

Single-chip Type with Built-in FET Switching Regulator Series

High-efficiency Step-up/down Switching Regulators with Built-in Power MOSFET

BD8305MUV

No.09027EBT08

General Description

ROHM's highly-efficient step-up/down switching regulator BD8305MUV produces step-up/down output including 3.3 V from 1 cell of lithium battery with just one coil.

This IC adopts an original step-up/down drive system and creates a higher efficient power supply than conventional Sepic-system or H-bridge system switching regulators.

Features

- 1) Highly-efficient step-up/down DC/DC converter to be constructed just with one inductor.
- 2) Input voltage 2.5 V 5.5 V
- 3) Output current 1 A at 3.3 V
 - 800 mA at 5.0 V
- 4) Incorporates soft-start function.
- 5) Incorporates timer latch system short protecting function.
- 6) High heat radiation surface mounted package VQFN020V4040
- Application

General portable equipment like portable audio or DSC/DVC

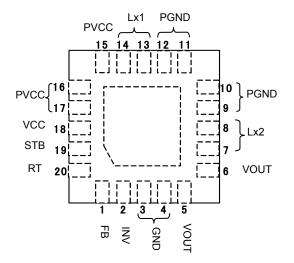
• Operating Conditions (Ta = 25°C)

Parameter	Symbol	Voltage range	Unit
Power supply voltage	Vcc	2.5 to 5.5	V
Output voltage	OUT	2.8 to 5.2	V

Absolute Maximum Ratings

Parameter	Symbol	BD8305MUV	Unit
Maximum applied power voltage	Vcc,PVCC	7.0	V
Maximum input current	linmax	2.0	Α
	Lx1	7.0	V
Maximum input voltage	Lx2	7.0	V
Power dissipation	Pd	700	mW
Operating temperature range	Topr	-25 to +85	°C
Storage temperature range	Tstg	-55 to +150	°C
Junction temperature	Tjmax	150	°C

*1 When installed on a 70.0 mm × 70.0 mm × 1.6 mm glass epoxy board. The rating is reduced by 5.6 mW/°C at Ta = 25°C or more.


* These specifications are subject to change without advance notice for modifications and other reasons.

Electrical Characteristics

(Unless otherwise specified, Ta = 25 °C, VCC = 3.7 V)

Parameter		Symbol	Target Value		Unit	Conditions	
		Gymbol	Minimum	Typical	Maximum	Onit	Conditions
[Low voltage inpu	t malfunction pre	eventing circ	uit]				
Detection thresho	ld voltage	VUV	-	2.25	2.45	V	Vcc monitor
Hysteresis range		∆VUVhy	50	100	150	mV	
[Oscillator]							
Oscillation freque	ncy	fosc	0.8	1.0	1.2	MHz	RT=47kΩ
[Error AMP]	-						
INV threshold vol	tage	VINV	0.790	0.800	0.810	V	
Input bias current		IINV	-50	0	50	nA	Vcc=7.0V, VINV=3.5V
Soft-start time		Tss	0.6	1.00	1.4	msec	RT=47kΩ
Output source current		IEO	10	20	30	uA	VINV=0.5V , VFB =1.5V
Output sink curre	nt	IEI	0.7	1.5	3.0	mA	VINV=1.1V , VFB =1.5V
[PWM comparato	r]						
LX1 Max Duty		Dmax1	-	-	100	%	
LX2 Max Duty		Dmax2	77	85	93	%	
[Output]							
LX1 PMOS ON resistance		RON1p	-	120	200	mΩ	VGS=3.0V
LX1 NMOS ON resistance		RON1n	-	100	160	mΩ	VGS=3.0V
LX2 PMOS ON resistance		RON2p	-	120	200	mΩ	VGS=3.0V
LX2 NMOS ON resistance		RON2n	-	100	160	MΩ	VGS=3.0V
LX1 OCP threshold		locp	1.6	2.4	-	А	PVCC=3.0V
LX1 leak current		l leak1	-1	0	1	uA	
LX2 leak current		l leak2	-1	0	1	uA	
[STB]							
STB pin	Operation	VSTBH	1.5	-	5.5	V	
control voltage	No-operation	VSTBL	-0.3	-	0.3	V	
STB pin pull-down r	esistance	RSTB	250	400	700	kΩ	
[Circuit current]							
	VCC pin	ISTB1	-	-	1	uA	
Standby current	PVCC pin	ISTB2	-	-	1	uA	
	VOUT pin	ISTB3	-	-	1	uA	
Circuit current at	•	lcc1	-	500	750	uA	VINV=1.2V
Circuit current at op	eration PVCC	lcc2	-	10	20	uA	VINV=1.2V

