

Address: Telephone: Fax: Email: Website: Midas Displays, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU $+44\ (0)1493\ 602602$ $+44\ (0)1493\ 665111$ sales@midasdisplays.com www.midasdisplays.com

Specification

Address: Telephone: Fax: Email: Website: Midas Displays, Electra House, 32 Southtown Road, Great Yarmouth, Norfolk, NR31 0DU +44 (0)1493 602602 +44 (0)1493 665111

+44 (0)1493 665111 sales@midasdisplays.com www.midasdisplays.com

Midas LCD Part Number System

COG 132033 S 1 2 3 4 5 6 7 12 10 11 13 14 16

1 = **MC:** Midas Components

2 = Blank: COB (chip on board) COG: chip on glass

3 = No of dots (e.g. $240064 = 240 \times 64 \text{ dots}$) (e.g. $21605 = 2 \times 16 \text{ 5mm C.H.}$)

4 = Series

5 = Series Variant: A to Z - see addendum

6 = **3:** 3 o'clock **6:** 6 o'clock **9:** 9 o'clock **12:** 12 o'clock

7 = S: Normal (0 to + 50 deg C) W: Wide temp. (-20 to + 70 deg C) X: Extended temp (-30 + 80 Deg C)

8 = Character Set

Blank: Standard (English/Japanese)

C: Chinese Simplified (Graphic Displays only)

CB: Chinese Big 5 (Graphic Displays only)

H: Hebrew

K: European (std) (English/German/French/Greek)

L: English/Japanese (special)

M: European (English/Scandinavian)

R: Cyrillic

W: European (English/Greek)

U: European (English/Scandinavian/Icelandic)

9 = **Bezel Height** (where applicable / available)

	Ton of Populto Ton	Common	Array
	Top of Bezel to Top of PCB	(via pins 1	or Edge
	01 LCD	and 2)	Lit
Blank	9.5mm / not applicable	Common	Array
2	8.9 mm	Common	Array
3	7.8 mm	Separate	Array
4	7.8 mm	Common	Array
5	9.5 mm	Separate	Array
6	7 mm	Common	Array
7	7 mm	Separate	Array
8	6.4 mm	Common	Edge
9	6.4 mm	Separate	Edge
\mathbf{A}	5.5 mm	Common	Edge
В	5.5 mm	Separate	Edge
D	6.0mm	Separate	Edge
E	5.0mm	Separate	Edge
F	4.7mm	Common	Edge
G	3.7mm	Separate	m EL

10 = **T:** TN **S:** STN **B:** STN Blue **G:** STN Grey **F:** FSTN **F2:** FFSTN

11 = **P:** Positive **N:** Negative

12 = **R:** Reflective **M:** Transmissive **T:** Transflective

13 = Backlight: Blank: Reflective L: LED

14 = Backlight Colour: Y: Yellow-Green W: White B: Blue R: Red A: Amber O: Orange G: Green RGB: R.G.B.

15 = Driver Chip: Blank: Standard I: I²C T: Toshiba T6963C A: Avant SAP1024B R: Raio RA8835

16 = Voltage Variant: e.g. 3 = 3v

Contents

- 1. Precautions in use of LCD Modules
- 2. General Specification
- 3. Absolute Maximum Ratings
- 4. Electrical Characteristics
- 5. Optical Characteristics
- 6. Interface Pin Function
- 7. Power Supply
- 8. Contour Drawing & Block Diagram
- 9. Function Description
- 10. Character Generator ROM Pattern
- 11. Instruction Table
- 12. Timing Characteristics
- 13. Initializing of LCM
- 14. Quality Assurance
- 15. Reliability

1. Precautions in use of LCD Modules

- (1) Avoid applying excessive shocks to the module or making any alterations or modifications to it.
- (2) Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
- (3) Don't disassemble the LCM.
- (4) Don't operate it above the absolute maximum rating.
- (5) Don't drop, bend or twist LCM.
- (6) Soldering: only to the I/O terminals.
- (7) Storage: please storage in anti-static electricity container and clean environment.

2. General Specification

Item	Dimension	Unit
Number of Characters	8 characters x 2 Lines	
Module dimension (Without LED Backlight)	25.0 x 17.5 x 4.3 (MAX)	mm
View area	21.0 x 9.0	mm
Active area	17.6 x 6.0	mm
Dot size	0.345 x 0.345	mm
Dot pitch	0.375 x 0.375	mm
Character size	1.845x 2.595	mm
Character pitch	2.25 x 3.405	mm
LCD type	STN,GRAY, Reflective	
Duty	1/16	
View direction	6 o'clock	
Backlight Type	Yellow-green LED Backlight	

3. Absolute Maximum Ratings

Ite	em	Symbol	Min	Max	Unit
Input Voltage		$V_{\rm I}$	-0.3	VDD+0.3	V
Supply Voltage For L	ogic	$VDD-V_{SS}$	-0.3	7.0	V
Supply Voltage For L	.CD	V_{DD} - V_0	Vdd-13.5	0	V
Normal Temperature	l Temperature Operating Temp.		0	50	°C
LCM	Storage Temp.	Tstr	-20	70	°C

4. Electrical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage For Logic	V_{DD} - V_{SS}	/_/_//	4.5	5.0	5.5	V
Supply Voltage For LCD	V _{DD} -V ₀	Ta=25°C	2.9	3.4	3.9	V
Input High <mark>Volt.</mark>	V _{IH}	7-10	$0.7 \mathrm{V}_{\mathrm{DD}}$		V_{DD}	V
Input Low <mark>Vol</mark> t.	V_{IL}		V _{SS}		0.3 V _{DD}	V
Supply Current	I_{DD}	V _{DD} =5V	0.5	1.2	1.5	mA
Supply Voltage of Yellow-green backlight	$V_{ m LED}$	Forward current = 15 mA Number of LED die 1x1= 1	2.9	3.1	3.3	V

5. Optical Characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
View Angle	(V)θ	CR≧2	-20		35	deg
view ringie	(Н)ф	CR≧2	-30 —		30	deg
Contrast Ratio	CR	_	_	3	_	_
Response Time	T rise	_	_	_	250	ms
response Time	T fall	_	_	_	250	ms

Definition of Operation Voltage (Vop)

Definition of Response Time (Tr, Tf)

Conditions:

Operating Voltage: Vop

Viewing Angle (θ, φ): 0° , 0°

Frame Frequency: 64 HZ

Driving Waveform: 1/N duty, 1/a bias

Definition of viewing angle ($CR \ge 2$)

6. Interface Pin Function

Pin No.	Symbol	Level	Description
1	V_{SS}	0V	Ground
2	V_{DD}	5.0V	Supply Voltage for logic
3	V0	(Variable)	Operating voltage for LCD
4	RS	H/L	H: DATA, L: Instruction code
5	R/W	H/L	H: Read(MPU→Module) L: Write(MPU→Module)
6	Е	Н,Н→L	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	LED(-)		Cathode of LED Backlight
16	LED(+)		Anode of LED Backlight

7. Power Supply

SINGLE SUPPLY VOLTAGE TYPE

Vdd-V0: LCD Driving Voltage

VR: 10K - 20K

8. Contour Drawing & Block Diagram

9. Function Description

The LCD display Module is built in a LSI controller, the controller has two 8-bit registers, an instruction register (IR) and a data register (DR).

The IR stores instruction codes, such as display clear and cursor shift, and address information for display data RAM (DDRAM) and character generator (CGRAM). The IR can only be written from the MPU. The DR temporarily stores data to be written or read from DDRAM or CGRAM. When address information is written into the IR, then data is stored into the DR from DDRAM or CGRAM. By the register selector (RS) signal, these two registers can be selected.

RS	R/W	Operation
0	0	IR write as an internal operation (display clear, etc.)
0	1	Read busy flag (DB7) and address counter (DB0 to DB7)
1	0	Write data to DDRAM or CGRAM (DR to DDRAM or CGRAM)
1	1	Read data from DDRAM or CGRAM (DDRAM or CGRAM to DR)

Busy Flag (BF)

When the busy flag is 1, the controller LSI is in the internal operation mode and the next instruction will not be accepted. When RS=0 and R/W=1, the busy flag is output to DB7. The next instruction must be written after ensuring that the busy flag is 0.

Address Counter (AC)

The address counter (AC) assigns addresses to both DDRAM and CGRAM

Display Data RAM (DDRAM)

This DDRAM is used to store the display data represented in 8-bit character codes. Its extended capacity is 80×8 bits or 80 characters. Below figure is the relationship between DDRAM addresses and positions on the liquid crystal display.

Display position DDRAM address

1 2 3 4 5 6 7 8

00	01	02	03	04	05	06	07
40	41	42	43	44	45	46	47

2-Line by 8-Character Display

Character Generator ROM (CGROM)

The CGROM generate 5×8 dot or 5×10 dot character patterns from 8-bit character codes. See Table 2.

Character Generator RAM (CGRAM)

In CGRAM, the user can rewrite character by program. For 5×8 dots, eight character patterns can be written, and for 5×10 dots, four character patterns can be written.

Write into DDRAM the character code at the addresses shown as the left column of table 1. To show the character patterns stored in CGRAM.

Table.1

For 5 * 8 dot character patterns Character Codes Character Patterns CGRAM Address (DDRAM data) (CGRAM data) 7 6 5 4 3 2 1 0 5 4 3 2 1 0 7 6 5 4 3 2 1 0 High Low High High Low Low 0 0 0 0 Character 0 pattern(1) 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 Cursor pattern 0 0 0 0 0 0 0 0 0 0 0 0 Character 0 0 0 0 0 1 pattern(2) 0 0 0 0 * 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 Cursor pattern 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 For 5 * 10 dot character patterns Character Codes Character Patterns CGRAM Address (DDRAM data) (CGRAM data) 7 6 5 4 3 2 1 0 5 4 3 2 1 0 7 6 5 4 3 2 1 0 High Low High High Low Iow 0 0 0 0 0 0 0_0 n 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 Character 0 pattern 1 1 0 0 0 0 0 0 1 0 0 0 $0 \ 0 \ 0 \ 0$ 1 1 Cursor pattern 0 0 0 0 0 0

1 1 1 1

■ : " High "

10. Character Generator ROM Pattern

Table.2

Upper 4 Lower Bits 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CG RAM (1)			0	9	P	`	P				_	9	Ē,	α	p
xxxx0001	(2)		Ţ	1	A	Q	a	9			•	7	Ŧ	4	ä	q
xxxx0010	(3)		П	2	В	R	b	۳			ľ	1	ij	X	β	θ
xxxx0011	(4)		#	3	C	5	C	S			J	Ż	Ť	ŧ	ε	60
xxxx0100	(5)		\$	4	D	T	d	t			Ŋ.	Ι	ŀ	þ	μ	Ω
xxxx0101	(6)		7,	5	E	U	e	u			•	7	Ŧ	1	σ	ü
xxxx0110	(7 <mark>)</mark>	1	8.	6	F	Ų	f	Ų			Ŧ	ħ		5	ρ	Σ
xxxx0111	(8)		V-1	7	G	W	9	W			7	ŧ	7	Ž	q	π
xxxx1000	(1)		(8	H	X	h	X		FI	1	7	ネ	ij	Ţ	X
xxxx1001	(2))	9	I	γ	i	У			Ċ	ጛ	J	ıb	-1	Ч
xxxx1010	(3)		*		J	Z	j	Z			I	J	ñ	V	j	Ŧ
xxxx1011	(4)		+	;	K		k	{			#	Ħ	E		×	Я
xxxx1100	(5)		,	<		¥	1				t	Ð	7	7	¢	Ħ
xxxx1101	(6)		_		M		M	}			ュ	Z	٩	5	Ł	÷
xxxx1110	(7)		•	\rangle	N	۸	n	÷			3	t	#	Ů.	ñ	
xxxx1111	(8)		7	?	0	_	0	÷			ij	y	7	•	ö	

11. Instruction Table

				Ins	structio	on Coo	le					Execution time	
Instruction	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Description	(fosc=270Khz)	
Clear Display	0	0	0	0	0	0	0	0	0	1	Write '00H' to DDRAM and set DDRAM address to '00H' from AC	1.53ms	
Return Home	0	0	0	0	0	0	0	0	1	_	Set DDRAM address to '00H' from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed.	1.53ms	
Entry Mode Set	0	0	0	0	0	0	0	1	I/D	SH	Assign cursor moving direction and enable the shift of entire display.	39μs	
Display ON/OFF Control	0	0	0	0	0	0	1	D	С	В	Set display (D), cursor (C), and blinking of cursor (B) on/off control bit.	39μs	
Cursor or Display Shift	0	0	0	0	0	1	S/C	R/L	_	_	Set cursor moving and display shift control bit, and the direction, without changing of DDRAM data.	39µs	
Function Set	0	0	0	0	1	DL	N	F	4	-	Set interface data length (DL8-bit/4-bit), numbers of display line (N:2-line/1-line)and, display font type (F:5×11 dots/5×8 dots)	39µs	
Set CGRAM Address	0	0	0	1	AC5	AC4	AC3	AC2	AC1	AC0	Set CGRAM address in address counter.	39μs	
Set DDRAM Address	0	0	1	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Set DDRAM address in address counter.	39μs	
Read Busy Flag and Address	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Whether during internal operation or no can be known by reading BF. The contents of address counter can also be read.	Ous	
Write Data to RAM	1	0	D7	D6	D5	D4	D3	D2	D1	D0	Write data into internal RAM (DDRAM/CGRAM).	43μs	
Read Data from RAM	1	1	D7	D6	D5	D4	D3	D2	D1	D0	Read data from internal RAM (DDRAM/CGRAM).	43μs	

* "-": disregard

12. Timing Characteristics

12.1 Write Operation

Ta=25°C, VDD=5.0± 0.5V

Item	Symbol	Min	Тур	Max	Unit
Enable cy <mark>cle time</mark>	$t_{ m cycE}$	1200	Y		ns
Enable pu <mark>lse</mark> width (high level)	PW _{EH}	140			ns
Enable rise/fall time	t _{Er} ,t _{Ef}	-	\ - //-	25	ns
Address set-up time (RS, R/W to E)	t_{AS}	0	PE		ns
Address hold time	t_{AH}	10	_	_	ns
Data set-up time	$t_{ m DSW}$	40	_	_	ns
Data hold time	t_{H}	10	_	_	ns

12.2 Read Operation

NOTE: *VOL1 is assumed to be 0.8V at 2 MHZ operation.

Ta=25°C, VDD= 5.0 ± 0.5 V

Item	Symbol	Min	Тур	Max	Unit
Enable cy <mark>cle ti</mark> me	t _{cycE}	1200	(=)	-	ns
Enable pu <mark>lse wid</mark> th (high level)	PW_{EH}	140	A	_	ns
Enable ris <mark>e/f</mark> all t <mark>ime</mark>	$t_{\rm Er}, t_{\rm Ef}$	J - i	=	25	ns
Address set-up time (RS, R/W to E)	t _{AS}	0	V/c	1/-/	ns
Address hold time	$t_{ m AH}$	10			ns
Data delay time	t _{DDR}	_	_	100	ns
Data hold time	t _{DHR}	10	_	_	ns

12.3 Timing Diagram of VDD Against V0.

Power on sequence shall meet the requirement of Figure 4, the timing diagram of VDD against V0.

13. Initializing of LCM

8-Bit Ineterface

14. Quality Assurance

Screen Cosmetic Criteria

Item	Defect	Judgment Criterion	Partition
1	Spots	A)Clear Size: d mm d ≤ 0.1 Disregard 0.1 <d <math="">\leq 0.2 0.2<d <math="">\leq 0.3 0.3<d <math="" and="" b)unclear="" be="" d="" defective="" dots="" holes="" including="" mm="" must="" note:="" one="" pin="" pixel="" size.="" size:="" which="" within="">\leq 0.2 Disregard 0.2<d <math="">\leq 0.3 Acceptable Qty in active area Disregard 0.2<d <math="">\leq 0.5 0.5<d <math="">\leq 0.7 0.7<d 0<="" td=""><td>Minor</td></d></d></d></d></d></d></d>	Minor
2	Bubbles in Polarizer		Minor
3	Scratch	In accordance with spots cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.	Minor
4	All <mark>owable</mark> Density	Above defects should be separated more than 30mm each other.	Minor
5	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels. Back-light type should be judged with back-light on state only.	Minor

15. Reliability

Content of Reliability Test

	-		
Environmental 7	Test		
Test Item	Content of Test	Test Condition	Applicable Standard
High Temperature storage	Endurance test applying the high storage temperature for a long time.	70°C 96hrs	
Low Temperature storage	Endurance test applying the high storage temperature for a long time.	-20°C 96hrs	
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	50°C 96hrs	
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	0°C 96hrs	
High Temperature/ Humidity Storage	Endurance test applying the high temperature and high humidity storage for a long time.	70°C, 90%RH 96hrs	
High Temperature/ Humidity Operation	Endurance test applying the electric stress (Voltage & Current) and temperature / humidity stress to the element for a long time.	50°C, 90%RH 96hrs	
Temperature Cycle	Endurance test applying the low and high temperature cycle. -20°C 25°C 70°C 30min 5min 30min 1 cycle	-20°C →70°C 10 cycles	
Mechanical Test			
Vibration test	Endurance test applying the vibration during transportation and using.	10~22Hz→1.5mmp-p 22~500Hz→1.5G Total 0.5hrs	
Shock test	Constructional and mechanical endurance test applying the shock during transportation.	50G Half sign wave 11 msedc 3 times of each direction	

^{***}Supply voltage for logic system=5V. Supply voltage for LCD system =Operating voltage at 25° C

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for midas manufacturer:

Other Similar products are found below:

MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MC0T064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI