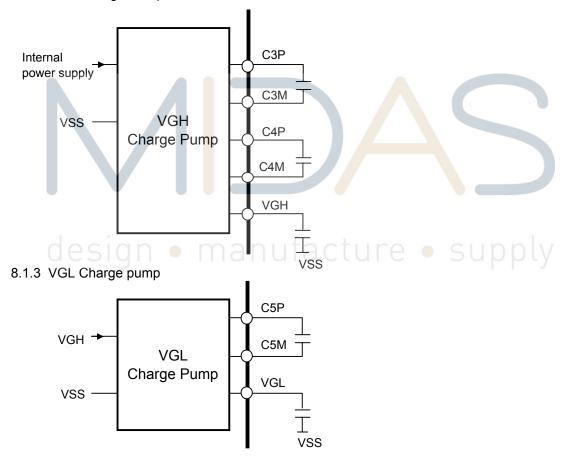
7.4 Driving Timing Chart


Vertical Timing

7.5 Example of Driving Timing Chart


7.5.1 MODE = "VSS"(fCLK=6.75MHz)

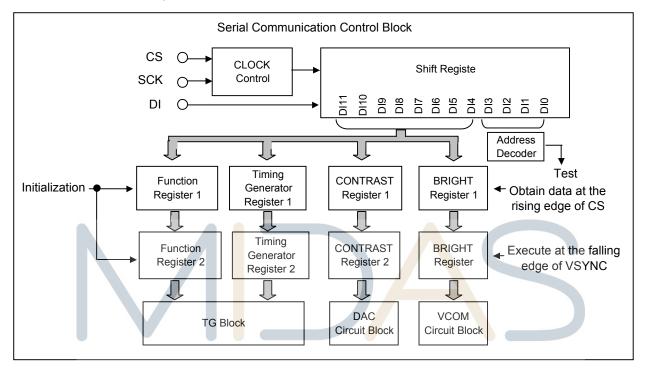

Vertical Timing


7.5.2 MODE = "VDD"(fCLK=6.75MHz)

Vertical Timing

8.1.2 VGH Charge Pump

(20/54)

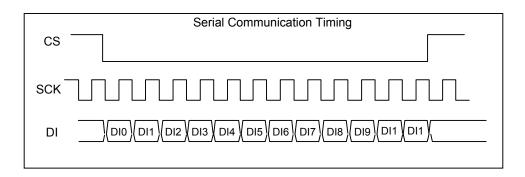

8.2 Serial Communication

Serial communication control block in the LCD monitor is described below. Serial communication control function is effective at "MODE" = "VSS".

8. 2. 1 Feature Description

Serial communication control block is consist of registers that store data entered from CS, SCK, DI terminals and DAC that outputs control voltages to each part according to the data loaded from these registers . All registers are set to initial values at power-on.

Electrostatics or noises may re-set the registers to improper values. It is advisable to set up serial communication as frequently as possible as liquid crystal could degrade if such state is left untreated for a long time.



8.2.2 Serial Communication Timing a Nutra Cture Supply

After input signal of CS drops from Hi to Lo, the Shift Resister loads 12 bits of serial data from DI at the rising edge of the input signal of SCK.

Mode register and DAC register load the stored data at the rising edge of the input signal of CS. When loaded DI data during the low period of CS is less than 12 bits, all loaded data are discarded. When loaded DI data during the low period of CS is 12 bits or more, the last read of 12 bits is used. Each command is executed by VSYNC immediately after the rising the edge of CS.

Serial Communication Control Block is configurable at any time during display and standby mode as it is completely independent from other circuitry run by CLK in the monitor.

Configuration of serial data for DI terminal

First											Last
LSB											MSB
DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
	Register	address	;				Da	ta			

							LSB						I	MSB	LSB						1	MSB
Register		Add	ress		Number of	Number of Effect of increase Preset value					User setting value											
	DI0	DI1	DI2	DI3	bits for data	of value	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
BRIGHT	0	0	0	0	6 (DI6-DI11)	→Brighter	-	-	0	1	0	1	1	0	-	-		ι	Jser :	settir	ig	
VCOMDC	1	0	0	0	6 (DI6-DI11)	→higher DC voltage	-	-	1	1	1	1	1	1	1	-	Opti	mum	setti	ng fo	or ead mo	ch onitoi
CONTRAST	0	4	0	0	4 (DI4-DI7)	→higher contrast	0	1	1	1	-	-	-	-	U	ser s	etting]	-	-	-	-
PANEL1	0	1	0	0	3 (DI9-DI11)	-	-	-	-	-	-	0	0	1	-	-	-	-	-	0	0	1
VDISP	1	1	0	0	5 (DI4-DI8)	→longer vertical flyback time	1	0	1	0	1	-	-	-		Use	er sei	tting		-	-	-
PANEL2					2 (DI10-DI11)	-	-	-	-	-	-	0	0	0	-	-	-	-	-	0	0	0
HDISP	0	0	1	0	8 (DI4-DI11)	→longer horizontal flyback time	0	1	0	1	0	0	1	0	User setting							
PANEL3	1	0	1	0	8 (DI4-DI11)	-	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0
FUNC1	0	1	1	0	8 (DI4-DI11)	-	0	0	0	1	0	0	0	0	0	ι	Jser	settin	g	0	0	0
FUNC2	1	1	1	0	8 (DI4-DI11)	-	1	1	1	1	0	0	0	0	Use	er se	tting	1	0	0	-	-
FUNC3	0	0	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0		ι	Jser :	settin	ig	
FUNC4	1	0	0	1	8 (DI4-DI11)	-	1	0	0	0	0	0	0	0	1			Use	er set	tting		
PANEL4	0	1	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL5	1	1	0	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
PANEL6	0	0	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL7	1	0	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL8	0	1	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
PANEL9	1	1	1	1	8 (DI4-DI11)	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Configurat	ion d	o f F	UNC	21 re	gister							. ,.										

Configurat	Ion of thomas and the gister	
bit	Function	Description
DI4	TEST 0	Fix it to 0.
DI5	Vertical flip display	Flip image vertically (from top to bottom) 0: Normal, 1: Vertical flip
DI6	Horizontal flip display	Flip image horizontally (from side to side) 0: Normal, 1: Horizontally flip
DI7	Backlight control	Set BLON signal that controls external backlight circuitry. 0: Low 1: High
DI8	Standby control	Switch between standby and operation. 0: standby, 1: operation
DI9	TEST 1	
DI10	TEST 2	Fix it to 0.
DI11	TEST 3	

Configuration of FUNC2 register

· · · · · ·	Function	Description
bit	Function	Description
DI4	HSYNC polarity	Change polarity of HSYNC. 0: Positive polarity, 1: Negative polarity
DI5	VSYNC polarity	Change polarity of VSYNC 0: Positive polarity, 1: Negative polarity
DI6	CLK polarity	Change polarity of CLK. 0: Noninversion 1: Inversion
DI7	TEST 4	Fix it to 1.
DI8	TEST 5	Fix it to 0.
DI9	TEST 6	
DI10	NC	-
DI11	NC	

TÔV€HÍÕFGY HG€GI€ŠTŠ

FUNC3 Register Configuration

bit	Function	Description
DI4	Test 7	Please fix it to "0".
DI5	Test 8	
DI6	GM1[0]	Register for gamma potential correction when input data D [*7:*0] is 192(=C0h).
DI7	GM1[1]	
DI8	GM1[2]	
DI9	GM2[0]	Register for gamma potential correction when input data D[*7:*0] is 148(=94h).
DI10	GM2[1]	
DI11	GM2[2]	

FUNC4 Register Configuration

bit	Function	Description
DI4	Test 9	Please fix to "1".
DI5	Select gamma	Select gamma correction curves. 0: built-in gamma correction curve
	correction curve	1: user-established gamma correction curve
DI6	GM3[0]	Register for gamma potential correction when input data D [*7:*0] is 108(=6Ch).
DI7	GM3[1]	
DI8	GM3[2]	
DI9	GM4[0]	Register for gamma potential correction when input data D[*7:*0] is 64(=40h).
DI10	GM4[1]	
DI11	GM4[2]	

TEST 0 to TEST 9

Please fix DI4, DI9 through DI11 of the FUNC1 registers to "0". Please fix DI7 of FUNC2 to "1", DI8 and DI19 of FUNC2 to "0". DI10 and DI11 are no connection. Please fix DI4 and DI5 of FUNC3 to "0".