• Description of Pins

D 1 1 1	D 1 1 1		
Pin No.	Pin Name	Function	
1	FB	Error AMP output terminal	
2	INV	Error AMP input terminal	
3~4	GND	Ground terminal	
5~6	Vout	Output voltage terminal	
7~8	Lx2	Output side coil connecting terminal	
9~12	PGND	Power transistor ground terminal	
13~14	Lx1	Input side coil connecting terminal	
15~17	PVCC	DC/DC converter input terminal	
18	VCC	Control part power supply input terminal	
19	STB	ON/OFF terminal	
20	RT	Oscillation frequency set terminal	

Fig. 1 Pin layout

Block Diagram

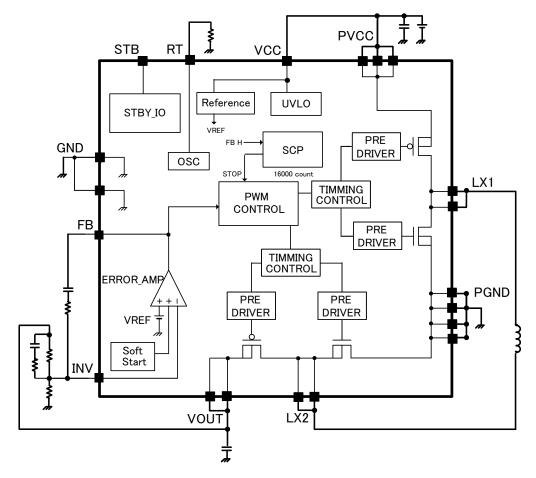


Fig. 2 Block diagram

Description of Blocks

1. VREF

This block generates ERROR AMP reference voltage. The reference voltage is 0.8 V.

2. UVLO

Circuit for preventing low voltage malfunction

Prevents malfunction of the internal circuit at activation of the power supply voltage or at low power supply voltage. Monitors VCC pin voltage to turn off all output FET and DC/DC converter output when VCC voltage is lower than 2.2 V, and reset the timer latch of the internal SCP circuit and soft-start circuit.

3. SCP

Timer latch system short-circuit protection circuit

When the INV pin is the set 0.8 V or lower voltage, the internal SCP circuit starts counting.

The internal counter is in synch with OSC, the latch circuit activates after the counter counts about 8200 oscillations to turn off DC/DC converter output (about 8.2 msec when RT =47K Ω).

To reset the latch circuit, turn off the STB pin once. Then, turn it on again or turn on the power supply voltage again.

4. OSC

Oscillation circuit to change frequency by external resistance of the RT pin (20 pin). When RT = 47 k Ω , operation frequency is set at 1 MHz.

5. ERROR AMP

Error amplifier for detecting output signals and output PWM control signals The internal reference voltage is set at 0.8 V.

6. PWM COMP

Voltage-pulse width converter for controlling output voltage corresponding to input voltage Comparing the internal SLOPE waveform with the ERROR AMP output voltage, PWM COMP controls the pulse width and outputs to the driver.

Max Duty and Min Duty are set at the primary side and the secondary side of the inductor respectively, which are as follows:

Primary side (Lx1)	Max Duty:	100 %,
	Min Duty :	0 %
Secondary side (Lx2)Max Duty	: 100 %,	
	Min Duty :	About 15 %

7. SOFT START

Circuit for preventing in-rush current at startup by bringing the output voltage of the DC/DC converter into a soft-start Soft-start time is in synch with the internal OSC, and the output voltage of the DC/DC converter reaches the set voltage after about 1000 oscillations (About 1 msec when RT = 47 k Ω).

8. PRE DRIVER

CMOS inverter circuit for driving the built-in Pch/Nch FET Dead time is provided for preventing feedthrough during switching. The dead time is set at about 15 nsec for each individual SWs.

9. STBY_IO

Voltage applied on STB pin (19 pin) to control ON/OFF of IC Turned ON when a voltage of 1.5 V or higher is applied and turned OFF when the terminal is open or 0 V is applied. Incorporates approximately 400 k Ω pull-down resistance.

10. Pch/Nch FET SW

Built-in SW for switching the coil current of the DC/DC converter. Pch FET is about $120m\Omega$ and Nch is $100m\Omega$. Since the current rating of this FET is 2A,it should be used within 1.6A in total including the DC current and ripple current of the coil.

Reference Data

(Unless otherwise specified, Ta = 25° C, VCC = 3.7 V)

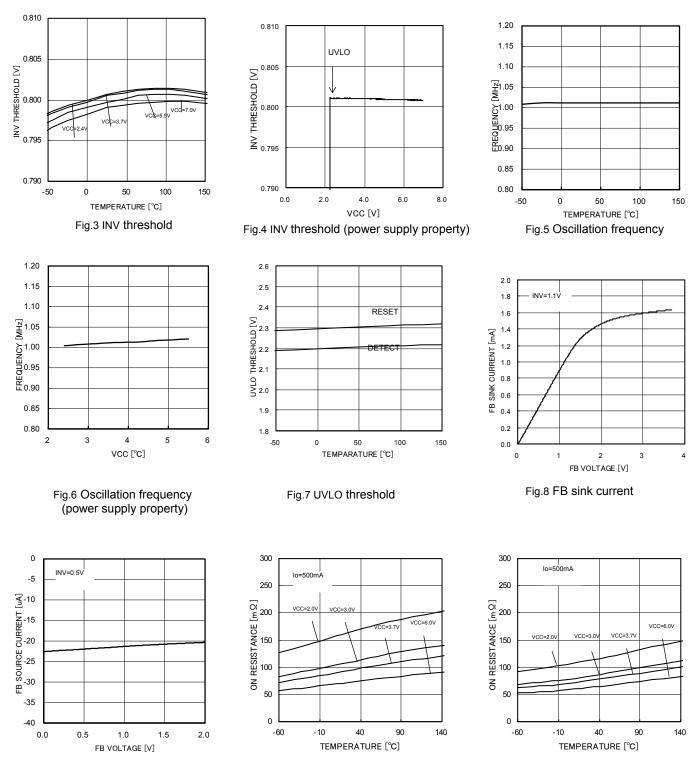
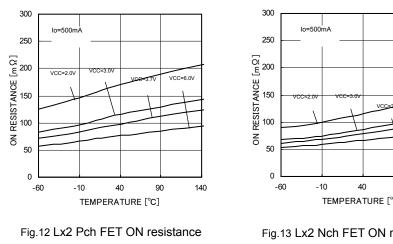



Fig.9 FB source current

Fig.10 Lx1 Pch FET ON resistance

Fig.11 Lx1 Nch FET ON resistance

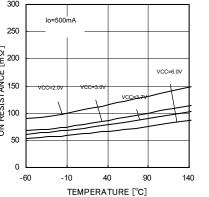


Fig.13 Lx2 Nch FET ON resistance

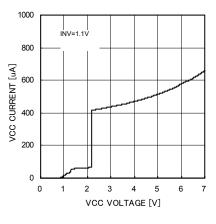


Fig.14 VCC input current

5.0

4.5

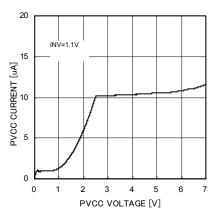


Fig.15 PVCC input current

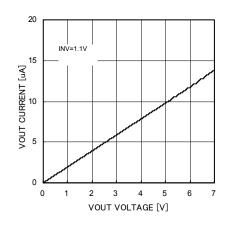


Fig.16 VOUT input current

4.0 4.0 3.5 3.5 3.0 2.5 2.5 2.0 detect 1.5 с 001.0 0.5 0.0 -25 0 25 50 75 100 TEMPERATURE [°C]

Fig.17 OCP detect threshold -Ta

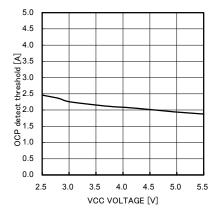
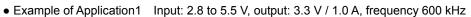
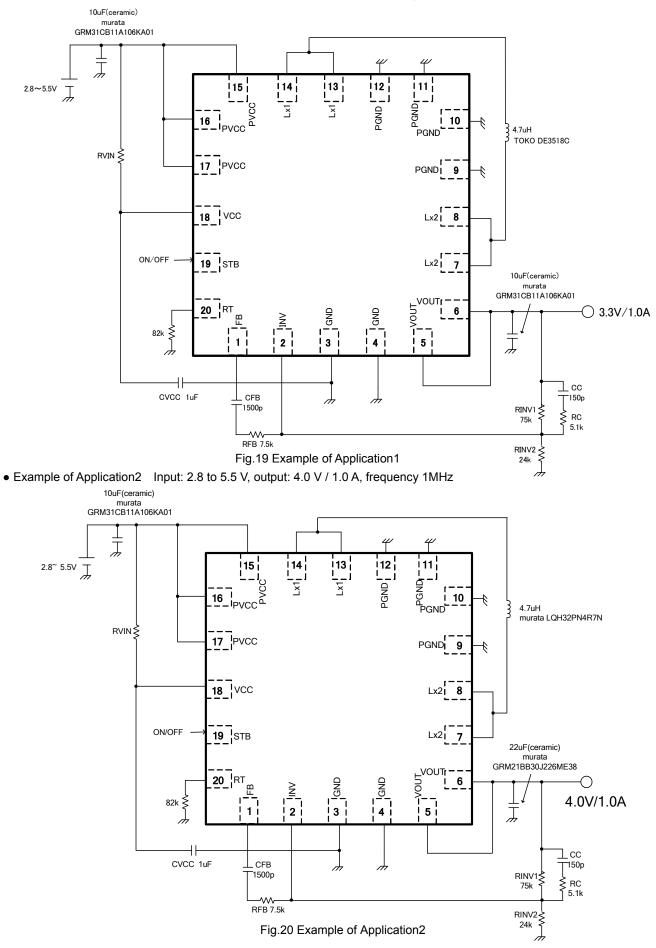




Fig.18 OCP detect threshold -VCC

www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved.

• Example of Board Layout

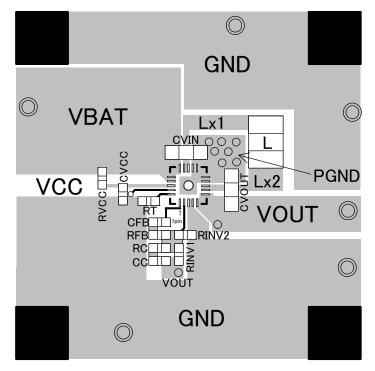
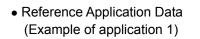



Fig.21 Example of Board Layout

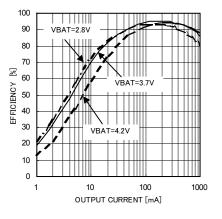
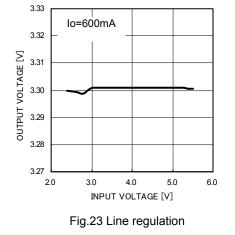
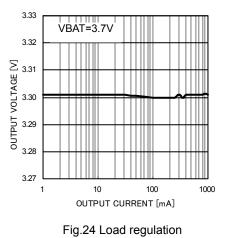




Fig.22 Power conversion efficiency

(Example of application2)

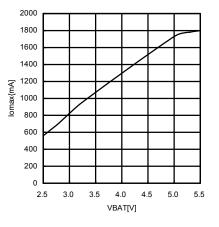


Fig.25 Maximum output current

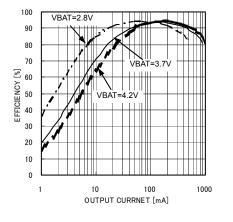


Fig.26 Power conversion efficiency

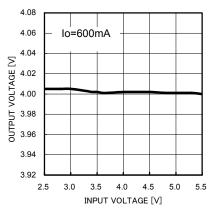


Fig.27 Line regulation

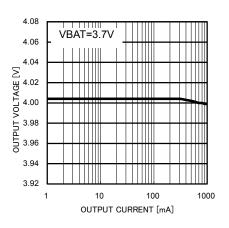


Fig.28 Load regulation

ΔIL

Fig. 29 Ripple current

Selection of Parts for Applications

(1) Output inductor

A shielded inductor that satisfies the current rating (current value, Ipeak as shown in the drawing below) and has a low DCR (direct current resistance component) is recommended. Inductor values affect output ripple current greatly.

(1)

Ripple current can be reduced as the coil L value becomes larger and the switching frequency becomes higher as the equations shown below.

(η: Efficiency, ΔIL: Output ripple current, f: Switching frequency)

As a guide, output ripple current should be set at about 20 to 50% of the maximum output current.

* Current over the coil rating flowing in the coil brings the coil into magnetic saturation, which may lead to lower efficiency or output oscillation. Select an inductor with an adequate margin so that the peak current does not exceed the rated current of the coil.

(2) Output capacitor

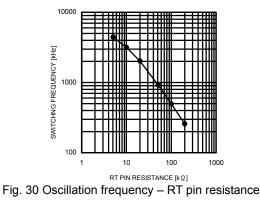
A ceramic capacitor with low ESR is recommended for output in order to reduce output ripple.

There must be an adequate margin between the maximum rating and output voltage of the capacitor, taking the DC bias property into consideration.

Output ripple voltage when ceramic capacitor is used is obtained by the following equation.

$$Vpp= \Delta IL \times \frac{I}{2\pi \times f \times Co} + \Delta IL \times R_{ESR} \quad [V] \quad \cdots \quad (5)$$

Setting must be performed so that output ripple is within the allowable ripple voltage.


(3) Setting of oscillation frequency

Oscillation frequency can be set using a resistance value connected to the RT pin (1 pin).

Oscillation frequency is set at 1 MHz when RT = 47 k Ω , and frequency is inversely proportional to RT value. See Fig. 30 for the relationship between RT and frequency.

Soft-start time changes along with oscillation frequency.

See Fig. 31 for the relationship between RT and soft-start time.

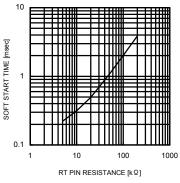


Fig. 31 Soft-start time – RT pin resistance

* Note that the above example of frequency setting is just a design target value, and may differ from the actual equipment.

(4) Output voltage setting

The internal reference voltage of the ERROR AMP is 0.8 V. Output voltage should be obtained by referring to Equation (8) of Fig.32.

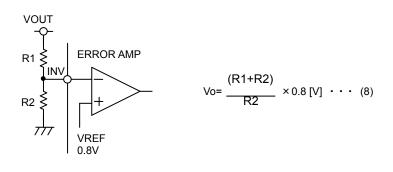


Fig. 32 Setting of feedback resistance

(5) Determination of phase compensation

Condition for stable application

The condition for feedback system stability under negative feedback is as follows:

- Phase delay is 135 °or less when gain is 1 (0 dB) (Phase margin is 45° or higher)

Since DC/DC converter application is sampled according to the switching frequency, the GBW of the whole system (frequency at which gain is 0 dB) must be set to be equal to or lower than 1/5 of the switching frequency. In summary, target property of applications is as follows:

- Phase delay must be 135° or lower when gain is 1 (0 dB) (Phase margin is 45° or higher).

- The GBW at that time (frequency when gain is 0 dB) must be equal to or lower than 1/5 of the switching frequency.

For this reason, switching frequency must be increased to improve responsiveness.

One of the points to secure stability by phase compensation is to cancel secondary phase delay (-180°) generated by LC resonance by the secondary phase lead (i.e. put two phase leads).

Since GBW is determined by the phase compensation capacitor attached to the error amplifier, when it is necessary to reduce GBW, the capacitor should be made larger. -20dB/decade

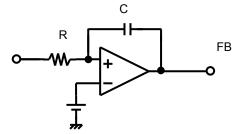
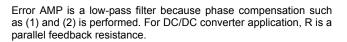



Fig.33 General integrator

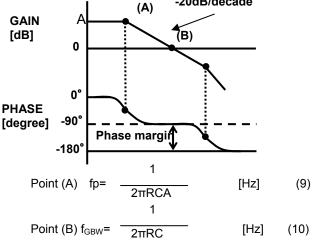


Fig.34 Frequency property of integrator

Phase compensation when output capacitor with low ESR such as ceramic capacitor is used is as follows:

When output capacitor with low ESR (several tens of $m\Omega$) is used for output, secondary phase lead (two phase leads) must be put to cancel secondary phase lead caused by LC.

One of the examples of phase compensation methods is as follows:

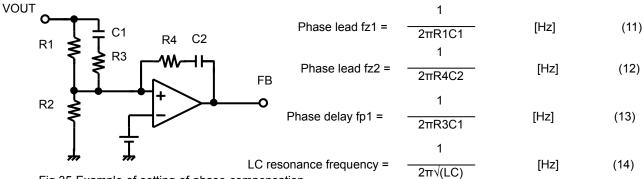


Fig.35 Example of setting of phase compensation

For setting of phase-lead frequency, both of them should be put near LC resonance frequency. When GBW frequency becomes too high due to the secondary phase lead, it may get stabilized by setting the primary phase delay to a frequency slightly higher than the LC resonance frequency by R3 to compensate it. • I/O Equivalence Circuit

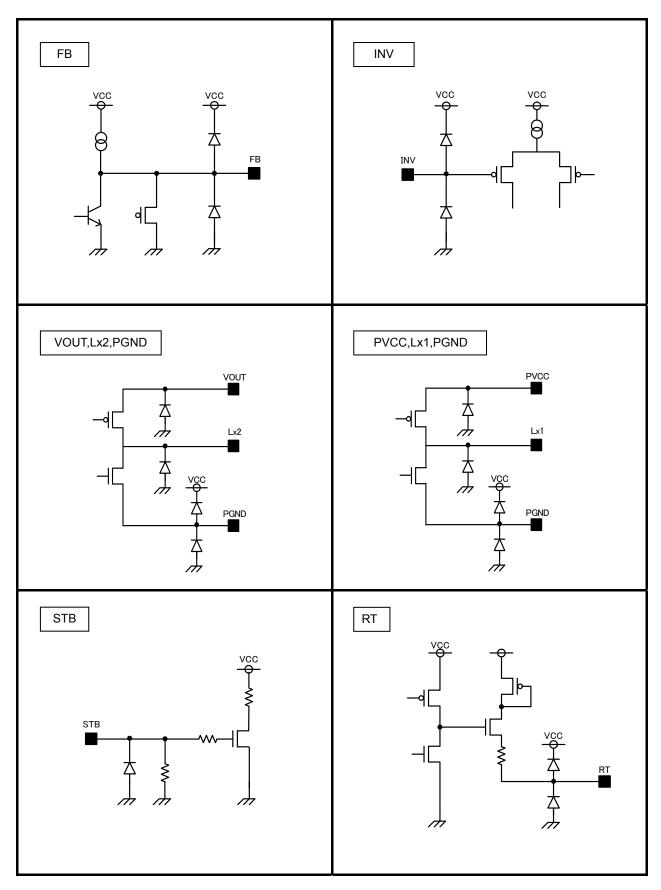


Fig.36 I/O Equivalence Circuit

• Precautions for Use

1) Absolute Maximum Rating

We dedicate much attention to the quality control of these products, however the possibility of deterioration or destruction exists if the impressed voltage, operating temperature range, etc., exceed the absolute maximum ratings. In addition, it is impossible to predict all destructive situations such as short-circuit modes, open circuit modes, etc. If a special mode exceeding the absolute maximum rating is expected, please review matters and provide physical safety means such as fuses, etc.

2) GND Potential

Keep the potential of the GND pin below the minimum potential at all times.

3) Thermal Design

Work out the thermal design with sufficient margin taking power dissipation (Pd) in the actual operation condition into account.

4) Short Circuit between Pins and Incorrect Mounting

Attention to IC direction or displacement is required when installing the IC on a PCB. If the IC is installed in the wrong way, it may break. Also, the threat of destruction from short-circuits exists if foreign matter invades between outputs or the output and GND of the power supply.

5) Operation under Strong Electromagnetic Field

Be careful of possible malfunctions under strong electromagnetic fields.

6) Common Impedance

When providing a power supply and GND wirings, show sufficient consideration for lowering common impedance and reducing ripple (i.e., using thick short wiring, cutting ripple down by LC, etc.) as much as you can.

7) Thermal Protection Circuit (TSD Circuit)

This IC contains a thermal protection circuit (TSD circuit). The TSD circuit serves to shut off the IC from thermal runaway and does not aim to protect or assure operation of the IC itself. Therefore, do not use the TSD circuit for continuous use or operation after the circuit has tripped.

8) Rush Current at the Time of Power Activation

Be careful of the power supply coupling capacity and the width of the power supply and GND pattern wiring and routing since rush current flows instantaneously at the time of power activation in the case of CMOS IC or ICs with multiple power supplies.

9) IC Terminal Input

This is a monolithic IC and has P+ isolation and a P substrate for element isolation between each element. P-N junctions are formed and various parasitic elements are configured using these P layers and N layers of the individual elements. For example, if a resistor and transistor are connected to a terminal as shown on Fig.37:

- O The P-N junction operates as a parasitic diode when GND > (Terminal A) in the case of a resistor or when GND >
 - (Pin B) in the case of a transistor (NPN)

O Also, a parasitic NPN transistor operates using the N layer of another element adjacent to the previous diode in the case of a transistor (NPN) when GND > (Pin B).

The parasitic element consequently rises under the potential relationship because of the IC's structure. The parasitic element pulls interference that could cause malfunctions or destruction out of the circuit. Therefore, use caution to avoid the operation of parasitic elements caused by applying voltage to an input terminal lower than the GND (P board), etc.

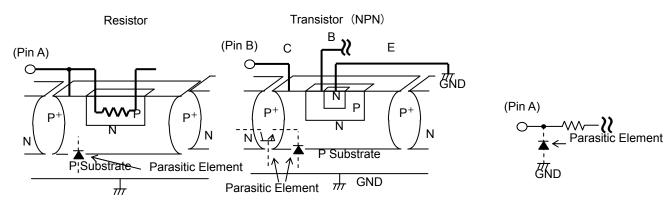
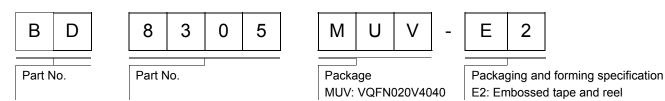
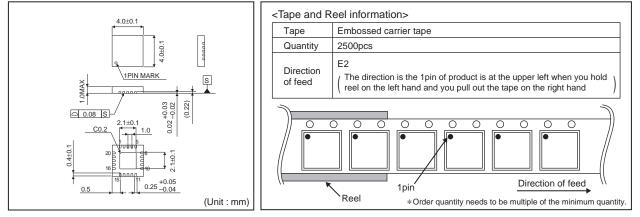




Fig.37 Example of simple structure of Bipolar IC

• Ordering part number

VQFN020V4040

	Notes
	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products'	nt specified herein is for the purpose of introducing ROHM's products (hereinafte '). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate tl	of application circuits, circuit constants and any other information contained herein ne standard usage and operations of the Products. The peripheral conditions mus nto account when designing circuits for mass production.
However,	e was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of sucl n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly o any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the h technical information.
equipment	cts specified in this document are intended to be used with general-use electronic c or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	HM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard e possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHN no responsibility whatsoever for your use of any Product outside of the prescribed ot in accordance with the instruction manual.
system wh may result instrumen fuel-contro any of the	incts are not designed or manufactured to be used with any equipment, device of hich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica t, transportation equipment, aerospace machinery, nuclear-reactor controller oller or other safety device). ROHM shall bear no responsibility in any way for use of Products for the above special purposes. If a Product is intended to be used for an ial purpose, please contact a ROHM sales representative before purchasing.
be control	nd to export or ship overseas any Product or technology specified herein that may led under the Foreign Exchange and the Foreign Trade Law, you will be required to sense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Voltage Regulators - Switching Regulators category:

Click to view products by ROHM manufacturer:

Other Similar products are found below :

LX7186A 622616F 632259F FAN53610AUC33X MP2148GQD-33-P MP2374DS-LF-Z EN6310QA NCP81108MNTXG NCP81109BMNTXG L79M05TL-E FAN48610BUC45X R3 LV5710GP-TE-L-H 430464BB 455605G AZ7500BMTR-E1 MIC23156-0YML-T5 MIC4930YFL-T5 MP8763GLE-P KE177614 418569H 455596X 511087D 030908C 063375FB 067501FB 099508GB EP5358LUA NCP81102MNTXG 715715H FAN48611UC53X FAN53611AUC12X MAX809TTR MAX77596ETBC+T MAX77596ETBB+T MAX16905AUE/V+ NCP6332CMTAATBG NCV890203MWTXG LX7176A ISL8018IRAJZ MP2162AGQH-Z MAX17544ATP+T EN6360QI MCP1623T-IMC MCP1642B-18IMC MCP1642BT-30I/MS MCP1642D-50IMC MCP1642D-50IMS MCP1642D-ADJIMC MC34063LBBGEVB