MC74AC652, MC74ACT652

Octal Transceiver/Register with 3-State Outputs (Non-Inverting)

The MC74AC/ACT652 consists of registered bus transceiver circuits, with outputs, D-type flip-flops and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CAB or CBA). The four fundamental data handling functions available are illustrated in Figures 1 to 4.

Features

- Independent Registers for A and B Buses
- Multiplexed Real-Time and Stored Data Transfers
- Choice of True and Inverting Data Paths
- 3-State Outputs
- 300 mil Slim Dual-in-Line Package
- Outputs Source/Sink 24 mA
- 'ACT652 Has TTL Compatible Inputs
- These are $\mathrm{Pb}-F r e e ~ D e v i c e s ~$

Figure 1.
STORAGE FROM BUS TO REGISTER

Figure 3.

REAL TIME TRANSFER B-BUS TO A-BUS

Figure 2.

TRANSFER
FROM REGISTER TO BUS

Figure 4.

MC74AC652, MC74ACT652

Figure 5. Pinout: 24-Lead Plastic Package (Top View)

Figure 6. Logic Symbol

NOTE: This diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 7. Logic Diagram

FUNCTION TABLE

Inputs						Data I/O*		Operation or Function
GAB	GBA	CAB	CBA	SAB	SBA	$\mathrm{A}_{0}-\mathrm{A}_{7}$	$\mathrm{B}_{0}-\mathrm{B}_{7}$	
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	H or L \Uparrow	H or L \Uparrow	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Input	Isolation Store A and B Data
$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \Uparrow \\ & \Uparrow \end{aligned}$	$\underset{\Uparrow}{\mathrm{H} \text { or } \mathrm{L}}$	$\begin{gathered} X \\ X^{\star *} \end{gathered}$	$\begin{aligned} & \hline X \\ & x \\ & \hline \end{aligned}$	Input Input	Unspecified* Output	Store A, Hold B Store A in Both Registers
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\mathrm{H} \text { or } \mathrm{L}$ \Uparrow	$\begin{aligned} & \Uparrow \\ & \Uparrow \end{aligned}$	$\begin{aligned} & X \\ & X \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{X} \\ \mathrm{X}^{\star *} \end{gathered}$	Unspecified* Output	Input Input	Hold A, Store B Store B in Both Registers
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & X \\ & X \end{aligned}$	X H or L	$\begin{aligned} & X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	Output	Input	Real-Time B Data to A Bus Stored B Data to A Bus
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	X H or L	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	Input	Output	Real-Time A Data to B Bus Stored A Data to B Bus
H	L	H or L	H or L	H	H	Output	Output	Stored A Data to B Bus and Stored B Data to A Bus

*The data output functions may be enabled or disabled by various signals at the GBA and GAB inputs. Data input functions are always enabled;
i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs.
**Select control $=\mathrm{L}$: clocks can occur simultaneously.
H = HIGH Voltage Level; L = LOW Voltage Level; X = Immaterial; $\uparrow=$ LOW-to-HIGH Transition

MC74AC652, MC74ACT652

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND) (Note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{K}	DC Input Diode Current	± 20	mA
lok	DC Output Diode Current	± 50	mA
Iout	DC Output Sink/Source Current	± 50	mA
I_{CC}	DC Supply Current, per Output Pin	± 50	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current, per Output Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	140	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2)	59.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL 94 V-0 @ 0.125 in	
$\mathrm{V}_{\text {ESD }}$	ESD Withstand VoltageHuman Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	$\begin{gathered} >2000 \\ >200 \\ >1000 \end{gathered}$	V
ILatchup	Latchup Performance \quad Above V_{CC} and Below GND at $85^{\circ} \mathrm{C}$ (Note 6)	± 100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. lout absolute maximum rating must be observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Typ	Min	Unit
V_{CC}	Supply Voltage	'AC	2.0	5.0	6.0	V
		'ACT	4.5	5.0	5.5	
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Ref. to GND)		0	-	V_{CC}	V
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Note 1) 'AC Devices except Schmitt Inputs	V_{CC} @ 3.0 V	-	150	-	ns/V
		$\mathrm{V}_{\mathrm{Cc}} @ 4.5 \mathrm{~V}$	-	40	-	
		V_{Cc} @ 5.5 V	-	25	-	
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Note 2) 'ACT Devices except Schmitt Inputs	$\mathrm{V}_{\text {Cc }} @ 4.5 \mathrm{~V}$	-	10	-	ns / V
		$\mathrm{V}_{\mathrm{CC}} @ 5.5 \mathrm{~V}$	-	8.0	-	
T_{A}	Operating Ambient Temperature Range		-40	25	85	${ }^{\circ} \mathrm{C}$
IOH	Output Current - HIGH		-	-	-24	mA
l L	Output Current - LOW		-	-	24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

1. $V_{\text {in }}$ from 30% to $70 \% \mathrm{~V}_{\mathrm{cc}}$; see individual Data Sheets for devices that differ from the typical input rise and fall times.
2. $\mathrm{V}_{\text {in }}$ from 0.8 V to 2.0 V ; see individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$			74AC	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{array}{\|cc} { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & -12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{array}$
$\mathrm{V}_{\text {OL }}$	Minimum Low Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{array}{\|cc} * \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{HH}} \\ & 12 \mathrm{~mA} \\ \mathrm{IOL} & 24 \mathrm{~mA} \\ & 24 \mathrm{~mA} \end{array}$
1 N	Maximum Input Leakage Current	5.5	-	± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
Iozt	Maximum 3-State Current	5.5	-	± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \end{aligned}$
Iold	\dagger Minimum Dynamic Output Current	5.5	-	-	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD		5.5	-	-	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC	Maximum Quiescent Supply Current	5.5	-	8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

*All outputs loaded; thresholds on input associated with output under test.
\dagger Maximum test duration 2.0 ms , one input loaded at a time.
NOTE: $I_{\mathbb{N}}$ and $I_{C C} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ 5.5 V .

AC CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}{ }^{*} \\ & \text { (V) } \end{aligned}$	74AC		74AC		Unit
			$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		
			Min	Max	Min	Max	
tple	Propagation Delay CPBA or CPAB to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 14.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CPBA or CPAB to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.5 \\ & 12.0 \end{aligned}$	ns
tpli	Propagation Delay A or B to B_{n} or A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay A or B to B_{n} or A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.5 \\ & \hline \end{aligned}$	ns
tpli	Propagation Delay SBA or SAB to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 11.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay SBA or SAB to A_{n} or B_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.5 \end{aligned}$	ns
tpzH	Output Enable Time OEBA to A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & \hline 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 13.5 \\ & 10.0 \end{aligned}$	ns
$t_{\text {PzL }}$	Output Enable Time OEBA to A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 10.5 \end{aligned}$	ns
tPhz	Output Disable Time OEBA to A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 13.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.0 \end{aligned}$	ns
tpLz	Output Disable Time OEBA to A_{n}	$\begin{aligned} & 3.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.5 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 14.0 \\ & 12.0 \\ & \hline \end{aligned}$	ns

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

DC CHARACTERISTICS

Symbol	Parameter	$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$			74ACT	Unit	Conditions
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \mathrm{C} \text { to } \\ +85^{\circ} \mathrm{C} \end{gathered}$		
			Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
VIL	Maximum Low Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{array}{r} 4.49 \\ 5.49 \end{array}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{cases}{ }^{\mathrm{V}_{\mathrm{IN}}=} \mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ \mathrm{I}_{\mathrm{OH}} & -24 \mathrm{~mA} \\ -24 \mathrm{~mA}\end{cases}$
V_{OL}	Minimum Low Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & { }^{*} \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}} \\ & -24 \mathrm{~mA} \\ & -24 \mathrm{~mA} \end{aligned}$
I_{N}	Maximum Input Leakage Current	5.5	-	± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
$\Delta \mathrm{l}_{\text {CCT }}$	Additional Max. ICC/Input	5.5	0.6	-	1.5	mA	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$
lozt	Maximum 3-State Current	5.5	-	± 0.6	± 6.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, G N D \end{aligned}$
Iold	\dagger Minimum Dynamic Output Current	5.5	-	-	75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
${ }^{\text {OHD }}$		5.5	-	-	-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
Icc	Maximum Quiescent Supply Current	5.5	-	8.0	80	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND

[^0]AC CHARACTERISTICS

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}{ }^{*} \\ (\mathrm{~V}) \end{gathered}$	$\begin{gathered} 74 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} 74 \mathrm{ACT} \\ \hline \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Unit
			Min	Max	Min	Max	
tpLH	Propagation Delay CPBA or CPAB to A_{n} or B_{n}	5.0	4.0	14.5	3.5	16.5	ns
tphL	Propagation Delay CPBA or CPAB to A_{n} or B_{n}	5.0	3.5	14.5	3.0	16.5	ns
tpli	Propagation Delay A or B to B_{n} or A_{n}	5.0	2.5	11.5	2.0	13.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay A or B to B_{n} or A_{n}	5.0	2.5	11.5	2.0	13.0	ns
tple	Propagation Delay SBA or SAB to A_{n} or B_{n}	5.0	2.5	12.0	2.0	13.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay SBA or SAB to A_{n} or B_{n}	5.0	3.0	12.0	2.5	13.5	ns
tPZH	Output Enable Time OEBA to A_{n}	5.0	2.0	11.5	1.5	13.0	ns
tpzL	Output Enable Time OEBA to A_{n}	5.0	2.5	11.5	2.0	13.0	ns
tphz	Output Disable Time OEBA to A_{n}	5.0	3.0	13.0	2.5	14.0	ns
tpLz	Output Disable Time OEBA to A_{n}	5.0	2.5	12.5	2.0	14.0	ns
tpzH	Output Enable time OEAB to B_{n}	5.0	2.5	12.0	2.0	13.5	ns
tpzL	Output Enable Time OEAB to B_{n}	5.0	2.5	12.0	2.0	13.5	ns
tPHZ	Output Enable Time OEAB to B_{n}	5.0	3.5	13.5	3.0	14.5	ns
tpLZ	Output Enable Time OEAB to B_{n}	5.0	3.0	13.5	2.5	15.0	ns
$\mathrm{t}_{\text {s }}$	Setup Time, HIGH or LOW A_{n} or B_{n} to CPBA or CPAB	5.0	7.0	-	8.0	-	ns
t_{h}	Hold Time, HIGH or LOW A_{n} or B_{n} to CPBA or CPAB	5.0	2.5	-	2.5	-	ns
t_{w}	CPAB, CPBA Pulse Width HIGH or LOW	5.0	6.0	-	7.0	-	ns

*Voltage Range 3.3 V is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
Voltage Range 5.0 V is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

CAPACITANCE

Symbol	Parameter	74ACT Typ	Unit	Test Conditions
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{\text {I/ }}$	Input/Output Capacitance	15	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	60.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

MC74AC652, MC74ACT652

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
MC74AC652DWG	SOIC-24 (Pb-Free)	30 Units / Rail
MC74AC652DWR2G		1000 / Tape \& Reel
MC74ACT652DWG		30 Units / Rail
MC74ACT652DWR2G		1000 / Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MC74AC652, MC74ACT652

PACKAGE DIMENSIONS

SOIC-24 WB
DW SUFFIX
CASE 751E-04
ISSUE F

NOTES:

1. Dimensioning and tolerancing per asme Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD AND ARE MEASURED BE TWEEN 0.10 AND 0.25 FROM THE LEAD TIP.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
5. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST FROM THE SEATING PLANE TO
POINT ON THE PACKAGE BODY.
POINT ON THE PACKAG

	MILLIMETERS	
$\mathbf{D I M}$	$\mathbf{M I N}$	MAX
\mathbf{A}	2.35	2.65
$\mathbf{A 1}$	0.13	0.29
\mathbf{b}	0.35	0.49
\mathbf{c}	0.23	0.32
\mathbf{D}	15.25	15.54
\mathbf{E}	10.30 BSC	
$\mathbf{E 1}$	7.40	7.60
\mathbf{e}	1.27	BSC
\mathbf{h}	0.25	0.75
\mathbf{L}	0.41	0.90
\mathbf{M}	0	$\mathbf{0}^{\circ}$

RECOMMENDED SOLDERING FOOTPRINT*

PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (1iN are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Bus Transceivers category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
74LS645N DS8838 FXL4TD245UMX IDT74CBTLV3257PGG 74LVT245BBT20-13 5962-8683401DA PCA9617ADMR2G 5962-
8953501KA 5962-86834012A 5962-7802301Q2A 5962-7802002MFA 5962-7802001MFA 74VHCV245FT(BJ) NCV7349D13R2G
TC74VCX164245(EL,F MC74LCX245MNTWG TC7WPB8306L8X,LF(S TC7WPB9307FC(TE85L 74FCT16245CTPVG8
74FCT16543CTPVG 74FCT245CTPYG8 MM74HC245AMTCX 74LVCH16245APVG 74LVX245MTC 5962-9221405M2A NTS0102DP-
Q100H 74ALVC16245MTDX 74ALVCH32245BF 74FCT163245APVG 74FCT245ATPYG8 74FCT245CTQG 74FCT3245AQG
74LCXR162245MTX 74VHC245M 74VHC245MX TC7WPB9306FC(TE85L TC7WPB9306FK(T5L,F JM38510/65553BRA ST3384EBDR
74LVC1T45GF,132 74AVC4TD245BQ,115 PQJ7980AHN/C0JL,51 MC100EP16VBDG FXL2TD245L10X 74LVC1T45GM,115
TC74AC245P(F) PSB21150F S LLHR SNJ54LS245FK SNJ54AHC245J SNJ54ABT245AFK

[^0]: *All outputs loaded; thresholds on input associated with output under test. \dagger Maximum test duration 2.0 ms , one input loaded at a time.