Please fix DI4 of FUNC4 to"1".

User Setting Values

Please use "User setting values" to set up PANEL1 through PANEL9, DI4, DI9 through DI11 of FUNC1 and DI7 through DI9 of FUNC2.

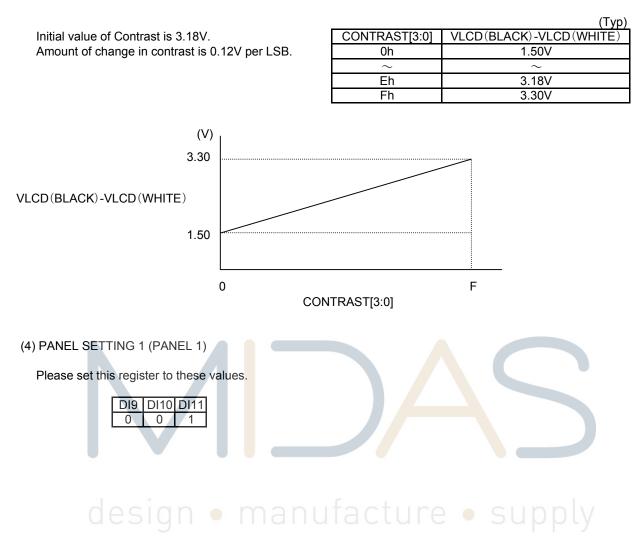
Use of unspecified values may cause malfunction.

8.2.4 Detailed Description of Function

(1) BRIGHT CONTROL (BRIGHT)

Bright setting values is controlled by 6 bit (DI6 through DI1) of BRIGHT registers. The display lightens in proportion to data value while VLCD changes inversely with the data value.

Initial value of BLACK[00h] is 3.73V and WHITE[FFh] is 0.55V when the CONTRAST register is Eh.

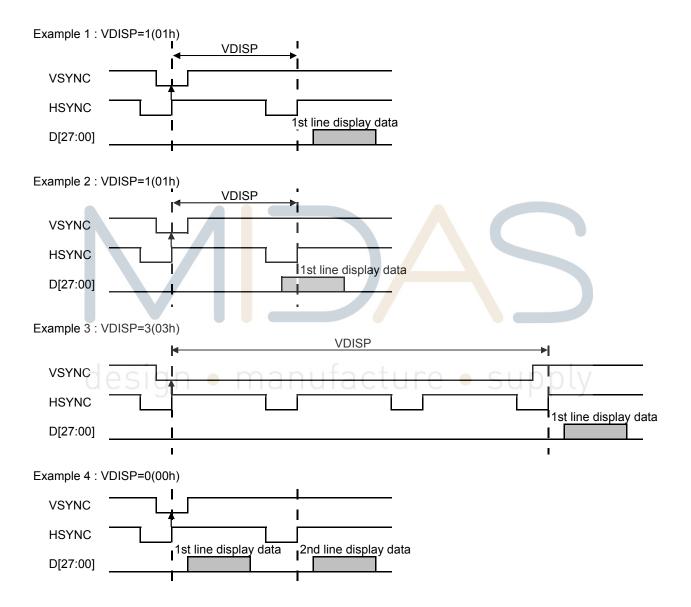

BRIGHT[5:0] VLCD(BLACK) VLCD(WHITE) The amount of change in VLCD is 0.02V per LSB. 4.25V 1.07V 00h 4.23V 01h 1.05V **Recommended Operating Range** Recommended The register shall be set in 00h to 2Eh range. 3.73V 0.55V 1Ah operating range \sim 2Dh 3.35V 0.17V 2Eh 3.33V 0.15V Recommended operating range (V) VLCD(BLACK) 4.25 3.33 VLCD(WHITE) 1.07 0.15 0 2E 3F BRIGHT[5:0] (2) COMMON ELECTRODE CENTER VOLTAGE (VCOMDC) Common-electrode center voltage is controlled by 6-bit (DI6 through DI11). The voltage is proportional to data values. Each TFT monitor has to be optimized to its own optimum value separately. This optimization is mandatory. If not implemented, liquid crystal of TFT monitor will be degraded by long operation. (Tvp) Initial value of VCOMDC is 2.30V. VCOMDC[5:0] VCOMDC (V) Amount of change in VCOMDC is 0.02V per LSB. 00h 1.04V Recommended Operating Range 15h 1.46V Since VCOMDC has its optimum value somewhere 16h 1.48V Recommended between 1.48 and 2.24V, the register should be set \sim operating range in 16h to 3Ch range 3Ch 2.24V 3Fh 2.30V Recommended operating range (V) 2.30 2.24 VCOMDC(V) 1.48 1.04 16 3C 3F 0

VCOMDC[5:0]

(Typ.)

(3) Contrast Control (CONTRAST)

Contrast is controlled in 16 levels by 4-bit (DI4 through DI7) CONTRAST register. Contrast is proportional to data values. Contrast does not affect aforementioned bright control.



(5) VERTICAL FLYBACK TIME SET (VDISP)

The length of vertical fly back period can be set from 0 to 31H by 5-bit of DI4 through DI8 of VDISP register. When VSYNC and HSYNC are negative polarity, "Lo" period of VSYNC is detected at the rising edge of HSYNC. The setting value of VDISP is determined by the number of horizontal periods from the first detection of VSYNC=Lo to the first line's display data input.Please set VDISP=1 as shown in "Example 1" even if the display data of the first line is input

When the pulse width of VSYNC extends over two or more H as shown in "Example 3", the setting value is determined by the number of horizontal periods from the first detection of VSYNC=Lo to the first line's display data input. When the initial value is "0", the first line's display data needs to be inputted immediately after VSYNC as shown in "Example 4".

When VDISP=0, please use odd number for the setting of the total number of lines that compose one field. This function can also be used for vertical display range setup (Vertical position setup).

(6) PANEL Setting 2 (PANEL2)

PANEL 2 register 3-bit (DI9 and DI11) can select operating conditions from 8 choices. Please set this register to these values.

DI9	DI10	DI11
0	0	0

(7) Horizontal Flyback Period Setting (HDISP)

Horizontal flyback time can be set from 5 to 258CLK by HDISP register with 8-bit of DI14 thru DI11. However, set value of 0 or 1 is prohibited. Actual flyback time is "setting value plus 3CLK". When initial value is 74, a data after a lapse of 74 + 3CLK=77CLK from the rising edge of HSYNC is displayed as shown in the following chart.

This function can also be used for horizontal display range setup (Horizontal position setup).

