BCcomponents

DATA SHEET

MKP 338 1 X1 Interference suppression film capacitors


Product specification Supersedes data of 2002 Oct 08 File under BCcomponents, BC05 2002 Nov 06

Interference suppression film capacitors MKP 338 1 X1

MKP RADIAL POTTED TYPE

PITCH 15/22.5/27.5 mm PITCH 7.5 mm (bent back leads)

FEATURES

- 7.5 to 27.5 mm lead pitch
- Supplied loose in box, taped on reel
- Consists of a low-inductive wound cell of metallized polypropylene film, potted in a flame-retardant case.

APPLICATIONS

- For X1 electromagnetic interference suppression
- Specially designed to meet the requirements of the "IEC 60384-14 2nd edition and EN 132400", requiring a 4 kV peak pulse voltage test UL1414 and CSA-C22.2 No. 1 specifications.

DETAIL SPECIFICATION

For more detailed data and test requirements see "Type detail specification HQN-384-14/119".

QUICK REFERENCE DATA

DESCRIPTION	VALUE
Capacitance range (E12 series)	0.01 to 1 μF
Capacitance tolerance	±20%; ±10%; ±5%
Rated (AC) voltage, 50 to 60 Hz	440 V
Rated (DC) voltage	1000 V
Climatic category	55/105/56/B
Rated temperature	105 °C
Maximum application temperature	105 °C
Reference specifications	IEC 60384-14 2 nd edition and EN 132400
Safety approvals:	LIN 132400
250 V	UI 1414
440 V	UL1283
440 V	ENEC
Materials	qualified in accordance with UL94V-O
Safety class	X1; across the line

Interference suppression film capacitors

MKP 338 1 X1

SAFETY APPROVALS AND SAFETY TEST REPORT

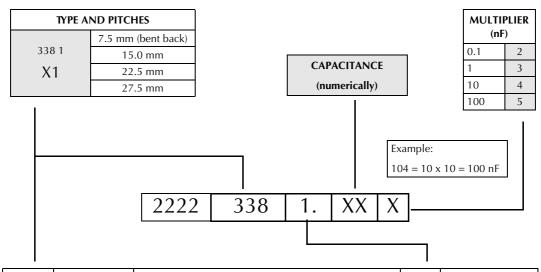
Approvals

SAFETY APPROVALS (X1)		VOLTAGE VALUE		FILE NUMBERS	
2 02	EN132400	440 V (AC)	10 nF to 1 μF	ENEC/B04/2001	
71	UL1414	250 V (AC)	10 nF to 1 μF	E112471	
c%"us	UL1283 and CSA 22.2.8	440 V (AC)	100 nF to 1 μF	E109565	

Safety test report

SAFETY TEST REPORT	VOLTAGE	VALUE	FILE NUMBERS
CB TEST CERTIFICATE	440 V (AC)	10 nF to 1 μF: 55/105/56/B	FI 1653

The Enec-approval together with the CB-Certificate replace all national approval marks of the following countries (they have already signed the ENEC-Agreement): Austria; Belgium; Czech. Republic; Denmark; Finland; France; Germany; Greece; Hungary; Ireland; Italy; Luxembourg; Netherlands; Norway, Portugal; Slovenian; Spain; Sweden; Switzerland and United Kingdom.

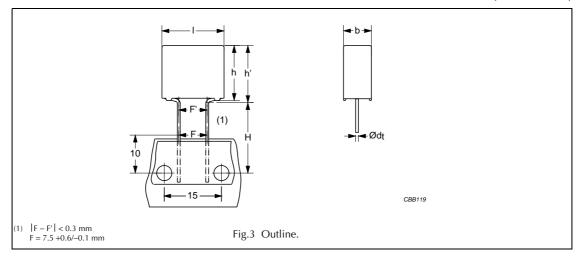

3

2002 Nov 06

Interference suppression film capacitors

MKP 338 1 X1

COMPOSITION OF CATALOGUE NUMBER


TYPE	PACKAGING	STANDARD DIMENSIONS		PREFERRED TYPES
		lead length 3.5 mm		10
338 1	loose in box	lead length 5.0 mm	±20%	12
X1		lead length 25.0 mm		14
	taped on reel	bent back to 7.5 mm		16
		ALTERNATIVE TAPED VERSIONS		ON REQUEST
338 1				
X1	taped on reel		±20%	17
		ALTERNATIVE C-TOL		ON REQUEST
	loose in box	lead length 3.5 mm	±10%	
		lead length 5.0 mm	±10%	
		lead length 25.0 mm	±10%	see tables for details
	taned on real	bent back to 7.5 mm	±10%	details
338 1	taped on reel		±10%	
X1		lead length 3.5 mm	±5%	
	loose in box	lead length 5.0 mm	±5%	
		lead length 25.0 mm	±5%	see HQN-384-14/119
	tanad on rasi	bent back to 7.5 mm	±5%	11211 304-14/113
	taped on reel		±5%	

