

Aluminum electrolytic capacitors

Capacitors with screw terminals

 Series/Type:
 B41550, B41570

 Date:
 December 2014

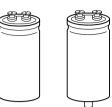
© EPCOS AG 2014. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Capacitors with screw terminals

SIKOREL - 105 °C

Long-life grade capacitors

Applications


Highly professional power supplies

Features

- Outstanding reliability
- Operation at temperatures up to 125 °C permissible without insulating sleeve¹⁾
- High ripple current capability
- Long useful life
- Shelf life up to 10 years
- All-welded construction ensures reliable electrical contact
- RoHS-compatible

Construction

- Charge-discharge proof, polar
- Aluminum case with insulating sleeve
- Poles with screw terminal connections
- Mounting with ring clips, clamps or threaded stud
- The bases of types with threaded stud are not insulated

B41550

B41570

1) For $\emptyset \le 51.6$ mm: 2500 h, for $\emptyset \ge 64.3$ mm: 5000 h

⊗TDK

B41550, B41570

SIKOREL - 105 °C

Specifications and characteristics in brief

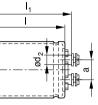
16 100 V D	16 100 V DC					
1.15 · V _R						
1500 22000	1500 220000 μF					
$I_{\text{leak}} \leq 0.018$	$\mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V}\right)$	^{0.85} + 4 μ	A			
d = 35.7 mm:	approx. 10 nH					
d = 51.6 mm:	approx. 15 nH					
d ≥ 64.3 mm:	approx. 20 nH					
d ≤ 51.6 mm	d ≥ 64.3 mm	Requirer	ments:			
> 10000 h	> 20000 h	$ \Delta C/C $	\leq 45% of initial value			
> 15000 h	> 25000 h	ESR	\leq 3 times initial specified limit			
> 200000 h	_	I _{leak}	\leq initial specified limit			
-	> 200000 h					
		Post test requirements:				
5000 h		$ \Delta C/C $	$\leq \pm 15\%$ of initial value			
		ESR	\leq 1.3 times initial specified limit			
		I _{leak}	\leq initial specified limit			
To IEC 60068	8-2-6, test Fc:					
Frequency rai	nge 10 55 H	z, displac	ement amplitude 0.75 mm,			
acceleration n	nax. 10 <i>g</i> , dura	tion 3×2	h.			
Capacitor mo	unted by its bo	dy which	is rigidly clamped to the work			
surface.						
To IEC 60068	3-1:					
55/105/56 (-5	55 °C/+105 °C/	′56 days o	damp heat test)			
Similar to CE	CC 30301-804					
IEC 60384-4						
	1.15 · V _R 1500 22000 -10/+30% \triangleq I _{leak} ≤ 0.018 d = 35.7 mm: d = 51.6 mm: d ≥ 64.3 mm: d ≤ 51.6 mm > 10000 h > 15000 h > 200000 h - 5000 h To IEC 60068 Frequency rata acceleration r Capacitor mosurface. To IEC 60068 55/105/56 (-4) Similar to CE0	$\begin{array}{c} 1500 \ \ 220000 \ \mu F \\ -10/+30\% \ \triangleq \ Q \\ \hline I_{leak} \le \ 0.018 \ \mu A \cdot \left(\frac{C_R}{\mu F} \cdot \frac{V_R}{V} \right) \\ d = 35.7 \ mm: \ approx. \ 10 \ nH \\ d = 51.6 \ mm: \ approx. \ 15 \ nH \\ d \ge 64.3 \ mm: \ approx. \ 15 \ nH \\ d \ge 64.3 \ mm: \ approx. \ 20 \ nH \\ d \ge 64.3 \ mm: \ approx. \ 10 \ nH \\ d \ge 64.3 \ mm: \ approx. \ $	1.15 · V _R 1500 220000 µF $-10/+30\% \triangleq Q$ I leak ≤ 0.018 µA · $\left(\frac{C_R}{\mu F}, \frac{V_R}{V}\right)^{0.85}$ + 4 µ d = 35.7 mm: approx. 10 nH d = 51.6 mm: approx. 15 nH d ≥ 64.3 mm: approx. 20 nH d ≤ 51.6 mm d ≥ 64.3 mm Post control = 10000 h > 10000 h > 200000 h > 15000 h > 200000 h - Post test 1\Leak To IEC 60068-2-6, test FC: Frequency range 10 55 Hz, displace acceleration max. 10 g, duration 3 × 2 Capacitor mounted by its body which surface. To IEC 60068-1: 55/105/56 (-55 °C/+105 °C/56 days of Similar to CECC 30301-804			

Ripple current capability

Due to the ripple current capability of the contact elements, the following current upper limits must not be exceeded:

Capacitor diameter	≤ 51.6 mm	> 51.6 mm
I _{AC,max}	30 A	40 A

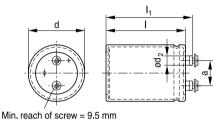
1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.



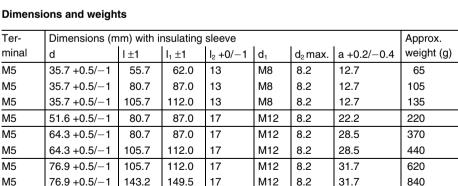
Dimensional drawings

d = 35.7 mm

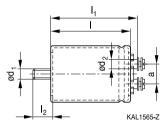
B41550 Ring clip/clamp mounting

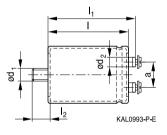


KAL1319-J-E


Min. reach of screw = 9.5 mm

 $d \ge 51.6 \text{ mm}$


Positive pole marking: +


KAL1320-M-E

Dimensions and weights

B41570 Threaded stud mounting

B41550,	B41570

SIKOREL - 105 °C

Ų

Packing

Capacitor diameter d (mm)	length l (mm)	Packing units (pcs.)	Capacitor diameter d (mm)	length l (mm)	Packing units (pcs.)
35.7	all	36	64.3	all	25
51.6	all	36	76.9	all	16

For ecological reasons the packing is pure cardboard.

Accessories

The following items are included in the delivery package, but are not fastened to the capacitors:

	Thread	Toothed	Screws/nuts	Maximum
		washers		torque
For terminals	M5	A 5.1 DIN 6797	DIN 7985 / ISO 7045-M5 × 10-5.6-Z	2 Nm
For mounting	M8	J 8.2 DIN 6797	Hex nut BM 8 DIN 439	4 Nm
	M12	J 12.5 DIN 6797	Hex nut BM 12 DIN 439	10 Nm

The following items must be ordered separately. For details, refer to chapter "Capacitors with screw terminals – Accessories".

Item	Туре
Ring clips	B44030
Clamps for capacitors with $d \ge 64.3$ mm	B44030
Insulating parts	B44020

SIKOREL - 105 °C

Overview of available types

V _R (V DC)	16	25	40	63	100			
	Case dimensions $d \times I$ (mm)							
C _R (μF)								
1500					35.7×55.7			
2200				35.7×55.7	35.7×80.7			
3300				35.7×80.7	35.7×105.7			
4700			35.7×55.7	35.7×80.7	51.6×80.7			
6800		35.7×55.7	35.7×80.7	35.7×105.7	64.3× 80.7			
10000	35.7×55.7	35.7×80.7	35.7×80.7	51.6× 80.7	64.3× 80.7			
15000	35.7×80.7	35.7×80.7	35.7×105.7	64.3×80.7	64.3×105.7			
22000	35.7×80.7	35.7×105.7	51.6× 80.7	64.3×105.7	76.9×105.7			
33000	35.7×105.7	51.6× 80.7	64.3×80.7	76.9×105.7	76.9×143.2			
47000	51.6× 80.7	64.3×80.7	64.3×105.7	76.9 imes 143.2				
68000	64.3× 80.7	64.3×105.7	76.9×105.7					
100000	64.3×105.7	76.9×105.7	76.9×143.2					
150000	76.9×105.7	76.9×143.2						
220000	76.9 × 143.2							

The capacitance and voltage ratings listed above are available in different cases upon request.

Other voltage and capacitance ratings are also available upon request.

SIKOREL - 105 °C

Technical data and ordering codes

	0	500		7				Quelo sino e e ele
C _R	Case	ESR _{typ}	ESR _{max}	Z _{max}	AC,max	I _{AC,max}	I _{AC,R}	Ordering code
100 Hz	dimensions	100 Hz	100 Hz	10 kHz	100 Hz	100 Hz	100 Hz	(composition see
20 °C	d × l	20 °C	20 °C	20 °C	40 °C	85 °C	105 °C	below)
μF	mm	mΩ	mΩ	mΩ	А	А	А	
V _R = 16 V DC								
10000	35.7×55.7	15	38	26	17	12	6.2	B415*0E4109Q000
15000	35.7×80.7	12	26	21	23	16	8.1	B415*0E4159Q000
22000	35.7×80.7	9.0	21	18	29	21	10	B415*0E4229Q000
33000	35.7 imes 105.7	7.0	17	13	30	24	12	B415*0E4339Q000
47000	51.6× 80.7	5.0	13	13	30	30	16	B415*0E4479Q000
68000	64.3×80.7	5.0	13	13	40	38	17	B415*0E4689Q000
100000	64.3×105.7	4.0	10	9.0	40	39	19	B415*0E4100Q000
150000	76.9 imes 105.7	4.0	10	10	40	40	22	B415*0E4150Q000
220000	76.9×143.2	4.0	8.0	7.0	40	40	26	B415*0A4220Q000
$V_{R} = 25$	V DC							
6800	35.7× 55.7	16	32	27	18	13	6.4	B415*0A5688Q000
10000	35.7×80.7	14	28	21	21	15	7.5	B415*0E5109Q000
15000	35.7×80.7	11	24	17	26	19	9.4	B415*0E5159Q000
22000	35.7×105.7	8.0	20	15	30	22	11	B415*0E5229Q000
33000	51.6× 80.7	6.0	13	12	30	29	15	B415*0E5339Q000
47000	64.3×80.7	5.0	13	11	40	34	17	B415*0E5479Q000
68000	64.3 imes 105.7	5.0	11	9.0	40	35	17	B415*0E5689Q000
100000	76.9 imes 105.7	4.0	9.0	8.0	40	39	21	B415*0E5100Q000
150000	76.9×143.2	4.0	7.0	6.0	40	40	26	B415*0A5150Q000
$V_{R} = 40$	V DC							
4700	35.7× 55.7	14	33	24	20	14	7.2	B415*0E7478Q000
6800	35.7× 80.7	12	28	17	24	16	8.4	B415*0A7688Q000
10000	35.7× 80.7	11	27	14	26	19	9.4	B415*0E7109Q000
15000	35.7 imes 105.7	8.0	15	15	30	22	11	B415*0E7159Q000
22000	51.6× 80.7	6.0	13	13	30	29	15	B415*0E7229Q000
33000	64.3× 80.7	5.0	12	12	40	34	17	B415*0E7339Q000
47000	64.3×105.7	5.0	8.0	8.0	40	35	17	B415*0E7479Q000
68000	76.9×105.7	4.0	9.0	7.0	40	39	21	B415*0E7689Q000
100000	76.9×143.2	4.0	7.0	6.0	40	40	26	B415*0A7100Q000

Composition of ordering code

* = Mounting style

5 = for capacitors with ring clip/clamp mounting

7 = for capacitors with threaded stud

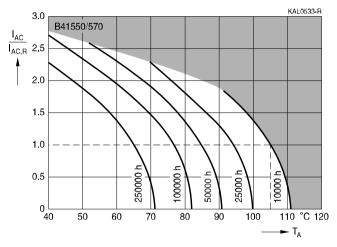
SIKOREL - 105 °C

Technical data and ordering codes

C _R	Case	ESR _{typ}	ESR _{max}	Z _{max}	1	L	I _{AC.R}	Ordering code
0 _R 100 Hz	dimensions	100 Hz		[∠] max 10 kHz	I _{AC,max} 100 Hz	I _{AC,max} 100 Hz	^{IAC,R} 100 Hz	(composition see
								、 1
20 °C	d × l	20 °C	20 °C	20 °C	40 °C	85 °C	105 °C	below)
μF	mm	mΩ	mΩ	mΩ	А	А	А	
$V_{R} = 63 \text{ V DC}$								
2200	35.7× 55.7	26	60	30	13	9.4	4.7	B415*0E8228Q000
3300	35.7×80.7	17	39	24	19	14	6.8	B415*0E8338Q000
4700	35.7×80.7	13	31	20	24	17	8.7	B415*0E8478Q000
6800	35.7 imes 105.7	10	23	17	28	20	10	B415*0E8688Q000
10000	51.6× 80.7	7.0	18	14	30	27	13	B415*0E8109Q000
15000	64.3×80.7	6.0	13	11	40	31	15	B415*0E8159Q000
22000	64.3×105.7	5.0	10	9.0	40	35	17	B415*0E8229Q000
33000	76.9 imes 105.7	4.0	8.0	8.0	40	39	21	B415*0E8339Q000
47000	76.9×143.2	3.0	7.0	6.0	40	40	26	B415*0A8479Q000
$V_{R} = 100$	V DC							
1500	35.7× 55.7	36	83	34	12	8.8	4.2	B415*0A9158Q000
2200	35.7× 80.7	26	57	30	16	12	5.9	B415*0E9228Q000
3300	35.7×105.7	17	37	24	22	16	8.0	B415*0E9338Q000
4700	51.6× 80.7	15	29	20	28	20	10	B415*0E9478Q000
6800	64.3× 80.7	10	20	17	36	26	13	B415*0E9688Q000
10000	64.3× 80.7	8.0	15	14	40	32	16	B415*0E9109Q000
15000	64.3×105.7	7.0	13	11	40	36	18	B415*0E9159Q000
22000	76.9×105.7	6.0	11	9.0	40	38	19	B415*0A9229Q000
33000	76.9×143.2	5.0	9.0	8.0	40	40	23	B415*0A9339Q000

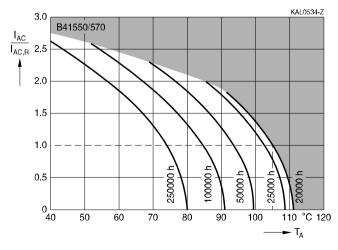
Composition of ordering code

- * = Mounting style
 - 5 = for capacitors with ring clip/clamp mounting
 - 7 = for capacitors with threaded stud



Useful life¹⁾

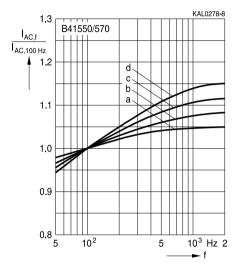
depending on ambient temperature $T_{\mbox{\scriptsize A}}$ under ripple current operating conditions


 $d \leq 51.6 \text{ mm}$

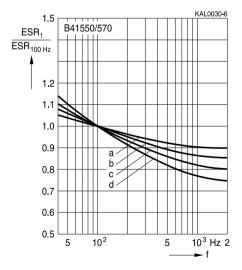
Useful life¹⁾

depending on ambient temperature T_A under ripple current operating conditions

```
d \ge 64.3 \text{ mm}
```



1) Refer to chapter "General technical information, 5 Useful life" on how to interpret useful life.

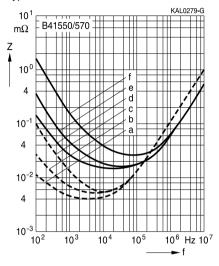

Frequency factor of permissible ripple current I_{AC} versus frequency f

V _R (V DC)	16; 25	40	63	100
d = 35.7 mm	b	С	d	d
d = 51.6 mm	а	b	с	с
d = 64.3 mm	а	а	С	с
d = 76.9 mm	а	а	b	с

Frequency characteristics of ESR

Typical behavior

V _R (V DC)	16; 25	40	63	100
d = 35.7 mm	b	с	d	d
d = 51.6 mm	а	b	С	с
d = 64.3 mm	а	а	С	с
d = 76.9 mm	а	а	b	С


<u>B41</u>550, B41570

SIKOREL - 105 °C

Impedance Z versus frequency f

Typical behavior at 20 °C

C _R	V _B	d	Curve
μF	V DC	mm	
150000	16	76.9	а
68000	40	76.9	b
15000	100	64.3	С
10000	16	35.7	d
47000	40	35.7	е
1500	100	35.7	f

Cautions and warnings

Personal safety

The electrolytes used by EPCOS have been optimized both with a view to the intended application and with regard to health and environmental compatibility. They do not contain any solvents that are detrimental to health, e.g. dimethyl formamide (DMF) or dimethyl acetamide (DMAC).

Furthermore, some of the high-voltage electrolytes used by EPCOS are self-extinguishing.

As far as possible, EPCOS does not use any dangerous chemicals or compounds to produce operating electrolytes. However, in exceptional cases, such materials must be used in order to achieve specific physical and electrical properties because no alternative materials are currently known. However, the amount of dangerous materials used in our products is limited to an absolute minimum.

Materials and chemicals used in EPCOS aluminum electrolytic capacitors are continuously adapted in compliance with the EPCOS Corporate Environmental Policy and the latest EU regulations and guidelines such as RoHS, REACH/SVHC, GADSL, and ELV.

MDS (Material Data Sheets) are available on the EPCOS website for all types listed in the data book. MDS for customer specific capacitors are available upon request. MSDS (Material Safety Data Sheets) are available for all of our electrolytes upon request.

Nevertheless, the following rules should be observed when handling aluminum electrolytic capacitors: No electrolyte should come into contact with eyes or skin. If electrolyte does come into contact with the skin, wash the affected areas immediately with running water. If the eyes are affected, rinse them for 10 minutes with plenty of water. If symptoms persist, seek medical treatment. Avoid inhaling electrolyte vapor or mists. Workplaces and other affected areas should be well ventilated. Clothing that has been contaminated by electrolyte must be changed and rinsed in water.

B41550, B41570 SIKOREL – <u>105 °C</u>

Product safety

The table below summarizes the safety instructions that must be observed without fail. A detailed description can be found in the relevant sections of chapter "General technical information".

Торіс	Safety information	Reference chapter "General technical information"
Polarity	Make sure that polar capacitors are connected with the right polarity.	1 "Basic construction of aluminum electrolytic capacitors"
Reverse voltage	Voltages of opposite polarity should be prevented by connecting a diode.	3.1.6 "Reverse voltage"
Mounting position of screw- terminal capacitors	Screw terminal capacitors must not be mounted with terminals facing down unless otherwise specified.	11.1. "Mounting positions of capacitors with screw terminals"
Robustness of terminals	The following maximum tightening torques must not be exceeded when connecting screw terminals: M5: 2.5 Nm M6: 4.0 Nm	11.3 "Mounting torques"
Mounting of single-ended capacitors	The internal structure of single-ended capacitors might be damaged if excessive force is applied to the lead wires. Avoid any compressive, tensile or flexural stress. Do not move the capacitor after soldering to PC board. Do not pick up the PC board by the soldered capacitor. Do not insert the capacitor on the PC board with a hole space different to the lead space specified.	11.4 "Mounting considerations for single-ended capacitors"
Soldering	Do not exceed the specified time or temperature limits during soldering.	11.5 "Soldering"
Soldering, cleaning agents	Do not allow halogenated hydrocarbons to come into contact with aluminum electrolytic capacitors.	11.6 "Cleaning agents"
Upper category temperature	Do not exceed the upper category temperature.	7.2 "Maximum permissible operating temperature"
Passive flammability	Avoid external energy, e.g. fire.	8.1 "Passive flammability"

B41550, B41570 SIKOREL – 105 °C

Topic	Safety information Avoid overload of the capacitors.	Reference chapter "General technical information" 8.2
flammability		"Active flammability"
Maintenance	Make periodic inspections of the capacitors. Before the inspection, make sure that the power supply is turned off and carefully discharge the electricity of the capacitors. Do not apply excessive mechanical stress to the capacitor terminals when mounting.	10 "Maintenance"
Storage	Do not store capacitors at high temperatures or high humidity. Capacitors should be stored at +5 to +35 °C and a relative humidity of \leq 75%.	7.3 "Shelf life and storage conditions"
		Reference chapter "Capacitors with screw terminals"
Breakdown strength of insulating sleeves	Do not damage the insulating sleeve, especially when ring clips are used for mounting.	"Screw terminals - accessories"

Display of ordering codes for EPCOS products

The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

B41550, B41570 SIKOREL – 105 °C

Symbols and terms

Symbol	English	German	
С	Capacitance	Kapazität	
C _R	Rated capacitance	Nennkapazität	
Cs	Series capacitance	Serienkapazität	
C _{S,T}	Series capacitance at temperature T	Serienkapazität bei Temperatur T	
C _f	Capacitance at frequency f	Kapazität bei Frequenz f	
d	Case diameter, nominal dimension	Gehäusedurchmesser, Nennmaß	
d _{max}	Maximum case diameter	Maximaler Gehäusedurchmesser	
ESL	Self-inductance	Eigeninduktivität	
ESR	Equivalent series resistance	Ersatzserienwiderstand	
ESR _f	Equivalent series resistance at frequency f	Ersatzserienwiderstand bei Frequenz f	
ESR_{T}	Equivalent series resistance at temperature T	Ersatzserienwiderstand bei Temperatur T	
f	Frequency	Frequenz	
I	Current	Strom	
I _{AC}	Alternating current (ripple current)	Wechselstrom	
$I_{AC,RMS}$	Root-mean-square value of alternating current	Wechselstrom, Effektivwert	
$I_{AC,f}$	Ripple current at frequency f	Wechselstrom bei Frequenz f	
I _{AC,max}	Maximum permissible ripple current	Maximal zulässiger Wechselstrom	
I _{AC,R}	Rated ripple current	Nennwechselstrom	
I _{leak}	Leakage current	Reststrom	
I _{leak,op}	Operating leakage current	Betriebsreststrom	
I	Case length, nominal dimension	Gehäuselänge, Nennmaß	
I _{max}	Maximum case length (without terminals and mounting stud)	Maximale Gehäuselänge (ohne Anschlüsse und Gewindebolzen)	
R	Resistance	Widerstand	
R _{ins}	Insulation resistance	Isolationswiderstand	
R _{symm}	Balancing resistance	Symmetrierwiderstand	
Т	Temperature	Temperatur	
ΔT	Temperature difference	Temperaturdifferenz	
T _A	Ambient temperature	Umgebungstemperatur	
Tc	Case temperature	Gehäusetemperatur	
Τ _B	Capacitor base temperature	Temperatur des Gehäusebodens	
t	Time	Zeit	
Δt	Period	Zeitraum	
t _b	Service life (operating hours)	Brauchbarkeitsdauer (Betriebszeit)	

B41550, B41570 SIKOREL – 105 °C

Symbol	English	German
V	Voltage	Spannung
V _F	Forming voltage	Formierspannung
V_{op}	Operating voltage	Betriebsspannung
V _R	Rated voltage, DC voltage	Nennspannung, Gleichspannung
Vs	Surge voltage	Spitzenspannung
Xc	Capacitive reactance	Kapazitiver Blindwiderstand
XL	Inductive reactance	Induktiver Blindwiderstand
Z	Impedance	Scheinwiderstand
Ζ _T	Impedance at temperature T	Scheinwiderstand bei Temperatur T
tan δ	Dissipation factor	Verlustfaktor
λ	Failure rate	Ausfallrate
ε ₀	Absolute permittivity	Elektrische Feldkonstante
ε _r	Relative permittivity	Dielektrizitätszahl
ω	Angular velocity; $2 \cdot \pi \cdot f$	Kreisfrequenz; $2 \cdot \pi \cdot f$

Note

All dimensions are given in mm.

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).

Important notes

7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.vvv

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Aluminum Electrolytic Capacitors - Leaded category:

Click to view products by EPCOS manufacturer:

Other Similar products are found below :

LXY50VB4.7M-5X11 MAL203125221E3 MAL204216159E3 ESMG101ETD100MF11S RBC-25V-10UF-4X7 RE3-35V222MJ6# RFO-100V471MJ7P# B41041A2687M8 B41041A7226M8 B41044A7157M6 EKRG250ELL100MD07D EKXG201EC3101ML20S EKXG351ETD6R8MJ16S EKZM160ETD471MHB5D EPA-201ELL151MM25S NCD681K10KVY5PF NRLF103M25V35X20F KM4700/16 KME50VB100M-8X11.5 RXJ222M1EBK-1625 SG220M1CSA-0407 ES5107M016AE1DA ESX472M16B MAL211929479E3 40D506F050DF5A TE1202E 36DA273F050BB2A KME25VB100M-6.3X11 511D336M250EK5D 511D337M035CG4D 515D477M035CG8PE3 052687X EKMA500ELL4R7ME07D EKRG100ETC221MF09D NRE-S560M16V6.3X7TBSTF ERZA630VHN182UP54N MAL214099813E3 MAL211990518E3 MAL204281229E3 NEV680M35EF 686KXM050M ERS1VM222L300T EGW2GM150W160T EGS2GM6R8G120C EHS2GM220W200T ERF1VM222L300T ERF1KM151G200T EKZE500ELL101MHB5D EKKM251VSN221MP25S RGA221M1HBK-1016G