Example : HDISP=74(4Ah)

HSYNC	 1													
CLK		2	3	4	5				9	<u></u>	75	76	77	
D[27:00]	•				HDI	SP+30	CLK=	//CLK	ζ					Valid data

(8) PANEL Setting 3 (PANEL3)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 3 register.

Please set this register to these values.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	1	0	0	1	_1	0	0

design • manufacture • supply

FUNC1 register sets and controls the following functions by its each bit of DI5,DI6 and di8.

Vertical Flip Display (Up/Down)

DI5=0 for normal display, DI5=1 for vertical flip display

After completing the setup by serial communication, the selected display mode is carried out by VSYNC. (Normal display is defined when "Product Number" logo on the front case is placed at the bottom.)

<u>Horizontal Flip Display (Right/Left)</u> DI6=0 for normal display, DI6=1 for horizontal flip display The selected display mode is executed at VSYNC after setup by serial communication.

(Please refer to the section 8.3 "Display Data Transfer".)

Backlight Control

DI7 switches the backlight driver IC. BLON terminal outputs set value of DI7. Since its output level is VDD or VSS, this function can also be used for other controls than the backlight. After completing the setup by serial communication, the selected display mode is carried out by VSYNC.

Standby Mode

DI8=0 for standby mode, DI8=1 for normal operation

Since default value of DI8 after power on is "0", it automatically goes to standby mode. Power consumption is significantly reduced in standby mode by disabling the timing generator and the LCD driving circuitry, and disconnecting current lines.

No image is displayed (white raster display) during standby mode unless DI8 is set to 1 for normal operation by serial communication. Serial data can be received by serial communication block even in standby mode. Please refer to the section 8.4 "Standby (Power Save) Sequence" for standby mode and power on/off sequence When normal operation is switched to standby mode, afterimage treatment is carried out before switching to standby mode.

design • manufacture • supply

(28/54)

(10) FUNCTION SET 2 (FUNC2)

D[27:00]

FUNC2 register sets and controls the following functions by its each bit of DI4 thru DI6.

HSYNC, VSYNC, CLK Polarity Switching

Polarity of HSYNG is switched by DI4. DI4=0 for positive polarity input, DI4=1 for negative polarity input. Polarity of VSYNC is switched by DI5. DI5=0 for positive polarity input, DI5=1 for negative polarity input. Polarity of CLK is switched by DI6. DI6=0 for non-inversion, DI6=1 for inversion.

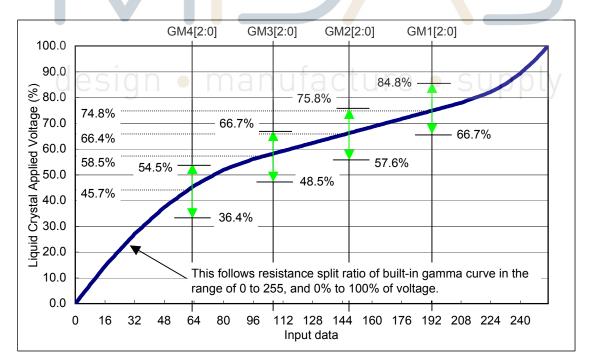
Initial value of DI4, DI5 and DI6 are "1". The following chart shows polarity of each signal at the initial value. Please set change of VSYNC, HSYNC and display data at the rising edge of CLK.

VSYNC	
HSYNC	
CLK	
D[27:00]	
Polarity of	f each signal can be changed independently by logic of DI4, DI5 and DI6.
Example 1 :	DI4=0,DI5=DI6=1 (HSYNC has positive polarity and Hi active)
VSYNC	
HSYNC	
CLK	
D[27:00]	
Example 2 :	DI4=1,DI5=0,DI6=1 (VSY <mark>NC</mark> has positive polarity and Hi active)
VSYNC	
HSYNC	
CLK	
D[27:00]	esign • man utacture • su pply
Example 3 :	DI4=DI5=1,DI6=0 (CLK is reversed, data is read at the rising edge of CLK.)
VSYNC	
HSYNC	
CLK	

(11) FUNCTION SET 3, 4 (FUNC 3, 4)

Gamma Curve Correction Select

DI5=0 of FUNC 4 Register:	Deactivate user configurable gamma correction circuitry. Use built-in gamma curve.
DI5=1 of FUNC 4 Register:	Activate user configurable gamma correction circuitry. Use user configurable gamma correction curve.


Setting Method of User Configurable Gamma Correction Curve

Gamma curve can be corrected by using GM1[2:0] thru GM4[2:0] registers of FUNC 3 and FUNC 4. GM1 thru GM4 corrects each following gamma potential respectively.

 $GM1[2:0] \rightarrow Input data D[*7:*0] = Register for gamma potential correction at 192(=C0h)$ GM2[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 148(=94h)GM3[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 108(=6Ch)GM4[2:0] → Input data D[*7:*0] = Register for gamma potential correction at 64(=40h)

Below chart shows characteristic curve of gray scale input data - liquid crystal applied voltage. Input value of "0" is assumed to be 0% of applied voltage to liquid crystal, and input value of "225" is assumed to be 100% of applied voltage to liquid crystal. Adjustable range of GM1 thru GM4 registers are described below.

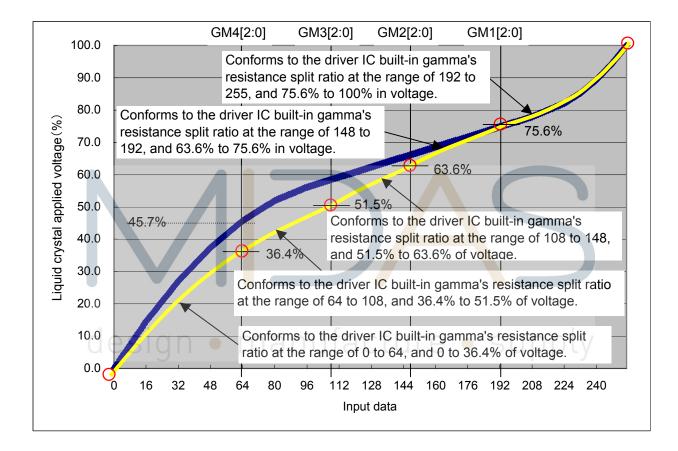
	GM4[2:0]	GM3[2:0]	GM2[2:0]	GM1[2:0]
00h	No correction	No correction	No correction	No correction
01h	54.5%	66.7%	75.8%	84.8%
02h	51.5%	63.6%	72.7%	81.8%
03h	48.5%	60.6%	69.7%	78.8%
04h	45.5%	57.6%	66.7%	75.6%
05h	42.4%	54.5%	63.6%	72.7%
06h	39.4%	51.5%	60.6%	69.7%
07h	36.4%	48.5%	57.6%	66.7%

TÔV€HÍÕFGY HG€GI€ŠTŠ

When no correction is made to gamma potential of GM1 to GM4; The voltages at "0" and "255" are fixed in accordance with the contrast and brightness settings, and voltages at 1 to 254 are determined by resister split ratio produced by the driver IC built-in gamma curve resister. (Refer to the chart in previous page) Liquid crystal applied voltage takes the values of 45.7%, 58.5%, 66.4% and 74,8% when input date is 64, 108, 148 and 192 respectively.

When correction is made to any of GM1 to GM4 by user;

The voltage is corrected in accordance with a correction point and its set value configured by user.


The voltages at 1 to 254 are determined by resister split ratio between voltage at 0 and 225 and input data.

