Specification

Address:
Telephone:
Fax:
Email:
Website:

Midas Displays, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU

Midas LCD Part Number System

$=\quad$ T: TN S: STN B: STN Blue G: STN Grey F: FSTN F2: FFSTN
$=\quad$ P: Positive N: Negative
$=\quad$ R: Reflective M: Transmissive T: Transflective
$=\quad$ Backlight: Blank: Reflective L: LED
$=$ Backlight Colour: Y: Yellow-Green W: White B: Blue R: Red A: Amber O: Orange G: Green RGB: R.G.B.
$=$ Driver Chip: Blank: Standard I: $\mathbf{I}^{2} \mathrm{C} \quad$ T: Toshiba T6963C A: Avant SAP1024B R: Raio RA8835

Contents

1. Precautions in use of LCD Modules

2. General Specification
3. Absolute Maximum Ratings
4. Electrical Characteristics
5. Optical Characteristics
6. Interface Pin Function
7. Power Supply
8. Contour Drawing \& Block Diagram
9. Function Description
10. Character Generator ROM Pattern
11. Instruction Table
12. Timing Characteristics
13. Initializing of LCM
14. Quality Assurance
15. Reliability

1. Precautions in use of LCD Modules

(1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
(2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
(3) Don't disassemble the LCM.
(4) Don't operate it above the absolute maximum rating.
(5) Don't drop, bend or twist LCM.
(6) Soldering: only to the I/O terminals.
(7) Storage: please storage in anti-static electricity container and clean environment.

2. General Specification

Item	Dimension	Unit
Number of Characters	8 characters x 2 Lines	-
Module dimension (Without LED Backlight)	$25.0 \times 17.5 \times 4.3$ (MAX)	mm
View area	21.0×9.0	mm
Active area	17.6×6.0	mm
Dot size	0.345×0.345	mm
Dot pitch	0.375×0.375	mm
Character size	1.845×2.595	mm
Character pitch	2.25×3.405	
LCD type	$1 / 16$	STN,GRAY, Reflective
Duty	6 o'clock	
View direction	Yellow-green LED Backlight	
Backlight Type		

3. Absolute Maximum Ratings

Item	Symbol	Min	Max	Unit	
Input Voltage	V_{I}	-0.3	$\mathrm{VDD}+0.3$	V	
Supply Voltage For Logic	VDD- $_{\text {SS }}$	-0.3	7.0	V	
Supply Voltage For LCD	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$	Vdd-13.5	0	V	
Normal Temperature LCM	Operating Temp.	Top	0	50	${ }^{\circ} \mathrm{C}$
	Storage Temp.	Tstr	-20	70	${ }^{\circ} \mathrm{C}$

4. Electrical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
Supply Voltage For Logic	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	-	4.5	5.0	5.5	V
Supply Voltage For LCD	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	2.9	3.4	3.9	V
Input High Volt.	V_{IH}	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
Input Low Volt.	V_{IL}	-	V_{SS}	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Supply Current	I_{DD}	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	0.5	1.2	1.5	mA
Supply Voltage of						
Yellow-green backlight		Forward current $=15 \mathrm{~mA}$ N				

5. Optical Characteristics

Item	Symbol	Condition	Min	Typ	Max	Unit
View Angle	(V) θ	$\mathrm{CR} \geqq 2$	-20	-	35	deg
	(H) φ	$\mathrm{CR} \geqq 2$	-30	-	30	deg
Contrast Ratio	CR	-	-	3	-	-
Response Time	T rise	-	-	-	250	ms
	T fall	-	-	-	250	ms

Definition of Operation Voltage (Vop)
Definition of Response Time (Tr, Tf)

Conditions:
Operating Voltage: Vop Viewing Angle $(\theta, \varphi): 0^{\circ}, 0^{\circ}$
Frame Frequency: 64 HZ Driving Waveform: 1/N duty, 1/a bias
Definition of viewing angle ($\mathrm{CR} \geqq 2$)

6. Interface Pin Function

Pin No.	Symbol	Level	
1	$\mathrm{~V}_{\text {sS }}$	0 V	Ground
2	$\mathrm{~V}_{\mathrm{DD}}$	5.0 V	Supply Voltage for logic
3	V 0	(Variable)	Operating voltage for LCD
4	RS	H / L	H: DATA, L: Instruction code
5	R / W	H / L	H: Read(MPU \rightarrow Module) L: Write(MPU \rightarrow Module)
6	E	$\mathrm{H}, \mathrm{H} \rightarrow \mathrm{L}$	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	LED(-)		Cathode of LED Backlight
16	LED(+)		Anode of LED Backlight

7. Power Supply

SINGLE SUPPLY VOLTAGE TYPE

Vdd-V0: LCD Driving Voltage VR: 10K - 20K

8. Contour Drawing \& Block Diagram

9. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).
The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)

When the busy flag is 1 , the controller LSI is in the internal operation mode and the next instruction will not be accepted. When $\mathrm{RS}=0$ and $\mathrm{R} / \mathrm{W}=1$, the busy flag is output to DB 7 . The next instruction must be written after ensuring that the busy flag is 0 .

Address Counter (AC)
The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8 -bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationship between DDRAM addresses and positions on the liquid crystal display.

> High bits Low bits

Display position DDRAM address

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00 01 02 03 04 05 06
 07
 40 41 42 43 44 45 46 | 47 | | | | | | |

2-Line by 8-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8 -bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.
Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Relationship between CGRAM Addresses, Character Codes (DDRAM) and Characterpatterns

Table. 1

For 5 * 8 dotcharacter patterns

For 5 * 10 dot character patterns

10．Character Generator ROM Pattern

Table． 2

	景	GP＇F	－9三0
nomom	（2）	！1 AQay	－ 7 74 ${ }^{\text {a }}$
	（3）	＂2EREr	
	（4）	\＃3C5Es	
moono	（5）	丰4DTdt	－IF巾Nの
mooior	（6）	F5以吅	－オナ1宜宜
ma0010	（1）	8GFUfu	7t－ヨar
maotil	（8）	${ }^{3} 7 \mathrm{FW} 9 \mathrm{~m}$	フキ7ラロハ
maxa00	（1）	（8HXRX	
maxtor	（2）	$39 \mathrm{IVi} \mathrm{\unlhd}$	${ }_{2}{ }^{\text {¢ }}$ T ${ }^{\text {J }} \mathrm{ll}^{-1}$
maxt00	（3）	＊：TZ．jz	
	（4）	＋；K \mathbb{K} \	大相吅
	（6）	，《L枵1］	ャワファ
maxt100	（8）	$-=\mid \mathrm{H}] \mathrm{m} \mid$	ユスヘこも
	（a）		ョセ束＊
	（8）	T？0＿0＊	以》？\square^{0}

11. Instruction Table

Instruction	Instruction Code										Description	Execution time$($ fosc $=270 \mathrm{Khz})$
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
Clear Display	0	0	0	0	0	0	0	0	0	1	Write " 00 H " to DDRAM and set DDRAM address to " 00 H " from AC	1.53 ms
Return Home	0	0	0	0	0	0	0	0	1	-	Set DDRAM address to " 00 H " from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53 ms
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	$39 \mu \mathrm{~s}$
Display ON/OFF Control	0	0	0	0	0	0	1	D	C	B	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	$39 \mu \mathrm{~s}$
Cursor or Display Shift	0	0	0	0	0	1	S/C	R / L	-	-	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	$39 \mu \mathrm{~s}$
Function Set	0	0	0	0	1	DL	N	F	-	-	Set interface data length (DL8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F: 5×11 dots $/ 5 \times 8$ dots)	$39 \mu \mathrm{~s}$
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	$39 \mu \mathrm{~s}$
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	$39 \mu \mathrm{~s}$
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or not can be known by reading BF . The contents of address counter can also be read.	t $0 \mu \mathrm{~s}$
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	$43 \mu \mathrm{~s}$

* "-": disregard

12. Timing Characteristics

12.1 Write Operation

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\mathrm{cycE}}$	1200	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	140	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er}}, \mathrm{t}_{\mathrm{Ef}}$	-	-	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data set-up time	$\mathrm{t}_{\mathrm{DSW}}$	40	-	-	ns
Data hold time	t_{H}	10	-	-	ns

12.2 Read Operation

NOTE: *VOL1 is assumed to be 0.8 V at 2 MHZ operation.
$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	Min	Typ	Max	Unit
Enable cycle time	$\mathrm{t}_{\text {cycE }}$	1200	-	-	ns
Enable pulse width (high level)	$\mathrm{PW}_{\mathrm{EH}}$	140	-	-	ns
Enable rise/fall time	$\mathrm{t}_{\mathrm{Er},} \mathrm{t}_{\mathrm{Ef}}$	-	-	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	-	-	ns
Address hold time	t_{AH}	10	-	-	ns
Data delay time	$\mathrm{t}_{\mathrm{DDR}}$	-	-	100	ns
Data hold time	$\mathrm{t}_{\mathrm{DHR}}$	10	-	-	ns

12.3 Timing Diagram of VDD Against V0.

Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.

13. Initializing of LCM

8-Bit Ineterface

14. Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgment Criterion	Partition
1	Spots	A)Clear Note: Including pin holes and defective dots which must be within one pixel size. B)Unclear	Minor
2	Bubbles in Polarizer	Size: d mm Acceptable Qty in active area $\mathrm{d} \leqq 0.3$ Disregard $0.3<\mathrm{d} \leqq 1.0$ 3 $1.0<\mathrm{d} \leqq 1.5$ 1 $1.5<\mathrm{d}$ 0	Minor
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	Allowable Density	Above defects should be separated more than 30 mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Back-light type should be judged with back-light on state only.	Minor

15. Reliability

Content of Reliability Test

Environmental Test			
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & 70^{\circ} \mathrm{C} \\ & 96 \mathrm{hrs} \end{aligned}$	-
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	$\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 96 \mathrm{hrs} \end{aligned}$	
High Temperature Operation	Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time.	$50^{\circ} \mathrm{C}$ 96hrs	-
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	$0^{\circ} \mathrm{C}$ 96hrs	
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	$70^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ 96hrs	-
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage \& Current) and temperature / humidity stress to the element for a long time.	$50^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ 96hrs	
Temperature Cycle	Endurance test applying the low and high temperature cycle.	$-20^{\circ} \mathrm{C} \rightarrow 70^{\circ} \mathrm{C}$ 10 cycles	
Mechanical Test			
Vibration test	Endurance test applying the vibration during transportation and using.	$\begin{aligned} & 10 \sim 22 \mathrm{~Hz} \rightarrow 1.5 \mathrm{mmp}-\mathrm{p} \\ & 22 \sim 500 \mathrm{~Hz} \rightarrow 1.5 \mathrm{G} \\ & \text { Total } 0.5 \mathrm{hrs} \\ & \hline \end{aligned}$	-
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction	-

$* * *$ Supply voltage for logic system $=5 \mathrm{~V}$. Supply voltage for LCD system $=$ Operating voltage at $25^{\circ} \mathrm{C}$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