Interference suppression film capacitors

MKP 338 1 X1

MKP 338 1 GENERAL DATA

PITCH 7.5 mm (bent back leads)

Specific reference data for the 440 V AC (X1) capacitors

DESCRIPTION		VALUE		
Tangent of loss angle:	at 1 kHz at 10 kHz at 100			
C ≤ 470 nF	≤10 × 10 ⁻⁴	≤20 × 10 ⁻⁴	≤100 × 10 ⁻⁴	
C > 470 nF	≤20 × 10 ⁻⁴	≤70 × 10 ⁻⁴	_	
Rated voltage pulse slope (dU/dt)R at 615 V	250 V/μs			
R between leads, for C \leq 0.33 μ F at 100 V; 1 minute	>15000 MΩ			
RC between leads, for C > 0.33 μ F at 100 V; 1 minute		>5000 s		
R between leads and case; 100 V; 1 minute	>30000 MΩ			
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3400 V; 1 minute			
Withstanding (AC) voltage between leads and case		2380 V; 1 minute	9	

Available 440 V AC (X1) versions

PACKAGING	DIMENSIONS		ORDERING	CATALOGUE NUMBER
Taped on reel;	ped on reel; $H = 16.0 \text{ mm}$; for $P_0 = 15.0 \text{ mm}$;		preferred	see tables for details
bent back	reel diameter = 500 mm	±10%	on request	see tables for details

Note

1. $\pm 5\%$ tolerance values and other values are available on special request.

Interference suppression film capacitors

MKP 338 1 X1

Bent back pitch: 7.5 mm; C-tol = ±20%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

 $U_{Rac} = 440 \text{ V}$

	DIMENSIONS		CATALOGUE NUMBER 2222 338 AND PACKAGING			
C (uF)	(uF) $b \times h' \times I$	MASS (g)	REEL ⁽¹⁾			
(4.17)	(mm)	(8)	H = 16.0 mm; P ₀ = 15.0 mm	SPQ		
Bent back pite	$ch = 7.5 \pm 0.4 \text{ mm}; d_t = 0.60 \pm 0.60 \text{ mm}$	<u> </u>				
0.01			16 103			
0.015	$5.0 \times 13.0 \times 17.5$	1.2	16 153	950		
0.022			16 223			
0.033	$6.0 \times 14.0 \times 17.5$	1.4	16 333	800		
Bent back pite	$ch = 7.5 \pm 0.4 \text{ mm}; d_t = 0.80 \pm 0.00 \text{ mm}$	0.08 mm	·			
0.047	$7.0 \times 15.5 \times 17.5$	1.9	16 473	700		
0.068	$8.5 \times 17.0 \times 17.5$	2.6	16 683	550		
0.1	$10.0 \times 18.5 \times 17.5$	3.1	16 104	500		

Note

Bent back pitch: 7.5 mm; C-tol = $\pm 10\%$

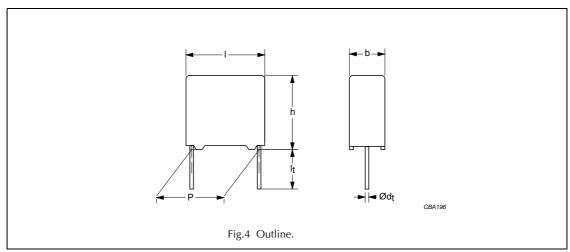
 $U_{Rac} = 440 \text{ V}$

(for reference: $U_{Rdc} = 1000 \text{ V}$)

	DIMENSIONS	MASS	CATALOGUE NUMBER 2222 338 AND PACKAGING			
C (μ F)	$C \qquad \qquad h \times h' \times I$		REEL ⁽¹⁾			
(μ.)	(mm)	(g)	H = 16.0 mm; P ₀ = 15.0 mm	SPQ		
Bent back pi	$tch = 7.5 \pm 0.4 \text{ mm}; d_t = 0.60 \pm 0.60 \text{ m};$).06 mm				
0.01	5.0 × 13.0 × 17.5	1.2	18 714	950		
0.015	5.0 × 15.0 × 17.5	1.2	18 716	930		
0.022	$6.0 \times 14.0 \times 17.5$	1.4	18 718	800		
Bent back pi	$tch = 7.5 \pm 0.4 \text{ mm}; d_t = 0.80 \pm 0.00 \text{ mm}; d_t = 0.00 \pm 0.00 $).08 mm				
0.033	$7.0 \times 15.5 \times 17.5$	1.9	18 721	700		
0.047	$8.5 \times 17.0 \times 17.5$	2.6	18 723	550		
0.068	$10.0 \times 18.5 \times 17.5$	3.1	18 725	500		

Note

1. Reel diameter = 356 mm is available on request.


^{1.} Reel diameter = 356 mm is available on request.