Example:

Darken gray scale in black side.

 \rightarrow Change liquid crystal applied voltage at the 64 point to darken side.

 \rightarrow Set GM4[2:0] to 7h, GM3[2:0] to 6h, GM2[2:0] to 5h and GM1[2:0] to 4h.

(12) PANEL SELECT 4 (PANEL 4)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 4 register.Please set this register to this value.

ſ	DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
ĺ	0	0	0	0	0	0	0	0

(13) PANEL SELECT 5 (PANEL 5)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 5 register.Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	1	0	0	0	0	0	0

(14) PANEL SELECT 6 (PANEL 6)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 6 register.Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(15) PANEL SELECT 7 (PANEL 7)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 7 register.Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(16) PANEL SELECT 8 (PANEL 8)

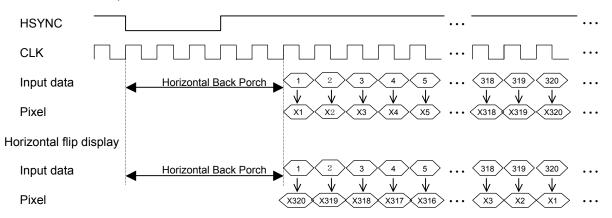
Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 8 register.Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	0	0

(17) PANEL SELECT 9 (PANEL 9)

Select operating condition of the signal generated by driver IC in accordance with 8-bit of DI4 to DI11 of PANEL 9 register.Please set this register to this value.

DI4	DI5	DI6	DI7	DI8	DI9	DI10	DI11
0	0	0	0	0	0	1	0


8.3 Display Data Transfer

Input display data to D[27:00] D*0 : LSB, D*7 : MSB

Horizontal Timing and Order of Input Data

Display data shall be input in synchronization with CLK. Polarity of CLK can be selected by DI16 of FUNCTION SET 2 (FUNC2).(at "MODE" = "VSS")

Normal display: Normal display is defined as the orientation that the FPC cable on the TFT monitor is placed on the downside.

* Above timing chart shows correlation between input data and pixels in visual way and it is not actual timing chart.

Vertical Timing and Order of Input Data

Transfer of display data that consist of 240 lines in 1 field is explained below. The correlations between input line and display line at normal display and vertical flip display are described below.

Normal display: Normal display is defined as the orientation that the FPC cable on the TFT monitor is placed on the downside.

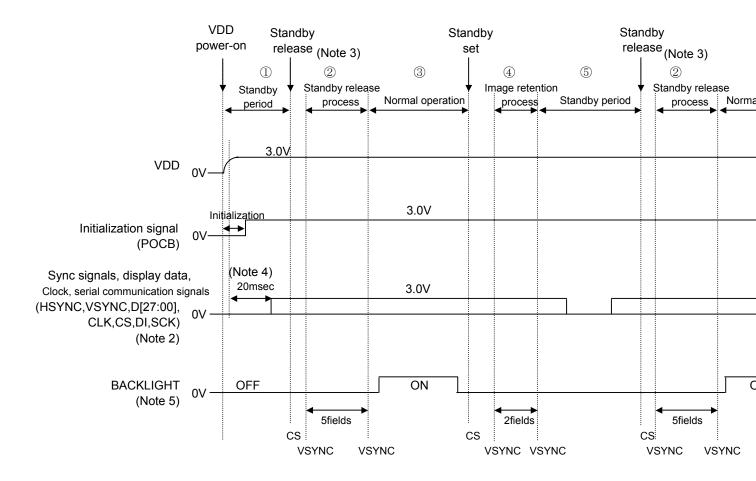
VSYNC		•••		•••
HSYNC		•••		•••
Input line No.	(239) (240) (1) (2) (3) (4) (5) (6)	•••	239 240	•••
Display line No	$(Y_{238},Y_{239},Y_{240})$	3	Y238 Y239 Y240	›
Vertical flip display	/			
VSYNC		•••		•••
HSYNC		•••		•••
Input line No.	$\langle 239 \rangle 240 \cdots \langle 1 \rangle \langle 2 \rangle \langle 3 \rangle \langle 4 \rangle \langle 5 \rangle \langle 6 \rangle$	•••	239 240	•••
Display line No	Y3 Y2 Y1 Y240 Y239 Y238 Y237 Y236 Y235	>	Y3 Y2 Y1	•••

* Above timing chart shows correlation between input data and pixels in visual way and it is not actual timing chart.

8.4 Standby (Power Save) Sequence

When "MODE" = "VSS", serial communication signals of CS, DI and SCK shall be input after VDD stabilizes at $VDD \ge [0.9 \times VDD]V$ for more than 20 msec or more after power on.

All initial values of serial data shall be set during this standby mode.


Other logic input signals of HSYNC, VSYNC, D[27:00] and CLK shall be input simultaneously with VDD or after power on (specified period marked ① in next page). All input signals shall be set to a fixed DC to reduce power consumption during standby mode.

Please follow the recommended power on/off sequence described below.

- Right after power on, serial communication registers are initialized. Therefore, standby control bit takes the value of "0". By this procedure the LCD goes into standby mode which significantly reduces power consumption of the LCD. No image is displayed (white raster display) on the screen and internal power circuit is deactivated during standby mode. Sync signal and display data (HSYNC, VSYNC, D[27:00], CLK) start to input before standby mode is released by serial communication.
- ② When the standby control bit is set to "1" by serial communication or the terminal "STBY" turn to "Lo" from "Hi", the standby mode is released by following VSYNC and the power supply circuit of building into begins operating. No image is displayed (white raster display) on the screen for 5 fields from the following VSYNC after the release of standby mode.
- ③ LCD goes into normal display (display under normal operation) at the timing of VSYNC after completion of the procedure described in ②. Backlight shall be lit up 1 or more field after going to normal display.
- ④ Standby mode can be established by setting standby control bit to "0" by serial communication or the terminal "STBY" turn to "Hi" from "Lo". Display data is changed to FFh at VSYNC that comes right after this serial communication, and afterimage treatment is performed for 2 fields of VSYNC. Displayed image under normal display is immediately changed to white raster display by this treatment. Continue to input sync signal (HSYNC,VSYNC,CLK) during this period.
- (5) LCD goes into standby mode, which is same as ① above, at the timing of VSYNC after completion of the procedure described in ④. Serial communication data is retained during standby mode. Serial communication signal and input signal can be deactivated
 - (2) to (4) repeats same procedures as described above.

Below procedure must be followed for power-off.

- ① Implement standby setting.
- ② After standby setting, continue to input sync signals (HSYNC, VSYNC, CLK) during the image treatment period (until VSYNC after 2 fields subsequent to standby setting).
- (3) After (2), power off VDD after 30msec or more
- (4) Stop the sync signals (HSYNC, VSYNC, CLK) subsequent to afterimage treatment period and no later than VDD off.

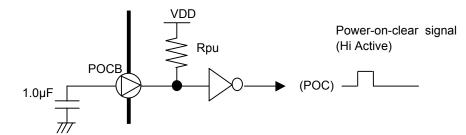
(Note 1) Power off VDD more than 30 msec after VSYNC that arrives 2 fields from standby set.

(Note 2) Input CLK during the period of inputting sync signals (HSYNC, VSYNC) and display data D[27:00].

(Note 3) Due consideration needs to be given to power supply capacity as bigger current (inrush current) flows at star

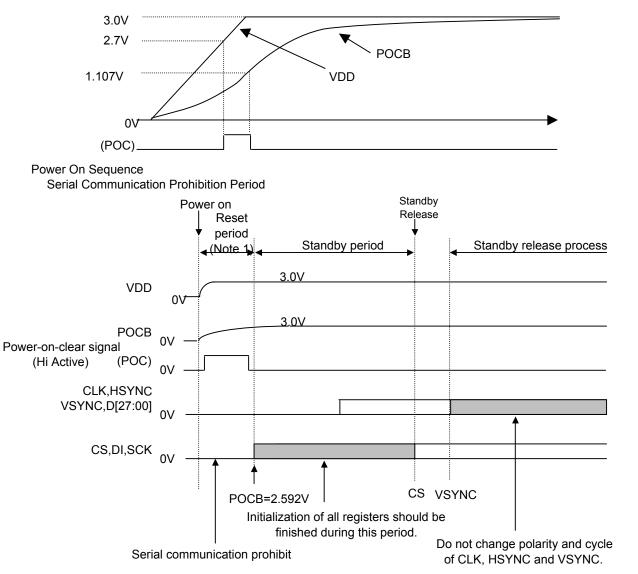
(Note 4) Serial communication signals should be input after VDD stabilizes at VDD \geq [0.9×VDD]V for more than 20 ms

And initial values of all serial data should be set during this period before standby release.


(Note 5) Backlight should be turned on after 1 field from starting display. Backlight should be turned off before standb

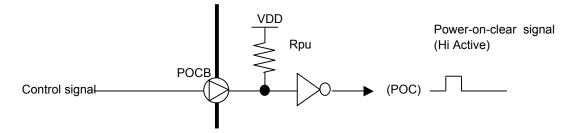
Voltage values shown in this chart are typical values, not fixed values.

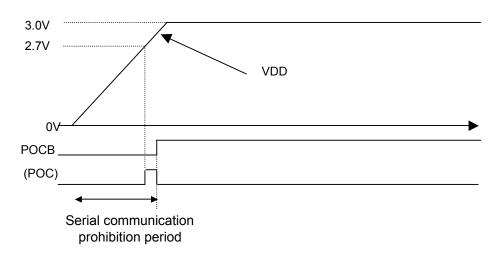
8.5 Power On Sequence


There is the following limit between a power on period and the serial communication setting.

Power-on-clear circuit diagram

POCB terminal is connected to VDD through the pull-up resistor (Rpu).

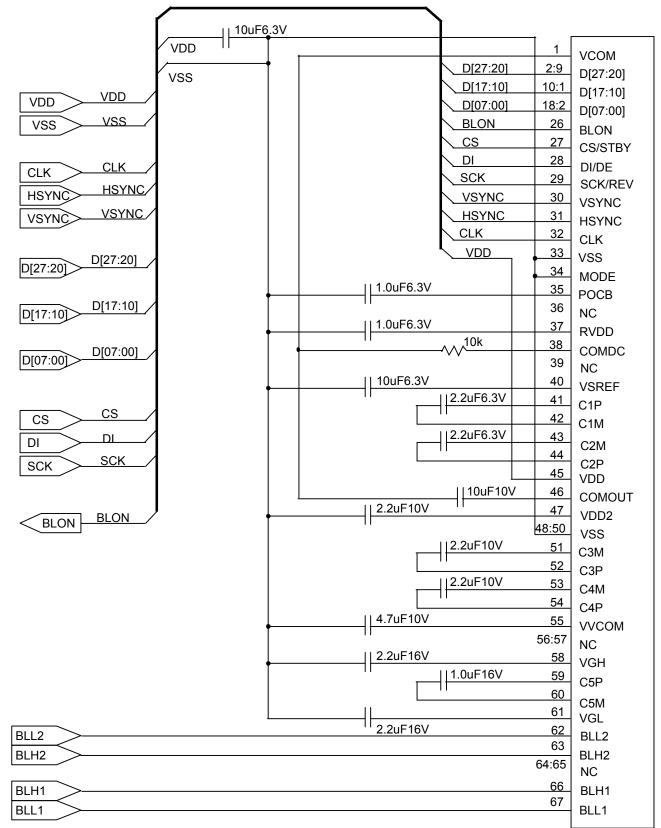

When rising of VDD takes long time, POCB will have unstable and unpredictable waveform. Please determine value of external capacitor by which POCB takes 1.107 V or less at VDD is 2.7V.


Note 1: All logic input signals are ignored during input period (POC is Hi).

In case of rapid startup after power-on, directly control POCB terminal.

Power-on-clear circuit diagram

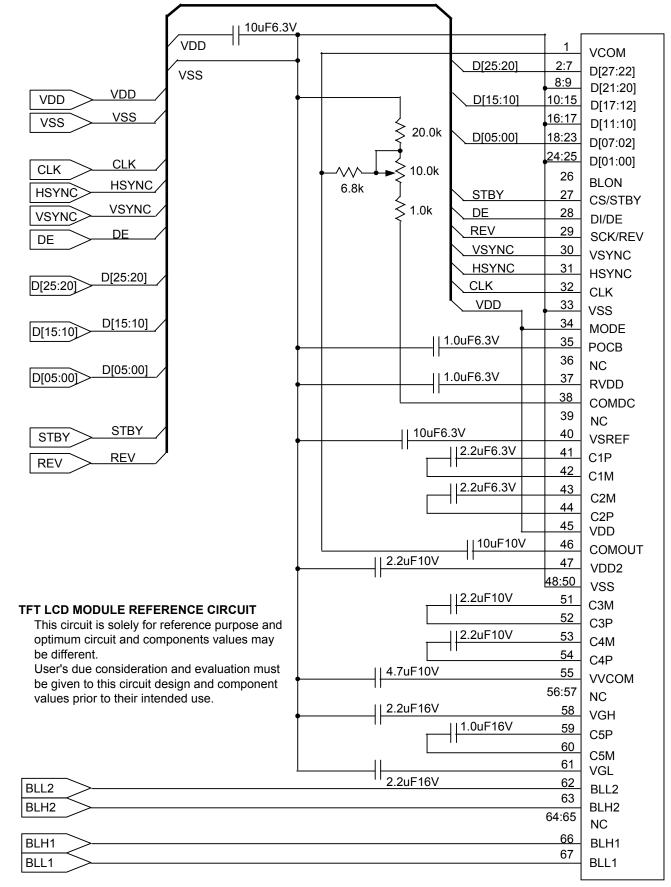
In case of directly controlling POCB terminal, POCB terminal should be set to "Lo" at Power-on POCB should be changed to "Hi" after VDD is exceeding 2.97V. Serial communication is prohibited while POCB is "Lo".

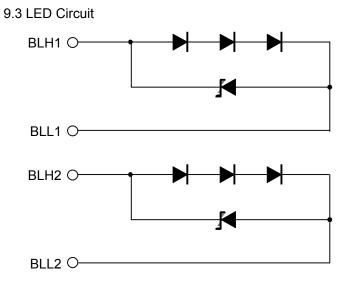


8.6 Other Functions

·Built-in Panel Residual Charge Reduction Circuit

When the power turns off in accordance with the mandatory procedure described in the section 8.4 "Standby (Power Save) Sequence", afterimage treatment is carried out after standby mode is set. This circuit automatically reduces panel's residual charge and prevents afterimage for a long time even if standby mode setting fails to be made before power-off.





TFT LCD MODULE REFERENCE CIRCUIT

This circuit is solely for reference purpose and optimum circuit and components values may be different. User's due consideration and evaluation must be given to this circuit design and component values prior to their intended use.

9.2 "MODE" = "VDD"

10. CHARACTERISTICS

10.1 Optical Character	istics
< Measurement Condition	n >
Measuring instruments:	CS1000(KONICA MINOLTA), LCD7000(OTSUKA ELECTRONICS),
	EZcontrast160D(ELDIM)
Driving condition:	VDD = 3.0V, VSS = 0V
	Optimized VCOMDC
	VLCD=(Vsigpp±Vcompp)/2
Backlight:	IL=20mA
Measured temperature:	$Ta = 25^{\circ}C$

	Item	Symbol	Condition	MIN	TYP	MAX	Unit	Note No.	Remark
Respons e time	Rise time	TON	VLCD= 0.69V→3.87V	—	_	40	ms	1	*
Resp e ti	Fall time	TOFF	VLCD= 3.87V→0.69V	—	-	60	ms		
Co	ontrast ratio	CR	VLCD= 0.69V/3.87V	240	400			2	
σ.	Left	θL	VLCD=	80	—		deg	3	*
Viewing angle	Right Up	θR	0.69V/3.87V	80	—	—	deg		
/ie/ an	Up	φU	CR≧10	80	—	_	deg		
_	Down	φD		80	—	—	deg		
V-T threshold		V90		0.7	1.0	1.3	V	4	*
volta		V50		1.2	1.5	1.8	V		
νοπαί	yc.	V10		1.7	2.0	2.3	V		
Whi	te V-T Curve			Refer to Fig	g. 3: White V	V-T Curve			Reference
\\/hita	e Chromaticity	Х	VLCD=0.69V	Fig. 4: V	Vhite			5	
y y		у		chromaticity range					
	Burn-in			No notic	eable bu	rn-in ima	ge	6	At optimized VCOMDC
				should be observed after 2 hours			2 hours		
				of windo	w patterr	n display			
Brightness at the screen center VL		VLCD=0.69V	350	500	_	cd/m ²	7		
		VLCD=0.69V	70	_	_	%	8		

* Note number 1 to 8: Refer to the APPENDIX of "Reference Method for Measuring Optical Characteristics".

* Measured in the form of LCD module.

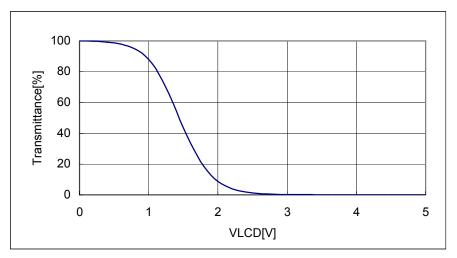
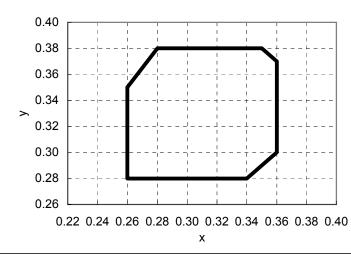



Fig. 3: White V-T Curve

[White Chromaticity Range]

Х	у
0.26	0.35
0.26	0.28
0.34	0.28
0.36	0.30
0.36	0.37
0.35	0.38
0.28	0.38

section 11.

Fig. 4: White Chromaticity Range

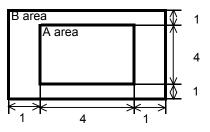
10.2 Temperature Characteristics

< Measurement Condition >	>
Measuring instruments:	CS1000 (KONICA MINOLTA), LCD7000 (OTSUKA ELECTRONICS)
Driving condition:	VDD = 3.0V, VSS = 0V
	Optimized VCOMDC
	VLCD=(Vsigpp±Vcompp)/2
Backlight:	IL=20mA

Specification Ta=-10° C Item Remark Ta=70° C CR Contrast ratio 40 or more 40 or more Rise time TON 200 msec or less 30 msec or less Response time Fall time TOFF 300 msec or less 50 msec or less Use the criteria for No noticeable display defect or ununiformity judgment specified in the **Display Quality** should be observed.

11. CRITERIA OF JUDGMENT

11.1 Defective Display and Screen Quality


Test Condition: Observed TFT-LCD monitor from front during operation with the following conditions

Driving SignalRaster Patter (RGB in monochrome, white, black)Signal conditionVLCD:0.69V, 1.65V, 3.87V (3 steps)Observation distance30 cmIlluminance200 to 350 lxBacklightIL=20 mA

De	efect item	Defect content		Criteria
	Line defect	Black, white or col	or line, 3 or more neighboring defective dots	Not exists
Display Quality	Dot defect	TFT or CF, or dust (brighter dot, darke High bright dot: Vis Low bright dot: Vis	on dot-by-dot base due to defective is counted as dot defect er dot) sible through 2% ND filter at VLCD=3.87V sible through 5% ND filter at VLCD=3.87V lark through white display at VLCD=1.65V	Refer to table 1
	Dirt	Point-like uneven I	prightness (white stain, black stain etc)	Invisible through 1% ND filter
⋧	Foreign		0.25mm< φ	N=0
ilali		Point-like	$0.20 < \phi \leq 0.25$ mm	N≦2
Quality			$\phi \leq 0.20$ mm	Ignored
Screen	particle	Liner	3.0mm <length 0.08mm<width<="" and="" td=""><td>N=0</td></length>	N=0
cre			length \leq 3.0mm or width \leq 0.08mm	Ignored
Ň	Others			Use boundary sample
	Oulers			for judgment when necessary
			ϕ (mm): Average diameter = (major a	axis + minor axis)/2

 ϕ (mm): Average diameter = (major axis + minor axis)/2 Permissible number: N

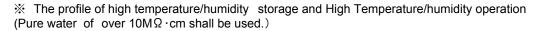
Table 1					
Area	High bright dot	Low bright dot	Dark dot	Total	Criteria
А	0	2	2	3	Permissible distance between same color bright dots (includes neighboring dots): 3 mm or more
В	2	4	4	6	Permissible distance between same color high bright dots (includes neighboring dots): 5 mm or more
Total	2	4	4	7	

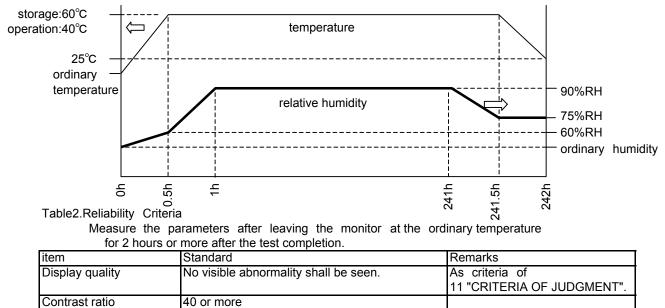
Division of A and B areas

B area: Active area

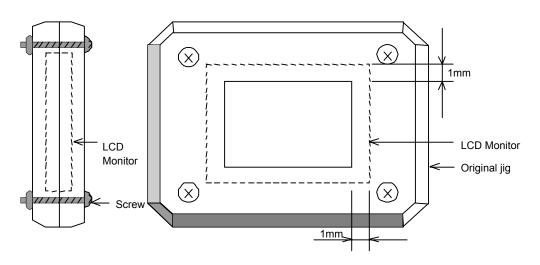
Dimensional ratio between A and B areas: 1: 4: 1 (Refer to the left figure)

11.2 Screen & Other Appearance Testing conditions Illuminance Observation distance

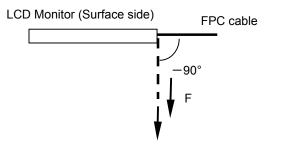

1200~2000 lx 30cm

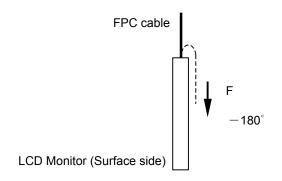

	Item	Criteria	Remark
Polarizer	Flaw Stain Bubble Dust Dent	Ignore invisible defect when the backlight is on.	Applicable area: Active area only (Refer to the section 3.2 "Outward form")
	S-case	No functional defect occurs	
	FPC cable	No functional defect occurs	

12. RELIABILITY TEST

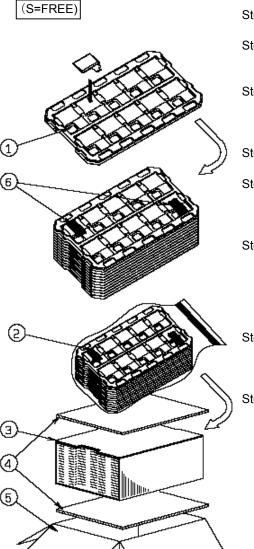

Test item		Test condition	number of failures		
			/number of examinations		
	High temperature storage	Ta=80° C 240H	0/3		
	Low temperature storage	Ta=-30°C 240H	0⁄3		
es	High temperature & high	Ta=60° C, RH=90% 240H non condensing ※	0⁄3		
ty t	humidity storage	0⁄3			
oilit	High temperature operation				
Durability test	Low temperature operation	Tp=-20° C 240H	0⁄3		
DU	High temp & humid operation	Tp=40°C, RH=90% 240H	0⁄3		
		non condensing 🛛 💥			
	Thermal shock storage	-30←→80° C(30min/30min) 100 cycles	0⁄3		
		Confirms to EIAJ ED-4701/300	0⁄3		
	Electrostatic discharge test	C=200pF,R=0Ω,V=±200V			
	(Non operation)	Each 3 times of discharge on and power supply			
		and other terminals.			
5t	Surface discharge test	C=250pF, R=100Ω, V=±12kV	0/3		
të		Each 5 times of discharge in both polarities			
tal	(Non operation)	on the center of screen with the case grounded.			
Mechanical environmental test		Pull the FPC with the force of 3N for 10 sec.	0⁄3		
шu	FPC tension test	in the direction - 90-degree to its			
iro		original direction.			
Nu		Pull the FPC with the force of 3N for 10 sec.	0⁄3		
al e	FPC bend test	in the direction -180-degree to its			
lice		original direction. Reciprocate it 3 times.			
าลเ	Vibratian toot	Total amplitude 1.5mm, f=10 ~55Hz, X,Y,Z	0⁄3		
ecl	Vibration test	directions for each 2 hours			
Σ		Use T ãaæ ÁÔ[{] [} ^ } o original jig (see next	0⁄3		
		page) and make an impact with peak acceleration			
	Impact test	of 1000m/s ² for 6 msec with half sine-curve at			
	·	3 times to each X, Y, Z directions in			
		conformance with JIS 60068-2-27-1995.			
st		Acceleration of 19.6m/s ² with frequency of	0∕1 Packing		
te	Packing vibration-proof test	$10 \rightarrow 55 \rightarrow 10$ Hz, X,Y, Zdirection for each	Ű		
ng	5	30 minutes			
Packing test		Drop from 75cm high.	0∕1 Packing		
Ра	Packing drop test	1 time to each 6 surfaces, 3 edges, 1 corner			
Mater	Note:Ta=ambient temperature Ta=Danel temperature				

Note:Ta=ambient temperature Tp=Panel temperature




Tãåæ ÁÔ[{] [} ^} • ÁOriginal Jig

Tension Test Method for FPC cable



Bend Test Method for FPC cable

TÔV€HÍÕFGY HG€GI€ŠTŠ

13. PACKING SPECIFICATIONS

- Step 1. Each product is to be placed in one of the cut-outs of the tray with the display surface facing upward.(10products per tray)
- Step 2. Each tray needs to be same orientation respect to the tray below or above it and the trays be in a stack of 10.

(48/54)

One empty tray is to be put on the top of stack of 10 trays. Step 3. 2 packs of moisture absobers are to be placed on the top tray as shown in the drawing.

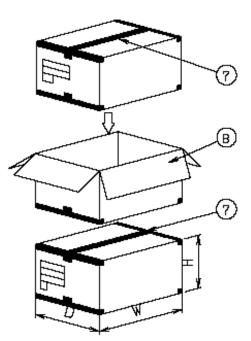
Put piled trays into a sealing bag.

- Vacuum and seal the sealing bag with the vacuum sealing machine.
- Step 4. The stack of trays in the plastic back is to be inserted into a inner carton.
- Step 5. A corrugated board is to be placed on the top and on the bottom of the inner carton.

The two corrugated boards and the inner carton is to be inserted into an outer carton.

Step 6. The outer carton needs to sealed with packing tape as shown in the drawing.

The model number, quantity of products, and shipping date are to be printed on the outer carton.


If necessary, shipping labels or impression markings are to be put on the outer carton.

Step 7. The outer carton is to be inserted into a extra outer carton with same direction.

The extra outer carton needs to sealed with packing tape as shown in the drawing.

Step 8. The model number, quantity of products, and shipping date are to be printed on the extra outer carton.

If necessary, shipping labels or impression markings are to be put on the extra outer carton.

Dimension of extr	a outer carton
D : Approx.	(338mm)
W : Approx.	(549mm)
H : Approx.	(198mm)
Quantity of products	10pcs×10=100pcs
packed in one carton:	10000
Gross weight : Approx.	6.8kg

	Packing item name	Specs., Material
(1)	Tray	PP Conductive
Ž	Sealing bag	
3	Inner carton	Corrugated cardboard
4	Inner board	Corrugated cardboard
5	Outer carton	Corrugated cardboard
6	Drier	Moisture absorber
\bigcirc	Packing tape	
8	Extra outer carton	Corrugated cardboard

14. HANDLING INSTRUCTION

14.1 Cautions for Handling LCD panels

	Caution
(1)	Do not make an impact on the LCD panel glass because it may break and you may get injured from it.
(2)	If the glass breaks, do not touch it with bare hands. (Fragment of broken glass may stick you or you cut yourself on it.
(3)	If you get injured, receive adequate first aid and consult a medial doctor.
(4)	Do not let liquid crystal get into your mouth. (If the LCD panel glass breaks, try not let liquid crystal get into your mouth even toxic property of liquid crystal has not been confirmed.
(5)	If liquid crystal adheres, rinse it out thoroughly. (If liquid crystal adheres to your cloth or skin, wipe it off with rubbing alcohol or wash it thoroughly with soap. If liquid crystal gets into eyes, rinse it with clean water for at least 15 minutes and consult an eye doctor.
(6)	If you scrape this products, follow a disposal standard of industrial waste that is legally valid in the community, country or territory where you reside.
(7)	Do not connect or disconnect this product while its application products is powered on.
(8)	Do not attempt to disassemble or modify this product as it is precision component.
(9)	A part of soldering part has been exposed, and avoid contact (short-circuit) with a metallic part of the case etc. about FPC of this model, please. Please insulate it with the insulating tape etc. if necessary. The defective operation is caused, and there is a possibility to generation of heat and the ignition.
(10)	Since excess current protection circuit is not built in this TFT module, there is the possibility that LCD module or peripheral circuit become feverish and burned in case abnoramal operation is generated. We recommend you to add excess current protection circuit to power supply.

This mark is used to indicate a precaution or an instruction which, if not correctly observed, may result in bodily injury, or material damages alone.

14.2 Precautions for Handling

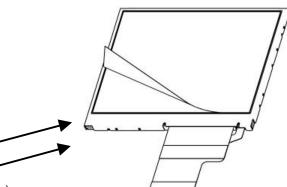
- Wear finger tips at incoming inspection and for handling the TFT monitors to keep display quality and keep the working area clean.
 Do not touch the surface of the polarizer as it is easily scratched.
- 2) Wear grounded wrist-straps and use electrostatic neutralization blowers to prevent static charge and discharge when handling the TFT monitors as the LED in this TFT monitors is damageable to electrostatic discharge, Properly set up equipment, jigs and machines, and keep working area clean and tidy for handling the TFT monitors.
- Avoid strong mechanical shock including knocking, hitting or dropping to the TFT monitors for protecting their glass parts. Do not use the TFT monitors that have been experienced dropping or strong mechanical shock.
- 4) Do not use or storage the TFT monitors at high temperature and high humidity environment. Particularly, never use or storage the TFT monitors at a location where condensation builds up.
- 5) Avoid using and storing TFT monitors at a location where they are exposed to direct sunlight or ultraviolet rays to prevent the LCD panels from deterioration by ultraviolet rays.
- Do not stain or damage the contacts of the FPC cable . Otherwise, it may cause poor contact or deteriorate reliability of the FPC cable.
- 7) Do not bend or pull the FPC cable or carry the TFT monitor by holding the FPC cable.
- 8) Peel off the protective film on the TFT monitors during mounting process. Refer to the section 14.5 on how to peel off the protective film. We are not responsible for electrostatic discharge failures or other defects occur when peeling off the protective film.

14.3 Precautions for Operation

- 1) Since this TFT monitors are not equipped with light shielding for the driver IC, do not expose the driver IC to strong lights during operation as it may cause functional failures.
- 2) When driving the monitor, refer to "8.4 Standby (Power Save) Sequence". When turning off the power, turn off the input signal before or at the same timing of switching off the power.
- Optimize VCOMDC within recommended operating conditions.
 * When VCOMDC is not an optimal value, flicker and image sticking will be occuerd.
- 4) Do not plug in or out the FPC cable while power supply is switch on. Plug the FPC cable in and out while power supply is switched off.
- 5) Do not operate the TFT monitors in the strong magnetic field. It may break the TFT monitors.
- 6) Do not display a fixed image on the screen for a long time. Use a screen-saver or other measures to avoid a fixed image displayed on the screen for a long time. Otherwise, it may cause burn-in image on the screen due the characteristics of liquid crystal.

14.4 Storage Condition for Shipping Cartons

Storage environment


•	Temperature	0 to 40°C
•	Humidity	60%RH or less
		No-condensing occurs under low temperature with high humidity condition.
•	Atmosphere	No poisonous gas that can erode electronic components and/or wiring
		materials should be detected.
•	Time period	3 months
•	Unpacking	To protect the TFT monitors from static damage during unpacking, keep
		room humidity more than 50%RH and implement effective countermeasures
		against static electricity such as establishing a ground (an earth) before
		unpacking.
•	Maximum piling up	7 cartons

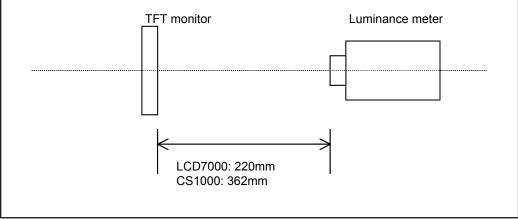
14.5 Precautions for Peeling off the Protective film

The followings work environment and work method are recommended to prevent the TFT monitors from static damage or adhesion of dust when peeling off the protective films.

A) Work Environment

- a) Humidity: 50 to 70 %RH, Temperature15°C to 27°C
- b) Operators should wear conductive shoes, conductive clothes, conductive finger tips and grounded wrist-straps. Anti-static treatment should be implemented to work area's floor.
- c) Use a room shielded against outside dust with sticky floor mat laid at the entrance to eliminate dirt.
- B) Work Method
 - The following procedures should taken to prevent the driver ICs from charging and discharging.
 - a) Use an electrostatic neutralization blower to blow air on the TFT monitors to its lower left when the FPC cable is facing to the downside.
 Optimize direction of the blowing air and the distance between the TFT monitors and the electrostatic neutralization blower.
 - b) Put an adhesive tape (Scotch tape, etc) at the lower left corner area of the protective film to prevent scratch on surface of TFT monitors.
 - c) Peel off the adhesive tape slowly (spending more than 2 secs to complete) by pulling it to opposite direction.

Direction of blowing air (Optimize air direction and the distance)


APPENDIX

Reference Method for Measuring Optical Characteristics and Performance

1. Measurement Condition

Measuring instruments:	CS1000(KONICA MINOLTA), LCD7000(OTSUKA ELECTRONICS), EZcontrast160D(ELDIM)			
Driving condition:	Refer to the section 10.1 "Optical Characteristics"			
Measured temperature:	25°C unless specified			
Measurement system:	See the chart below. The luminance meter is placed on the normal line of			
	measurement system.			
Measurement point:	At the center of the screen unless otherwise specified			


Dark box at constant temperature

Measurement is made after 30 minutes of lighting of the backlight.

Measurement point:

At the center point of the screen Brightness distribution: 9 points shown in the following drawing.

Dimensional ratio of active area

Backlight IL = 20mA

2. Test Method

Notice		Test method	Measuring instrument	Remark
1	Response time	Measure output signal waveform by the luminance meter when raster of window pattern is changed from white to black and from black to white. White 100% 90% 10% 0% Black TON	LCD7000	Black display VLCD=3.87V White display VLCD=0.69V TON Rise time TOFF Fall time
2	Contrast ratio	Measure maximum luminance Y1(VLCD=0.69V) and minimum luminance Y2(VLCD=3.87V) at the center of the screen by displaying raster or window pattern. Then calculate the ratio between these two values. Contrast ratio = Y1/Y2 Diameter of measuring point: 8mm ϕ	CS1000	
3	Viewing angle Horizontal θ Vertical ϕ	Move the luminance meter from right to left and up and down and determine the angles where contrast ratio is 10.	EZcontrast160D	
4	V-T threshold value	Change VLCD by 0.1V step and plot the points where the luminance is 90% as V90, 50% as V50 and 10% as V10 of maximum luminance. 100% = 5	LCD7000	
5	White chromotically	Measure chromaticity coordinates x and y of CIE1931 colorimetric system at VLCD = 0.69V Color matching faction: 2°view	CS1000	

TÔV€HÍÕFGY HG€GI€ŠTŠ

Notice	Item	Test method	Measuring instrument	Remark
6	Burn-in	Visually check burn-in image on the screen after 2 hours of "window display" (VLCD=0.69V/3.87V).		At optimized VCOMDC
7	Center brightness	Measure the brightness at the center of the screen.	CS1000	
8	Brightness distribution	(Brightness distribution) = 100 x B/A % A : max. brightness of the 9 points B : min. brightness of the 9 points	CS1000	

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for midas manufacturer:

Other Similar products are found below :

MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MC0T064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MC0T128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI