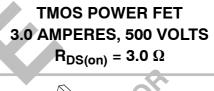
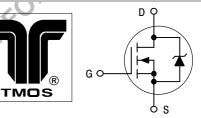
Designer's[™] Data Sheet TMOS E-FET ™ **High Energy Power FET** N-Channel Enhancement-Mode Silicon Gate


This advanced high voltage TMOS E-FET is designed to withstand high energy in the avalanche mode and switch efficiently. This new high energy device also offers a drain-to-source diode with fast recovery time. Designed for high voltage, high speed switching applications such as power supplies, PWM motor controls and other inductive loads, the avalanche energy capability is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients.

- Avalanche Energy Capability Specified at Elevated Temperature
- Low Stored Gate Charge for Efficient Switching
- Internal Source-to-Drain Diode Designed to Replace External Zener e , ne , Discrete , Di Transient Suppressor — Absorbs High Energy in the Avalanche Mode
- Source-to-Drain Diode Recovery Time Comparable to Discrete Fast Recovery Diode



ON Semiconductor®

http://onsemi.com

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	500	Vdc
Drain–Gate Voltage (R_{GS} = 1.0 M Ω)	V _{DGR}	500	Vdc
Gate–Source Voltage — Continuous — Non–repetitive (t _p ≤ 50 μs)	V _{GS} V _{GSM}	±20 ±40	Vdc Vpk
Drain Current — Continuous — Pulsed	I _D I _{DM}	3.0 10	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.4	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-65 to 150	°C

UNCLAMPED DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS (T_d < 150°C)

Single Pulse Drain-to-Source Avalanche Energy — $T_J = 25^{\circ}C$ — $T_J = 100^{\circ}C$	W _{DSR} (1)	210 33	mJ
Repetitive Pulse Drain-to-Source Avalanche Energy	W _{DSR} (2)	5.0	

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case — Junction to Ambient	R _{θJC} R _{θJA}	2.5 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C
 (1) VDD = 50 V, ID = 3.0 A (2) Pulse Width and frequency is limited by TJ(max) and thermal response Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circularity of the design of most circularity of the design of most circularity of the design of the		information presen	ted. SOA Limit

(1) $V_{DD} = 50 \text{ V}, I_D = 3.0 \text{ A}$

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS			_		
Drain-to-Source Breakdown Voltage $(V_{GS} = 0, I_D = 0.25 \text{ mA})$	V _{(BR)DSS}	500	_	_	Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 500 \text{ V}, V_{GS} = 0$) ($V_{DS} = 400 \text{ V}, V_{GS} = 0, T_J = 125^{\circ}\text{C}$)	I _{DSS}			0.25 1.0	mAdc
Gate-Body Leakage Current, Forward (V _{GSF} = 20 Vdc, V _{DS} = 0)	I _{GSSF}			100	nAdc
Gate-Body Leakage Current, Reverse (V_{GSR} = 20 Vdc, V_{DS} = 0)	I _{GSSR}	—		100	nAdc

ON CHARACTERISTICS*

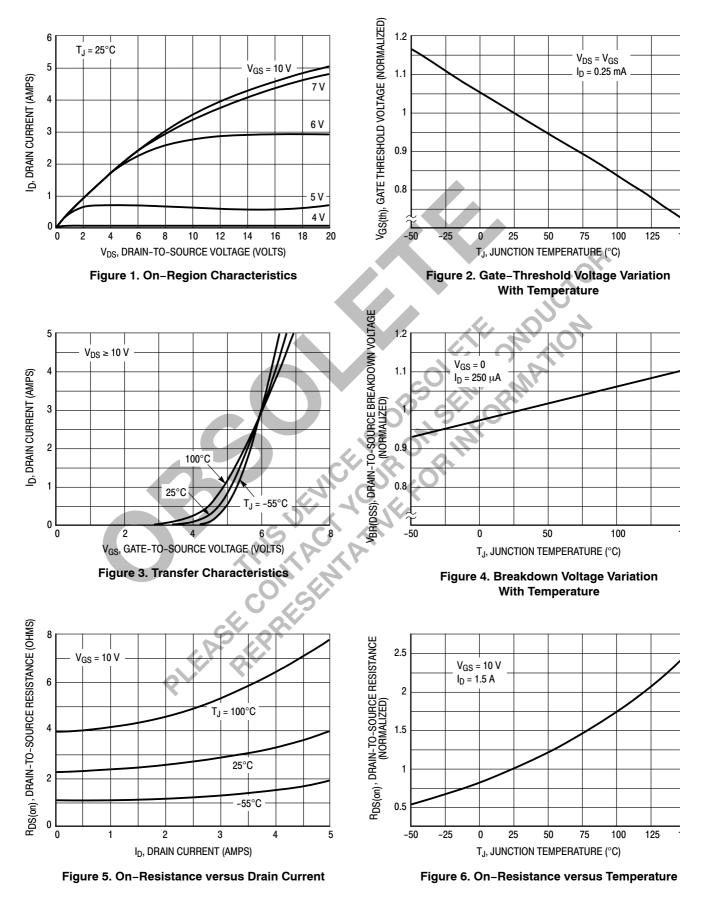
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 0.25 \text{ mAdc})$ $(T_J = 125^{\circ}\text{C})$	V _{GS(th)}	2.0 1.5		4.0 3.5	Vdc
Static Drain–Source On–Resistance (V_{GS} = 10 Vdc, I_D = 1.5 Adc)	R _{DS(on)}	—	2.4	3.0	Ohm
	VDS(on)		20	10 8.0	Vdc
Forward Transconductance (V _{DS} = 15 Vdc, I _D = 1.5 Adc)	9 FS	1.0	S= .	—	mhos
DYNAMIC CHARACTERISTICS			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		

SWITCHING CHARACTERISTICS*

Turn-On Delay Time	5	t _{d(on)}		14	_	ns
Rise Time	$(V_{DD} = 250 \text{ V}, \text{ I}_{D} \approx 3.0 \text{ A},$ $P_{D} = 18 \text{ O}, P_{U} = 83 \text{ O}$	t _r		14	_	
Turn-Off Delay Time	$(V_{DD} = 250 \text{ V}, I_D \approx 3.0 \text{ A}, R_G = 18 \Omega, R_L = 83 \Omega, V_{GS(on)} = 10 \text{ V})$	t _{d(off)}		30	_	
Fall Time		t _f		20	_	
Total Gate Charge		Qg	_	15	21	nC
Gate-Source Charge	$(V_{DS} = 400 \text{ V}, I_{D} = 3.0 \text{ A}, V_{GS} = 10 \text{ V})$	Q _{gs}		2.5	_	
Gate-Drain Charge		Q _{gd}	_	10		

SOURCE-DRAIN DIODE CHARACTERISTICS*

Forward On-Voltage	(I _S = 3.0 A)	V _{SD}	_		1.5	Vdc
Forward Turn-On Time		t _{on}	_	**		ns
Reverse Recovery Time	(I _S = 3.0 A, di/dt = 100 A/μs)	t _{rr}	_	200		


INTERNAL PACKAGE INDUCTANCE

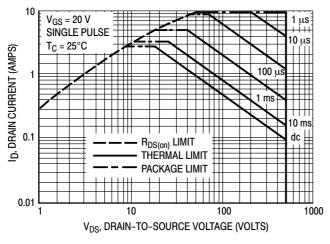
Internal Drain Inductance	L _d				nH
(Measured from the contact screw on tab to center of die)		—	3.5		
(Measured from the drain lead 0.25" from package to center of die)		—	4.5	—	
Internal Source Inductance (Measured from the source lead 0.25" from package to source bond pad)	Ls	_	7.5		

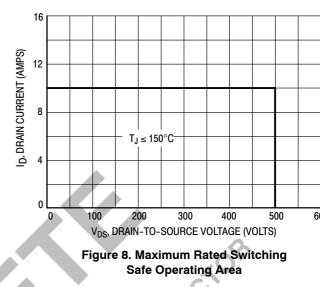
*Indicates Pulse Test: Pulse Width = 300 μ s Max, Duty Cycle < 2.0%.

** Limited by circuit inductance.

TYPICAL ELECTRICAL CHARACTERISTICS

SAFE OPERATING AREA INFORMATION




Figure 7. Maximum Rated Forward Biased Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions.

SWITCHING SAFE OPERATING AREA

The switching safe operating area (SOA) of Figure 8 is the boundary that the load line may traverse without incurring damage to the MOSFET. The fundamental limits are the peak current, I_{DM} and the breakdown voltage, $V_{(BR)DSS}$. The switching SOA shown in Figure 8 is

applicable for both turn-on and turn-off of the devices for switching times less than one microsecond.

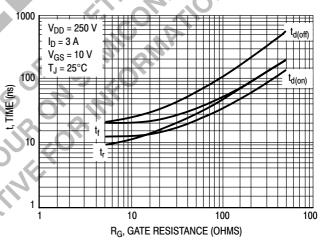
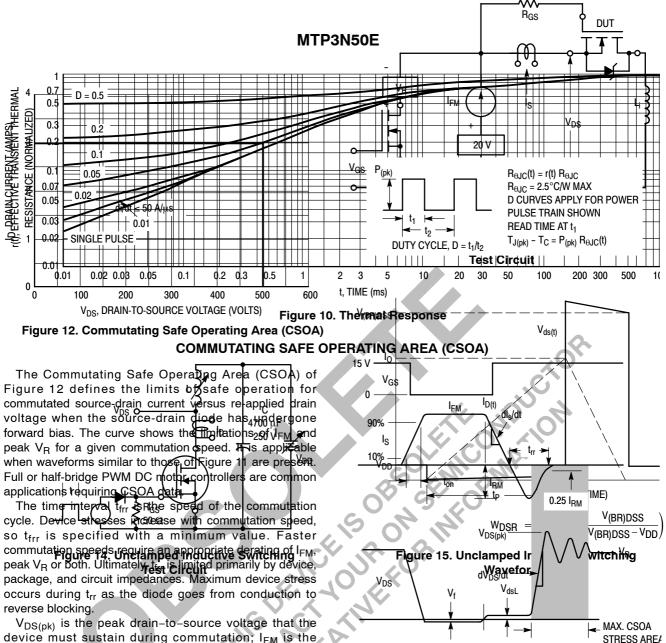
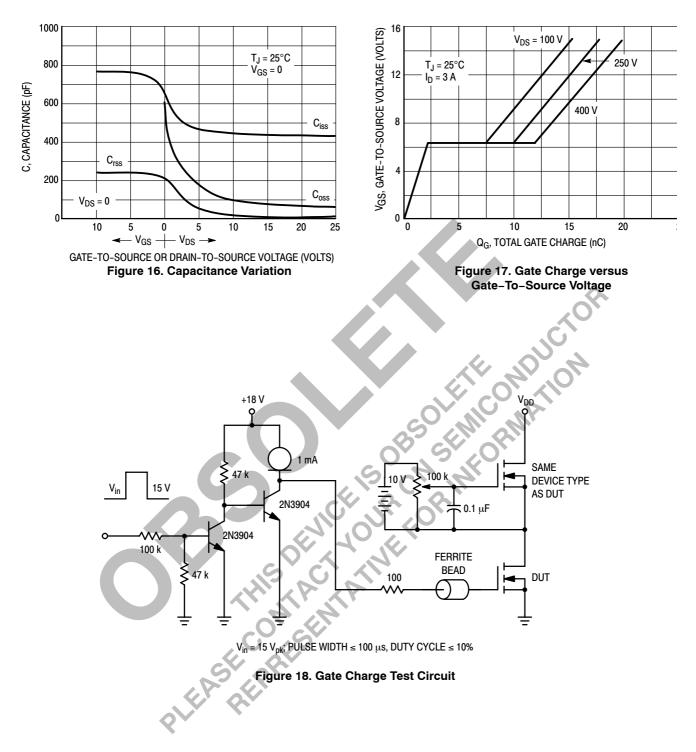


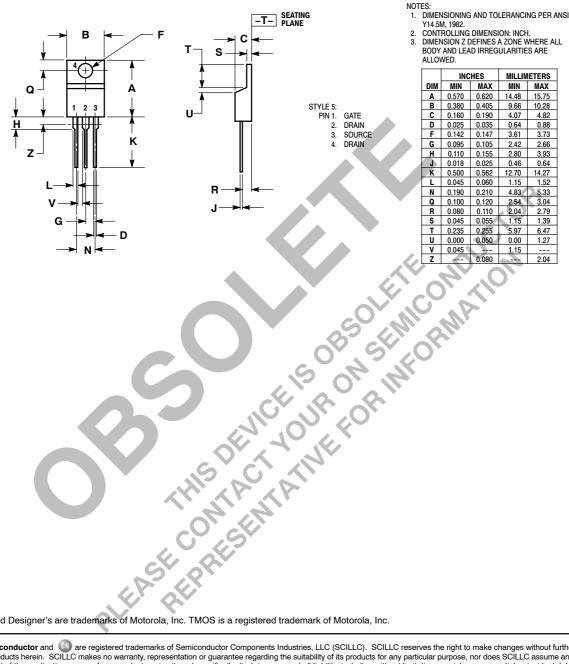
Figure 9. Resistive Switching Time Variation versus Gate Resistance




Figure 11. Commutating Waveforms

 $V_{DS(pk)}$ is the peak drain-to-source voltage that the device must sustain during commutation; I_{FM} is the maximum forward source-drain diode current just prior to the onset of commutation.

 V_R is specified at 80% of $V_{(BR)DSS}$ to ensure that the CSOA stress is maximized as I_S decays from I_{RM} to zero.


 R_{GS} should be minimized during commutation. $T_{\rm J}$ has only a second order effect on CSOA.

Stray inductances, $L_{\rm i}$ in Motorola's test circuit are assumed to be practical minimums.

PACKAGE DIMENSIONS

CASE 221A-06 **ISSUE Y**

E-FET and Designer's are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc.

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for unbranded manufacturer:

Other Similar products are found below :

 BL200H
 396.357
 AC-9
 MODEL
 1000
 MPT-251
 20844
 BP00001/36 ROLLS
 62845
 A1319
 MA0510BIM-3PIN
 HT-328
 OL1000
 JR9235

 1M BLUE
 195.303
 SB344
 JR9021-2M
 029-1039
 F2
 WATERPROOF CASE 24"
 CS-47
 MA0410B1M
 10HA084
 26.514.5026.50
 JR9235

 1.5M RED
 029-0058
 KLEIN TOOLS SCREWDRIVER 4-IN-1
 JR9235-1M YELLOW
 S2G
 029-1044
 JR9235-0.5M YELLOW
 199.370

 JR9235-0.5M BLUE
 WATERPROOF CASE 10.5"
 JR9235-0.5M GREEN
 WATERPROOF CASE 18"
 JR9235-1M RED
 029-0054
 JR9235

 1M BLACK
 JR8001/0.5M BLACK
 JR9235-0.5M RED
 029-1022
 029-0057
 15X24X24"
 SQUARE BIN LINERS, 200 PER BOX