Interference suppression film capacitors

MKP 338 1 X1

MKP 338 1 GENERAL DATA

PITCH 15 mm

Specific reference data for the 440 V AC (X1) capacitors

DESCRIPTION	VALUE			
Tangent of loss angle:	at 1 kHz at 10 kHz at 100			
C ≤ 470 nF	≤10 × 10 ⁻⁴	≤20 × 10 ⁻⁴	≤100 × 10 ⁻⁴	
C > 470 nF	$\leq 20 \times 10^{-4}$ $\leq 70 \times 10^{-4}$ -			
Rated voltage pulse slope (dU/dt)R at 615 V	250 V/μs			
R between leads, for C \leq 0.33 μ F at 100 V; 1 minute	>15000 MΩ			
RC between leads, for C > 0.33 μ F at 100 V; 1 minute		>5000 s		
R between leads and case; 100 V; 1 minute	>30000 MΩ			
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3400 V; 1 minute			
Withstanding (AC) voltage between leads and case		2380 V; 1 minute	9	

Available 440 V AC (X1) versions

PACKAGING	DIMENSIONS	C-tol ⁽¹⁾	ORDERING	CATALOGUE NUMBER		
Loose in box	$I_t = 3.5 \pm 0.3 \text{ mm}$	±20%	preferred			
	It - 3.3 ±0.3 IIIII	±10%	on request			
	$I_t = 5.0 \pm 1.0 \text{ mm}$	±20%	preferred			
	It = 3.0 ±1.0 IIIII	±10%	on request	see tables for details		
	$I_t = 25.0 \pm 2.0 \text{ mm}$	±20%	preferred	see tables for details		
	I _t = 23.0 ±2.0 IIIII	±10%	on request			
Taped on reel	$H = 18.5 \text{ mm}$; for $P_0 = 12.7 \text{ mm}$;	±20%	on request			
Taped on reel	reel diameter = 500 mm	±10%	on request			

Note

1. $\pm 5\%$ tolerance values and other values are available on special request.

Interference suppression film capacitors

MKP 338 1 X1

Pitch: 15 mm; C-tol = ±20%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

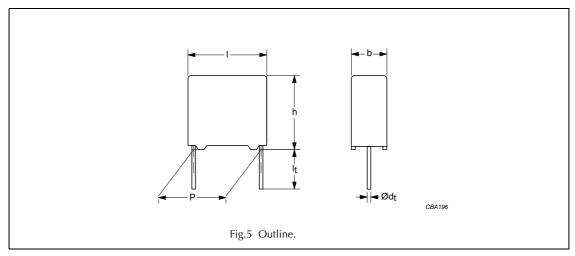
 $U_{Rac} = 440 \text{ V}$

			CA	CATALOGUE NUMBER 2222 338 AND PACKAG				AGING		
	DIMENSIONS			LOOSE IN BOX						
C (μ F)	b × h × l (mm)	MASS (g)	short leads		short leads long leads		short leads long leads		H = 18 P ₀ = 12	
			$I_t = 3.5 \pm 0.3 \text{ mm}$	l _t = 5.0 ±0.3 mm	SPQ	I _t = 25.0 ±2.0 mm	SPQ		SPQ	
Pitch = 15.0 \pm 0.4 mm; d _t = 0.60 \pm 0.06 mm										
0.01			10 103	12 103		14 103		17 103		
0.015	$5.0 \times 11.0 \times 17.5$	1.2	10 153	12 153	1 000	14 153	1000	17 153	1100	
0.022			10 223	12 223		14223		17 223		
0.033	$6.0 \times 12.0 \times 17.5$	1.4	10 333	12 333	1 000	14333	1000	17333	900	
Pitch =	15.0 \pm 0.4 mm; d _t = 0.	80.0± 08.	8 mm							
0.047	$7.0 \times 13.5 \times 17.5$	1.9	10 473	12 473	750	14 473	500	17 473	800	
0.068	$8.5 \times 15.0 \times 17.5$	2.6	10 683	12 683	750	14 683	500	17 683	650	
0.1	$10.0 \times 16.5 \times 17.5$	3.1	10 104	12 104	500	14 104	450	17 104	600	

Pitch: 15 mm; C-tol = ±10%

 $U_{Rac} = 440 \text{ V}$

(for reference: $U_{Rdc} = 1000 \text{ V}$)


			CATALOGUE NUMBER 2222 338 AND PACKAGING								
DIMENSIONS			LOOSE	IN BOX			REEL				
C (μ F)	- h y h y l	MASS (g)	short leads			long lead	ls	$H = 18$ $P_0 = 12$			
			$l_t = 3.5 \pm 0.3 \text{ mm}$	$l_t = 5.0 \pm 0.3 \text{ mm}$	SPQ	l _t = 25.0 ±2.0 mm	SPQ		SPQ		
Pitch = 1	Pitch = 15.0 \pm 0.4 mm; d _t = 0.60 \pm 0.06 mm										
0.01	5.0 × 11.0 × 17.5	1.2	18 114	18 314	1000	18 514	1000	18 914	1100		
0.015	3.0 × 11.0 × 17.3	1.2	18 116	18 316	1000	1000	1000	18 516	1000	18 916	1100
0.022	$6.0 \times 12.0 \times 17.5$	1.4	18 118	18 318	1 000	18 518	1000	18 918	900		
Pitch = 1	Pitch = 15.0 ± 0.4 mm; d _t = 0.80 ± 0.08 mm										
0.033	$7.0 \times 13.5 \times 17.5$	1.9	18 121	18 321	750	18 521	500	18 921	800		
0.047	$8.5 \times 15.0 \times 17.5$	2.6	18 123	18 323	750	18 523	500	18 923	650		
0.068	$10.0 \times 16.5 \times 17.5$	3.1	18 125	18 325	500	18 525	450	18 925	600		

Interference suppression film capacitors

MKP 338 1 X1

MKP 338 1 GENERAL DATA

PITCH 22.5 mm

Specific reference data for the 440 V AC (X1) capacitors

DESCRIPTION	VALUE			
Tangent of loss angle:	at 1 kHz	at 10 kHz	at 100 kHz	
C ≤ 470 nF	≤10 × 10 ⁻⁴	≤20 × 10 ⁻⁴	≤100 × 10 ⁻⁴	
C > 470 nF	≤20 × 10 ⁻⁴	≤70 × 10 ⁻⁴	-	
Rated voltage pulse slope (dU/dt)R at 615 V:	150 V/μs			
R between leads, for C \leq 0.33 μ F at 100 V; 1 minute	>15000 MΩ			
RC between leads, for C > 0.33 μ F at 100 V; 1 minute	>5000 s			
R between leads and case; 100 V; 1 minute	>30000 MΩ			
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3 400 V; 1 minute			
Withstanding (AC) voltage between leads and case	2380 V; 1 minute			

Available 440 V AC (X1) versions

PACKAGING	DIMENSIONS	C-tol ⁽¹⁾	ORDERING	CATALOGUE NUMBER		
	$I_t = 3.5 \pm 0.3 \text{ mm}$	±20%	preferred			
	It = 3.3 ±0.3 IIIII	±10%	on request]		
Loose in box	$I_t = 5.0 \pm 1.0 \text{ mm}$	±20%	preferred			
Loose III box	- 3.0 ±1.0 mm	±10%	on request	see tables for details		
	1 25 0 12 0	±20%	preferred	see tables for details		
	$I_t = 25.0 \pm 2.0 \text{ mm}$	±10%	on request			
Taped on reel	$H = 18.5 \text{ mm}$; for $P_0 = 12.7 \text{ mm}$;	±20%	on request			
Taped on reer	reel diameter = 500 mm	±10%	on request			

Note

1. $\pm 5\%$ tolerance values and other values are available on special request.

Interference suppression film capacitors

MKP 338 1 X1

Pitch: 22.5 mm; C-tol = ±20%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

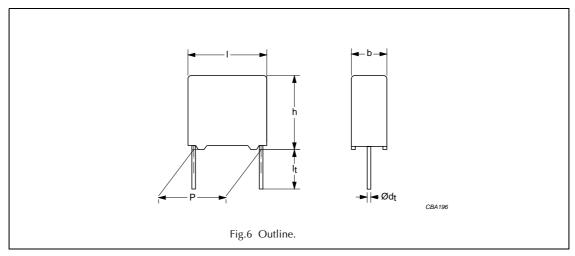
 $U_{Rac} = 440 \text{ V}$

			CATALOGUE NUMBER 2222 338 AND PACKA					GING		
	DIMENSIONS			LOOSE IN BOX						
C (μ F)	$\begin{array}{c} \textbf{DIMENSIONS} \\ \textbf{b} \times \textbf{h} \times \textbf{I} \\ \textbf{(mm)} \end{array}$	MASS (g)	short leads long leads				ls	$H = 18$ $P_0 = 12$		
			l _t = 3.5 ±0.3 mm	l _t = 5.0 ±0.3 mm	SPQ	l _t = 25.0 ±2.0 mm	SPQ		SPQ	
Pitch = 2	Pitch = 22.5 \pm 0.4 mm; d _t = 0.80 \pm 0.08 mm									
0.15	$8.5 \times 18.0 \times 26.0$	4.4	10 154	12 154	200	14 154	250	14 154	450	
0.22	$10.0 \times 19.5 \times 26.0$	5.5	10 224	12 224	200	14 224	200	14 224	350	

Pitch: 22.5 mm; C-tol = ±10%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

 $U_{Rac} = 440 \text{ V}$


			CATALOGUE NUMBER 2222 338 AND PACKAGING							
	DIMENSIONS			LOOSE IN BOX						
C (μ F)	b × h × l (mm)	MASS (g)	short leads			long lead	H = 18.5 mm P ₀ = 12.7mm			
			$l_t = 3.5 \pm 0.3 \text{ mm}$	l _t = 5.0 ±0.3 mm	SPQ	l _t = 25.0 ±2.0 mm	SPQ		SPQ	
Pitch = 2	Pitch = 22.5 ± 0.4 mm; d _t = 0.80 ± 0.08 mm									
0.1	$7.0 \times 16.5 \times 26.0$	3.2	18 127	18 327	200	18 527	250	18 927	550	
0.15	$8.5 \times 18.0 \times 26.0$	4.4	18 129	18 329	200	18 529	250	18 929	450	

Interference suppression film capacitors

MKP 338 1 X1

MKP 338 1 GENERAL DATA

PITCH 27.5 mm

Specific reference data for the 440 V AC (X1) capacitors

DESCRIPTION	VALUE			
Tangent of loss angle:	at 1 kHz	at 100 kHz		
C ≤ 470 nF	≤10 × 10 ⁻⁴	≤20 × 10 ⁻⁴	≤100 × 10 ⁻⁴	
C > 470 nF	≤20 × 10 ⁻⁴	≤70 × 10 ⁻⁴	_	
Rated voltage pulse slope (dU/dt)R at 615 V	100 V/μs			
R between leads, for C \leq 0.33 μ F at 100 V; 1 minute	>15000 MΩ			
RC between leads, for C > 0.33 μ F at 100 V; 1 minute	>5 000 s			
R between leads and case; 100 V; 1 minute	>30000 MΩ			
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3 400 V; 1 minute			
Withstanding (AC) voltage between leads and case		2380 V; 1 minute	9	

Available 440 V AC (X1) versions

PACKAGING	DIMENSIONS	C-tol ⁽¹⁾	ORDERING	CATALOGUE NUMBER
	$I_t = 3.5 \pm 0.3 \text{ mm}$	±20%	preferred	
	It = 3.3 ±0.3 IIIII	±10%	on request	
Loose in box			preferred	see tables for details
Loose in box	$I_t = 5.0 \pm 1.0 \text{ mm}$	±10%	on request	see tables for details
	35.0.13.0	±20%	preferred	
	$l_t = 25.0 \pm 2.0 \text{ mm}$	±10%	on request	

Note

1. $\pm 5\%$ tolerance values and other values are available on special request.

Interference suppression film capacitors

MKP 338 1 X1

Pitch: 27.5 mm; C-tol = ±20%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

 $U_{Rac} = 440 \text{ V}$

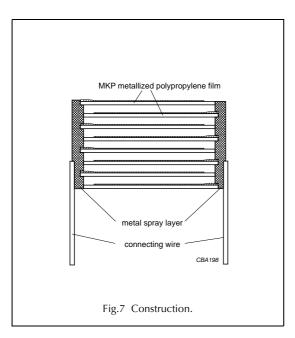
			CATALOGUE NUMBER 2222 338 AND PACKAGING				
	DIMENSIONS		LOOSE IN BOX				
C (μ F)	$\mathbf{b} \times \mathbf{h} \times \mathbf{l}$	MASS (g)		short leads long leads			ds
·	(mm)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		l _t = 25.0 ±2.0 mm	SPQ	
Pitch = 27.5	± 0.4 mm; $d_t = 0.80 \pm 0.0$	08 mm					
0.33	13.0 × 23.0 × 31.0	10.4	10 334	12 334	100	14 334	125
0.47	$15.0 \times 25.0 \times 31.0$	12.8	10474	12 474	100	14 474	125
0.68	$18.0 \times 28.0 \times 31.0$	17.2	10 684	12 684	100	14 684	100
1	21.0 × 31.0 × 31.0	20.4	10 105	12 105	50	14 105	75

Pitch: 27.5 mm; C-tol = ±10%

(for reference: $U_{Rdc} = 1000 \text{ V}$)

 $U_{Rac} = 440 \text{ V}$

			CATALO	GUE NUMBER 2	222 338	. AND PACKAGIN	١G
С	DIMENSIONS	MAGG	LOOSE IN BOX				
(μ F)	$\mathbf{b} \times \mathbf{h} \times \mathbf{l}$	MASS (g)		short leads long I			ds
	(mm)		l _t = 3.5 ±0.3 mm	l _t = 5.0 ±0.3 mm	SPQ	l _t = 25.0 ±2.0 mm	SPQ
Pitch = 27.5	± 0.4 mm; $d_t = 0.80 \pm 0.0$)8 mm					
0.22	$11.0 \times 21.0 \times 31.0$	7.8	18 132	18 332	100	18 532	125
0.33	$13.0 \times 23.0 \times 31.0$	12.8	18 134	18 334	100	18 534	125
0.47	$15.0 \times 25.0 \times 31.0$	12.8	18 136	18 336	100	18 536	125
0.68	$18.0 \times 28.0 \times 31.0$	17.2	18 138	18 338	100	18 538	100


Interference suppression film capacitors

MKP 338 1 X1

CONSTRUCTION

Description

- Low-inductive wound cell of metallized polypropylene (PP) film, potted with epoxy resin in a flame-retardant polypropylene case
- Radial leads, solder-coated
- Small stand-off pips allow removal of solder flux etc. during cleaning of the printed-circuit board.

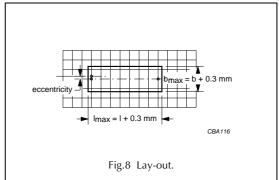
Mounting

NORMAL USE

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to this handbook, chapter "Packaging information".

SPECIFIC METHOD OF MOUNTING TO WITHSTAND VIBRATION AND SHOCK


In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:

- For pitches ≤15 mm capacitors shall be mechanically fixed by the leads.
- For larger pitches the capacitors shall be mounted in the same way and the body clamped.

SPACE REQUIREMENTS ON PRINTED-CIRCUIT BOARD

The maximum length and width of film capacitors is shown in Fig.8:

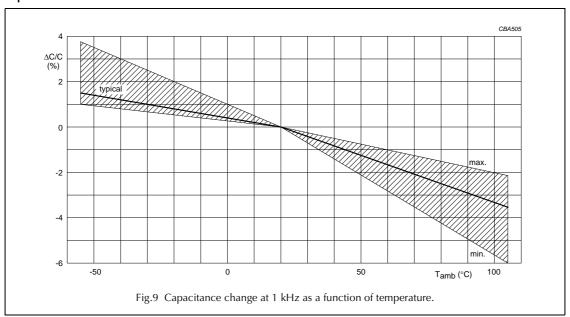
- Eccentricity as in Fig.8. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: $h_{max} \le h + 0.3 \text{ mm}$.

Storage temperature

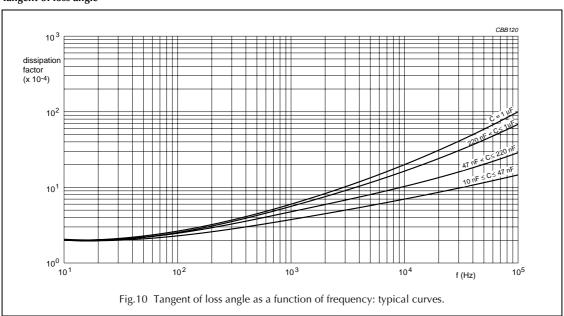
Storage temperature: T_{stg} = -25 to +40 °C with RH maximum 80% without condensation.

RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS

Unless otherwise specified, all electrical values apply to an ambient temperature of 23 ±1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 50 $\pm2\%$.

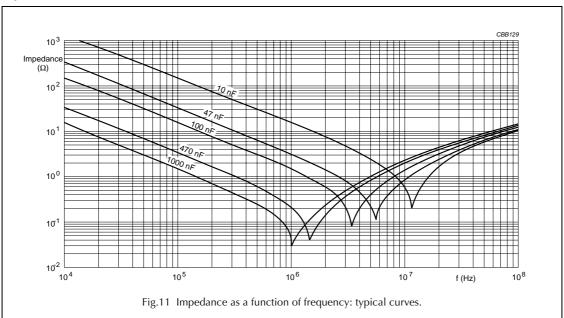

For reference testing, a conditioning period shall be applied over 96 ± 4 hours by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20%.

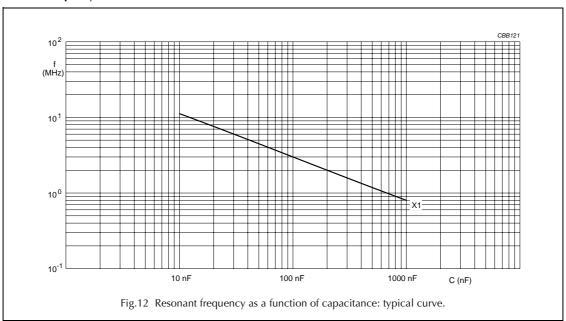
Interference suppression film capacitors


MKP 338 1 X1

CHARACTERISTICS

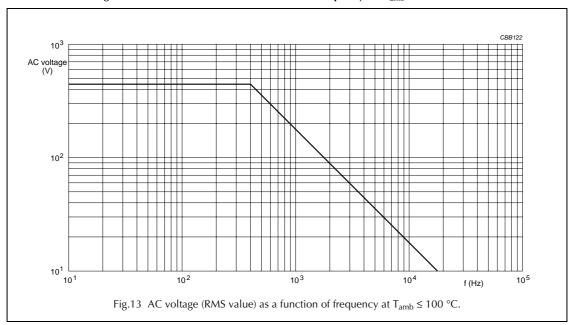
Capacitance

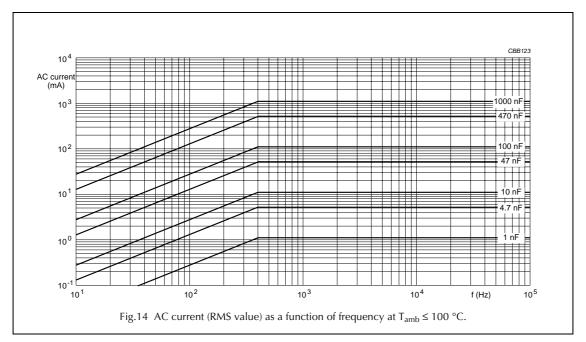

Tangent of loss angle


Interference suppression film capacitors

MKP 338 1 X1

Impedance

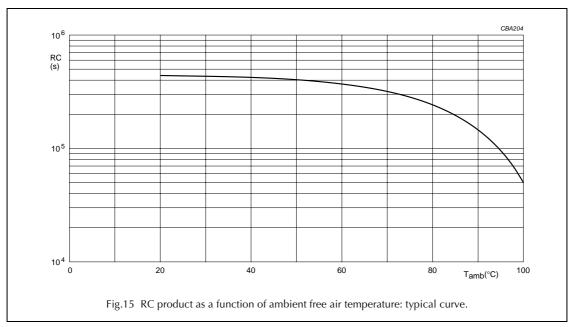

Resonant frequency



Interference suppression film capacitors

MKP 338 1 X1

Maximum RMS voltage and AC current (sinewave) as a function of frequency for $T_{amb} \! \leq \! 100~^{\circ}C$



Interference suppression film capacitors

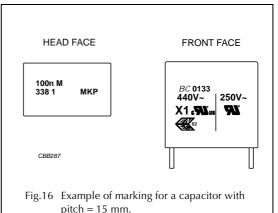
MKP 338 1 X1

Insulation resistance

APPLICATION NOTES

- For X1 electromagnetic interference suppression in across the line applications (50/60 Hz) with a maximum mains voltage of 440 V (AC) ±10% instability.
- These capacitors are not intended for continuous pulse applications. For these situations, capacitors of the AC and pulse program must be used, such as: 2222 375; 2222 383 ...or 2222 479
- The maximum ambient temperature must not exceed 105 °C.
- Rated voltage pulse slope:
 - If the pulse voltage is lower than the rated voltage, the values of the specific reference data can be multiplied by 615 V (DC) and divided by the applied voltage.

Interference suppression film capacitors


MKP 338 1 X1

MARKING

Product marking

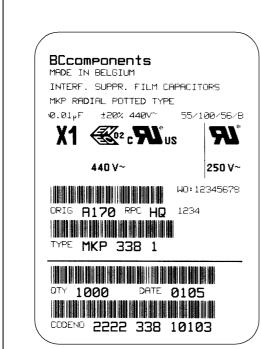
The capacitors are marked by laser print; on the top for pitch \geq 22.5 mm (see Fig.17), or on the top and one side for pitch = 15 mm (see Fig.16) with the following information:

- Rated capacitance code in accordance with "IEC 60062"
- Tolerance on rated capacitance; $M = \pm 20\%$; $K = \pm 10\%$; $J = \pm 5\%$
- 3. Rated (AC) voltage (440 V)
- 4. Sub-class (e.g. X1)
- 5. Manufacturer's type designation (e.g. 338 1)
- 6. Code for dielectric material (MKP)
- 7. Manufacturer
- 8. Year and week of manufacture (e.g. 0020)
- 9. Safety approvals: products will be marked with approvals depending on the available marking space per product. Although all approvals remain valid as indicated in the reference data.

pitch = 15 mm.



Fig.17 Example of marking for a capacitor with pitch = 22.5 or 27.5 mm.


2002 Nov 06 18

Interference suppression film capacitors

MKP 338 1 X1

Package marking

The package containing the capacitors is marked as shown Fig.18.

Barcode label marking

LINE

1	Manufacturer's name
2	Country of origin
3	Sub-family
4	Type description and sub class
5	Capacitance value, tolerance, voltage and climatic category ("IEC 60068-1")
6	Safety approvals
7	Preference origin code: A Country of origin in code: 170 (Belgium) Responsible production centre: HQ Work order: WO
8	Product type description
9	Quantity and production period, year and week code

MARKING EXPLANATION

Product code (12NC)

Fig.18 Barcode label.

10

Interference suppression film capacitors

MKP 338 1 X1

QUICK REFERENCE TEST REQUIREMENTS

TEST	PROCEDURE (quick reference)	REQUIREMENTS
Robustness of leads		
Tensile strength: "IEC 60068-2-21"	load 10 N; 10 s	
Bending: "IEC 60068-2-21"	load 5 N; 4 × 90 °	no visible damage legible marking
Resistance to soldering heat:	solder bath: 260 °C; 10 s	ΔC/C ≤ 5%
"IEC 60068-2-20"	solder bath: 350 °C; 3.5 s	$\Delta \tan \delta \le 80 \times 10^{-4}$ at 10 kHz
Component solvent resistance	isopropyl alcohol; 23 °C; 5 minutes	
Robustness of component		
Rapid change of temperature: "IEC 60068-2-14"	5 cycles 1 cycle = 30 minutes at –55 °C and 30 minutes at 100 °C	ΔC/C ≤ 5%
Vibration: "IEC 60068-2-6"	10 to 55 Hz; amplitude 0.75 mm; 6 hours	$\Delta \tan \delta \le 80 \times 10^{-4}$ at 10 kHz
Shock: "IEC 60068-2-27"	half sinewave; 490 m/s ² ; 11 ms	
Climatic sequence		
Dry heat: "IEC 60068-2-2"	16 hours; 100 °C	
Damp heat, cyclic, test Db, first cycle: "IEC 60068-2-30"		 ΔC/C ≤ 5%
Cold: "IEC 60068-2-1"	2 hours; –55 °C	$\Delta \tan \delta \le 80 \times 10^{-4} \text{ at } 10 \text{ kHz}$
Damp heat, cyclic, test Db, remaining cycles: "IEC 60068-2-30"		R _{ins} ≥ 50% of specified value
Voltage proof: "IEC 60384-14"	$V_p = 1900 \text{ V (DC)}; 1 \text{ minute}$	
Other applicable tests		
Damp heat, steady state:	21 days; 40 °C;	ΔC/C ≤ 5%
"IEC 60068-2-3"	90 to 95% RH no load $V_p = 1900 \text{ V (DC)}$; 1 minute	$\Delta \tan \delta \le 70 \times 10^{-4}$
	ν _p = 1300 V (<i>BC</i>), 1 minute	R _{ins} ≥ 50% of specified value
Endurance (AC):	3 × 4.0 kV pulse voltage	ΔC/C ≤ 10%
"IEC 60384-14"	1000 hours; 1.25 × U _{Rac} at	$\Delta \tan \delta \le 80 \times 10^{-4} \text{ at } 10 \text{ kHz}$
	100 °C; once per hour; 0.1 s; 1000 V (RMS) via resistor of 47 Ω ; $V_p = 1900 V (DC)$; 1 minute	$R_{ins} \ge 50\%$ of specified value

Interference suppression film capacitors

MKP 338 1 X1

TEST	PROCEDURE (quick reference)	REQUIREMENTS		
Charge and discharge:	10000 cycles; 5 ms;	ΔC/C ≤ 10%		
"IEC 60384-14"	$1.5 \times dV/dt$	$\Delta \tan \delta \le 80 \times 10^{-4} \text{ at } 10 \text{ kHz}$		
		R _{ins} ≥ 50% of specified value		
Passive flammability: "IEC 60384-14"	class B	no burning		
Active flammability: "IEC 60384-14"	20 × 4 kV discharge	no burning		
Heat storage:	1000 hours; 100 °C	$ \Delta C/C \le 5\%$		
"IEC 60384-14"		$\Delta \tan \delta \le 80 \times 10^{-4} \text{ at } 10 \text{ kHz}$		
Resistance to soldering heat	preheating: 100 °C;	ΔC/C ≤ 5%		
with preheating: "IEC 60384-14"	solder bath: 260 °C; 10 s	$\Delta \tan \delta \le 80 \times 10^{-4} \text{ at } 10 \text{ kHz}$		
Active flammability test	voltage proof up to 2 × peak impulse voltage of 4.13 or until breakdown (100 V/sec, current limited 2mA)	no burning		
	failed capacitors connected to a 250 V (AC) power supply during 5 minutes			

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Safety Capacitors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

PME264NE5470MR04 46KI3470DQM1K 46KR410000M1M 49AR410000B1M 46KI333050M1K 46KN333000M1M 46KN422000P0M 49AN3470ZB01M 46KN347000M1M 46KR422000M1K DE1E3KX472MJ4BN01F ECQ-U2A224MLC 46KI3100DQM1M 04068 46KF268000M1M 46KI3150NDM2M MKPX2R-1/400/10P27 YP102271K050B20C6P YP102391K050BAND5P YP501101K040BAND5P YP102681K060B20C6P YP501121K040B20C6P YP501471K040B20C6P YP501102K050HAND5P YP500101K040B20C2P BX4002J GX2003C GX3009C GX3010 GX3024C GX3045 GX3045C GX3047 GX3053 GX3074C GX3083C GX3085C GX4015 GX4015C GX4017 GX4017-Z GX4018 GX4045C GX4053J GX4056C GX4070C GX4089 GX4097C GX4100C GX4103J