REVISION RECORD						
REV.	DATE	PAGE	COMMENT			
A	$2007-1-6$		NEW RELEASE			

CONTENTS

1. LCD MODULE NUMBERING SYSTEM
2. MECHANICAL CHARACTERISTICS
2.1 MECHANICAL DATA
2.2 MECHANICAL DRAWINGS
3. CIRCUIT BLOCK DIAGRAM
3.1 Electrical Block Diagram
3.2 Pins Definition
3.3 Power Supply For LCM Driving
3.3 Display Character Address Code
4. ABSOLUTE MAXIMUN RATINGS
4.1 Electrical Absolute Maximum Ratings
4.2 Enviromental Absolute Maximum Ratings
5. ELECTRICAL CHARACTERISTICS
5.1 DC Characteristics
5.2 AC Characteristics
6. BACKLIGHT CHARACTERISTICS
6.1 Absolute Maximum Ratings
6.2 Operating Parameters
7. ELECTRO-OPTICAL CHARACTERISTIC
8. DISPLAY CONTROL INSTRUCTION
8.1 INSTRUCTION TABLE
8.2 Character Table
8.3 INITIALIZATION BY INSTRUCTION
9. INSPECTION STANDARDS
10. PRECAUTIONS IN USING LCM

Midas LCD Part Number System

$=\quad$ T: TN S: STN B: STN Blue G: STN Grey F: FSTN F2: FFSTN
$11=\quad$ P: Positive N: Negative
$12=$ R: Reflective M: Transmissive T: Transflective

13 = Backlight: Blank: Reflective L: LED
$=\quad$ Backlight Colour: Y: Yellow-Green W: White B: Blue R: Red A: Amber O: Orange G: Green RGB: R.G.B.
$=$ Driver Chip: Blank: Standard I: $\mathrm{I}^{2} \mathrm{C} \quad$ T: Toshiba T6963C A: Avant SAP1024B R: Raio RA8835

2. MECHANICAL CHARACTERISTICS

2.1 MECHANICAL DATA

ITEM	STANDARD VALUE	UNIT
NUMBER OF CHARACTERS	16 CHARACTERS $\times 2$ LINES	
CHARACTER FORMAT	5×7 DOTS PLUS CURSOR	
OUTLINE DIMENSIONS	$53.0(\mathrm{~W}) \times 20.0(\mathrm{H}) \times 8.0(\mathrm{~T})$	mm
EFFECTTVE VIEWING AREA	$36.0(\mathrm{~W}) \times 10.0(\mathrm{H})$	mm
CHARACTER SIZE	$1.85(\mathrm{~W}) \times 3.15(\mathrm{H})$	mm
CHARACTER PITCH	$2.15(\mathrm{~W}) \times 4.25(\mathrm{H})$	mm
DOT SIZE	$0.33(\mathrm{~W}) \times 0.35(\mathrm{H})$	mm
DOT PITCH	$0.38(\mathrm{~W}) \times 0.40(\mathrm{H})$	mm
APPROX WEIGHT	20	g

2.2 MECHANICAL DRAWINGS

3. CIRCUIT BLOCK DIAGRAM

3.1 Electrical Block Diagram

3.2 Pins Definition

PIN	SYMBOL	FUNCTION
1	Vss	Power Supply(GND)
2	Vdd	Power Supply(+5V)
3	Vo	Contrast Adjust
4	RS	Instruction/Data Register Select
5	R/W	Data Bus Line
6	E	Enable Signal
$7-14$	DB0-DB7	Data Bus Line
15	A	Power Supply for LED B/L(+3.9V)
16	K	Power Supply for LED B/L(OV)

3.3 Power Supply For LCM Driving

Link to Initialization Code
Link to Controller
3.4 Display Character Address Code

POSITION		1	2	3		5	6	7			10	11	12	13	14	15	
		00	01	02	03	04	05	06	07	08	09	OA	OB	OC	0D		
		40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	

*NOTE: ALL OF THE NUMBERS ARE IN HEX FORMAT

4. ABSOLUTE MAXIMUN RATINGS

4.1 Electrical Absolute Maximum Ratings

ITEM	SYMBOL	CONDITION	MIN	MAX	UNIT
Supply Voltage (Logic)	Vdd - Vss	-	0	7.0	V
Supply Voltage (LCD Drive)	$\mathrm{Vdd}-\mathrm{V0}$	-	0	13.0	V
Input Voltage	Vi	-	-0.3	$\mathrm{Vdd}+0.3$	V

4.2 Enviromental Absolute Maximum Ratings

ITEM	SYMBOL	CONDITIONS	MIN	MAX	UNIT
Operating Temp	Topr	-Normal temp. version-	0	50	deg C
Storage Temp	Ttsg		-20	70	deg C
Humidity Endurance	RH	no ondensation $\mathrm{Ta}<=40 \mathrm{deg}$	-	95	\%
Vibration	-	$100-300 \mathrm{~Hz}, \quad \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ directions, 1 hour	-	$\begin{gathered} \hline 4.9 \mathrm{~m} / \mathrm{ss} \\ 0.5 \mathrm{~g} \\ \hline \end{gathered}$	-
Shock	-	$10 \mathrm{mS} \quad \mathrm{X} / \mathrm{Y} / \mathrm{Z}$ direction 1 time each		$\begin{gathered} 29.4 \mathrm{~m} / \mathrm{ss} \\ 3.0 \mathrm{~g} \end{gathered}$	-

5. ELECTRICAL CHARACTERISTICS

5.1 DC Characteristics

Electrical Characteristics at $\mathrm{Ta}=25$ deg C, Vdd $=5 \mathrm{~V}+/-5 \%$

ITEM	SYMBOL	CONDITION	MIN	TYP	MAX	UNIT
Supply Voltage (logic)	Vdd-Vss	-	4.5	5.0	5.5	V
Supply Voltage (LCD)	Vdd-V0	Vdd $=5 \mathrm{~V}$	-	4.6	-	V
Input signal Voltage (for E, DB0-7,R/W,RS)	V-ih	"H" level	2.2	-	Vdd	V
	V-il	"L" level	0	-	0.6	V
Supply Current (logic)	Icc	-	-	1	1.2	mA
Supply Current (LCD)	Io	-	0.15	0.22	0.27	mA

5.2 AC Characteristics

TIMING SPECIFICATIONS at $\mathrm{Ta}=25 \mathrm{deg} \mathrm{C}, \mathrm{Vdd}=5 \mathrm{~V}+/-10 \%$, $\mathrm{Vss}=0 \mathrm{~V}$
For Write mode

ITEM	SYMBOL	MIN	MAX	UNIT
E cycle time	tc	500	-	ns
E rise time	tR	-	25	ns
E fall time	tF	-	25	ns
E-pulse width (H, L)	tw	220	-	ns
R/W and RS set-up time	tsul	40	-	ns
R/W and RS hold time	tH1	10	-	ns
Data set-up time	tsu2	60	-	ns
Data hold time	tH2	10	-	ns

For Read mode

ITEM	SYBOL	MIN	MAX	UNIT
E cycle time	tc	500	-	ns
E rise time	tR	-	25	ns
E fall time	tF	-	25	ns
E-pulse width (H, L)	tw	220	-	ns
R/W and RS set-up time	tsu	40	-	ns
R/W and RS hold time	tH	10	-	ns
Data output delay	tD	-	120	ns
Data hold time	tDH	20	-	ns

WRITE MODE TIMING DIAGRAM

READ MODE TIMING DIAGRAM

6. BACKLIGHT CHARACTERISTICS

6.1 Absolute Maximum Ratings

ITEM	SYMBOL	CONDITION	MIN	MAX	UNIT
Forward Current	Ifm	-	-	30	mA
Reverse Voltage	Vr	-	-	8	V
Power Dissipation	Pd	-	-	90	mW

6.2 Operating Parameters

ITEM	SYMBOL	CONDITION	MIN	TYP.	MAX	UNIT
Forward Voltage	Vf*	If=20mA-	-	3.9	4.0	V
Peak Wavelength	λ	If=20mA-	-	568	-	nm

- Vf is the voltage applied to Pin15 and Pin16

7. ELECTRO-OPTICAL CHARACTERISTICS

ITEM	SYMBO L	CONDI TION	MIN.	TYP.	MAX.	UNIT	REF.
Contrast	CR	$25^{\circ} \mathrm{C}$	--	12	--		Note1
Rise Time	tr	$25^{\circ} \mathrm{C}$	--	160	240	ms	Note2
Fall Time	tf	$25^{\circ} \mathrm{C}$	--	100	150	ms	note 2
Viewing	θ 1- $\theta 2$	$25^{\circ} \mathrm{C}$	--	--	60	DEG	Note 3
Angle	Ø1, Ø2		-40	--	40		
Frame Frequency	Ff	$25^{\circ} \mathrm{C}$	--	70	--	Hz	note 2

Note(1): Contrast ratio is defined under the following condition:

$$
\mathrm{CR}=\underset{\text { brightness of selected condition }}{\text { brightness of non-selected condition }}
$$

(a). Temperature -25C
(b). Frame Frequency------64Hz
(c). Viewing angle$\theta=0, \varnothing=0$
(d). Operating Voltage---5.0V

Note(2): definition of response time:

Condition:
(a). Temperature------------25C
(b). Frame Frequency------64Hz
(c). Viewing angle--------- $\theta=0, \varnothing=0$
(d). Operating Voltage---5.0V

Note(3): definition of view angle:

TOP-BOTTOM DIRECTION

RIGHT-LEFT DIRECTION

8. DISPLAY CONTROL INSTRUCTION

8.1 INSTRUCTION TABLE

8.2 Character Table FOR(-B0)

8.3 INITIALIZATION BY INSTRUCTION

8-bits

Power On

Wait for more than 15 ms
after Vdd rises to 4.5 V

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & X & X & X & X\end{array}$ Function set: interface is 8 bit long

Wait for more than 4.1 Ms
RS R/W DB7 DB6 DD, DB4 DB3 DB2 DB1 DB0 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & X & X & X & X\end{array}$ Function set

Wait for more than 0.1 Ms

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & X & X & X & X\end{array}$

RS R/W DB7 DB6 DBJDB4 DB3 DB2 DB1 DB0 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 1 & 1 & X & X & X & X\end{array}$ Function set: $\mathrm{DL}=1,8$ bit interface data

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

0	0	0	0	0	0	1	0	0

RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 $\begin{array}{llllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}$
Clear all display and return cursor to home position

\[

\]

END OF INITIALIZATION

4-bits

Power On

Wait for more than 15 mS
after Vdd rises to 4.5 V

RS R/W DB7 DB6 DB5 DB4
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}$
Function set: $\mathrm{DL}=18$ bit interface data.

Wait for more than 4.1 Ms
RS R/W DB, BB6 DB5 DB4
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 1\end{array}$
$\mathrm{DL}=1,8$ bit interface data

Wait for more than 0.1 Ms

RS R/W DB7 DB6 DB5 DB4
$\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}$
$\mathrm{DL}=0,4$ bit inferface data RS R/W DBTOB6 DB5 DB4 $\begin{array}{llllll}0 & 0 & 0 & 0 & 1 & 0\end{array}$

Function set: $\mathrm{DL}=0,4$ bit interface data RS R/W DB, ${ }^{\text {DB6 DB5 DB4 }}$

0	0	0	0	0	0
0	0	1	0	0	0

DisplavOff
RS R/W DB, B6 DB5 DB4

0	0	0	0	0	0
0	0	0	0	0	1

Function set: $\mathrm{DL}=0,4$ bit interface data RS R/W DB DB6 DB5 DB4
$\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & I / D & S\end{array}$
Entry mode set
END OF INITIALIZATION

4-bit operation (4-bits 1 line)

Function	RS RW D7 D6 D5 D4	Display	Description			
power on delay						

9. INSPECTION STANDARDS

9.1 Inspection Conditions

The LCD shall be inspected under 40W white fluorescent light.
The distance between the eyes and the samples shall be more than 30 cm .
All directions for inspecting the sample should be within 45 degree against perpendicular line.

9.2 Definition of Applicable Zone

A Zone: Active Display Area
B Zone: Area from Bezel Frame to A Zone
C Zone: Rest Area of Bezel
A Zone + B Zone=Effective Viewing Area

9.3 Standards

10. PRECAUTIONS IN USING LCM

1. LIQUID CRYSTAL DISPLAY (LCD)

LCD is made up of glass, organic sealant, organic fluid, and polymer based polarizers. The following precautions should be taken when handing,
(1). Keep the temperature within range of use and storage. Excessive temperature and humidity could cause polarization degredation, polarizer peel off or bubble.
(2). Do not contact the exposed polarizers with anything harder than an HB pencil lead. To clean dust off the display surface. Wipe gently with cotton. Chamois or other soft material soaked in petroleum benzin.
(3). Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
(4). Glass can be easily chipped or cracked from rough handing. especially at corners and edges.
(5). Do not drive LCD with DC voltage.

2. Liquid Crystal Display Modules

2.1 Mechanical Considerations

LCM are assembled and adjusted with a high degree of precision. Avoid excessive shocks and do not make any alterations or modifications. The following should be noted.
(1). Do not tamper in any way with the tabs on the tabs on the metal frame.
(2). Do not modify the PCB by drilling extra holes, changing its outline, moving its components or modifying its pattem.
(3). Do not touch the elastomer connector, especially insert an backlight panel (for example, EL).
(4). When mounting a LCM make sure that the PCB is not under any tress such as bending or twisting. Elastomer contacts are very delicate and missing pixels could result from slight dislocation of any of the elements.
(5). Avoid pressing on the metal bezel, otherwise the elastomer connector could be deformed and lose contact, resulting in missing piels.

2.2. Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely
(1). The operator should be grounded whenever he/she comes into contact with the module. Never touch any of the conductive parts such as the LSI pads, the copper leads on the PCB and the interface terminals with any parts of the human body.
(2). The modules should be kept in antistatic bags or other containers resistant to static for storage.
(3). Only properly grounded soldering irons should be used.
(4). If an electric screwdriver is used, it should be well grounded and shielded from commutator sparks.
(5). The normal static prevention measures should be observed for work clothes and working benches; for the latter conductive (rubber) mat is recommended.
(6). Since dry air is inductive to statics, a relative humidity of $50-60 \%$ is recommended.

2.3. Soldering

(1). Solder only to the I/O terminals.
(2). Use only soldering irons with proper grounding and no leakage.
(3). Soldering temperature: $280{ }^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$
(4). Soldering time: 3 to 4 sec.
(5). Use eutectic solder with resin flux fill.
(6). If flux is used, the LCD surface should be covered to avoid flux spatters. Flux residue should be removed after wards.

2.4. Operation

(1). The viewing angle can be adjusted by varying the LCD driving voltage V0.
(2). Driving voltage should be kept within specified range; excess voltage shortens display
life.
(3). Response time increases with decrease in temperature.
(4). Display may turn black or dark blue at temperatures above its operational range; this
is (however not pressing on the viewing area) may cause the segments to appear "fractured".
(5). Mechanical disturbance during operation (such as pressing on the viewing area) nay cause the segments to appear "fractured".

2.5. Storage

If any fluid leaks out of a damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all the time.

2.6. Limited Warranty

Unless otherwise agreed between 0 LGD and customer, 0 LGDV will repiace or repair any of its LCD and LC, which is found to be defective electrically and visually when inspected in accordance with 0 lGDVacceptance standards, for a period on one year froP data of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of 0 LGV is limited to repair and/or replacement on the terms set forth above. 0 LGDV will not responsible for any subsequent or consequential events.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

