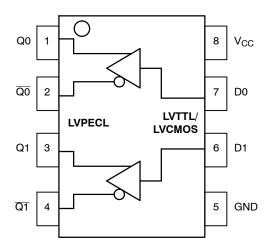
3.3V Dual LVTTL/LVCMOS to Differential LVPECL Translator

Description

The MC100LVELT22 is a dual LVTTL/LVCMOS to differential LVPECL translator. Because LVPECL (Low Voltage Positive ECL) levels are used, only +3.3 V and ground are required. The small outline 8-lead package and the low skew, dual gate design of the LVELT22 makes it ideal for applications which require the translation of a clock and a data signal.


Features

- 350 ps Typical Propagation Delay
- <100 ps Output-to-Output Skew
- Flow Through Pinouts
- The 100 Series Contains Temperature Compensation
- LVPECL Operating Range: V_{CC} = 3.0 V to 3.8 V with GND = 0 V
- When Unused TTL Input is left Open, Q Output will Default High
- These are Pb–Free Devices


ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Characteristics Value N/A Internal Input Pulldown Resistor Internal Input Pullup Resistor N/A Human Body Model Machine Model > 4 kV ESD Protection > 200 V Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1) Level 1 Flammability Rating Oxygen Index: 28 to 34 UL 94 V-0 @ 0.125 in Transistor Count 164 Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

Table 2. ATTRIBUTES

1. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Power Supply	GND = 0 V		7	V
VI	Input Voltage	GND = 0 V	$V_{I} \leq V_{CC}$	7	V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SO-8 SO-8	190 130	°C/W °C/W
θJC	Thermal Resistance (Junction-to-Case)	std bd	SO-8	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	std bd	TSSOP-8	41 to 44 \pm 5%	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

2. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 1. PIN DESCRIPTION

PIN	FUNCTION
Qn, <u>Qn</u> D0, D1 V _{CC} GND	LVPECL Differential Outputs LVTTL/LVCMOS Inputs Positive Supply Ground
EP	(DFN8 only) Thermal exposed pad must be connected to a suf- ficient thermal conduit. Electric- ally connect to the most negative supply (GND) or leave uncon- nected, floating open.

		–40°C		25°C			85°C				
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{CC}	Power Supply Current			28			28			29	mA
V _{OH}	Output HIGH Voltage (Note 4)	2275		2420	2275		2420	2275		2420	mV
V _{OL}	Output LOW Voltage (Note 4)	1490		1680	1490		1680	1490		1680	mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Output parameters vary 1:1 with V_{CC}. V_{CC} can vary ± 0.15 V. 4. Outputs are terminated through a 50 ohm resistor to V_{CC}-2 volts.

Table 5. LVTTL/LVCMOS INPUT DC CHARACTERISTICS V_{CC} = 3.3 V; T_A = -40° C to 85°C (Note 5)

Symbol	Characteristic	Min	Тур	Max	Unit	Condition
I _{IH}	Input HIGH Current			20	μA	V _{IN} = 2.7 V
I _{IHH}	Input HIGH Current			100	μA	V _{IN} = V _{CC}
IIL	Input LOW Current			-0.2	mA	V _{IN} = 0.5 V
V _{IK}				-1.2	V	I _{IN} = -18 mA
VIH	Input HIGH Voltage	2.0			V	
VIL	Input LOW Voltage			0.8	V	

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. V_{CC} can vary ±0.15 V.

Table 6. AC CHARACTERISTICS V_{CC} = 3.3 V; GND = 0.0 V (Note 6)

		-40°C		25°C			85°C				
Symbol	ol Characteristic		Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	f _{max} Maximum Toggle Frequency					350					MHz
^t PLH	Propagation Delay (Note 7)		350	600	200	350	600	200	350	600	ps
t _{skew}	Skew Output-to-Output Part-to-Part		30	100 400		30	100 400		30	100 400	ps
tJITTER	R Random Clock Jitter (RMS)					1.6					ps
t /t	Output Rise/Fall Time (20-80%)	200		550	200		500	200		500	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

6. V_{CC} can vary ± 0.15 V. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2 V.

7. Specifications for standard TTL input signal.

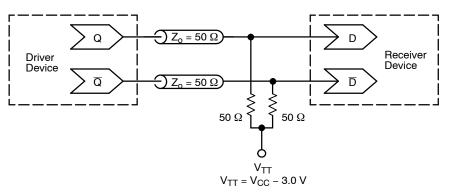
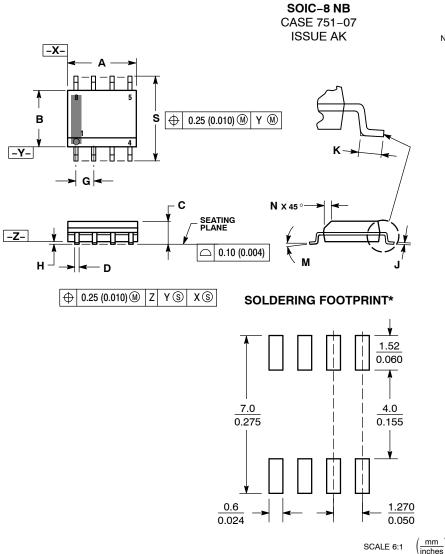


Figure 1. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

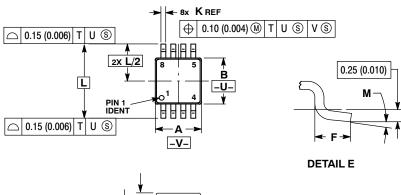

Device	Package	Shipping [†]
MC100LVELT22DG	SOIC-8 (Pb-Free)	98 Units / Rail
MC100LVELT22DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel
MC100LVELT22DTG	TSSOP-8 (Pb-Free)	100 Units / Rail
MC100LVELT22DTRG	TSSOP-8 (Pb-Free)	2500 / Tape & Reel
MC100LVELT22MNRG	DFN8 (Pb-Free)	1000 / Tape & Reel

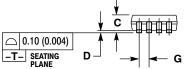
⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

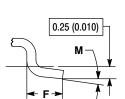
Resource Reference of Application Notes

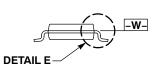
AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	_	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

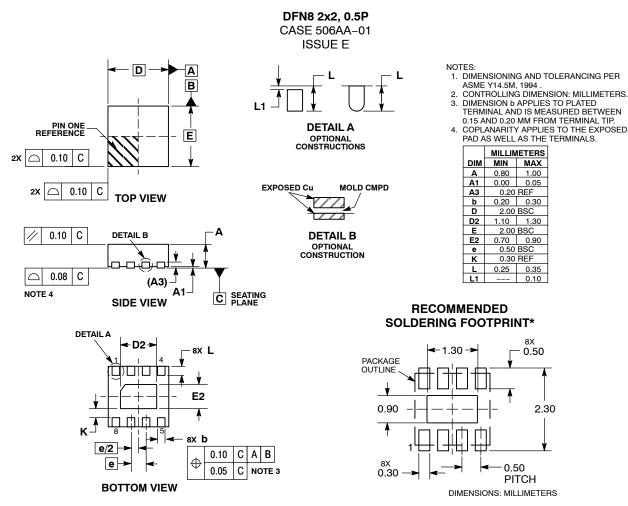

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
- 3.
- 4.
- CONTROLLING DIMENSION: MILLIMETER. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 751-01 THBU 751-06 ARE ORSOL FTE. NEW 5.
- 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.


	MILLIN	IETERS	INC	HES			
DIM	MIN	MAX	MIN	MAX			
Α	4.80	5.00	0.189	0.197			
В	3.80	4.00	0.150	0.157			
С	1.35	1.75	0.053	0.069			
D	0.33	0.51	0.013	0.020			
G	1.27	7 BSC	0.050 BSC				
Н	0.10	0.25	0.004	0.010			
J	0.19	0.25	0.007	0.010			
к	0.40	1.27	0.016	0.050			
М	0 °	8 °	0 °	8 °			
Ν	0.25	0.50	0.010	0.020			
S	5.80	6.20	0 228	0 244			


PACKAGE DIMENSIONS

TSSOP-8 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A**



NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
V14 EM 1000
Y14.5M, 1982.

- Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
 DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65	BSC	0.026	BSC
Κ	0.25	0.40	0.010	0.016
L	4.90	BSC	0.193	BSC
Μ	0°	6 °	0°	6°

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all application covirght laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Translation - Voltage Levels category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below :

NLJVHC1GT08DFT2G NLSX4373DMR2G NLSX5012MUTAG HV583GA-G MC10H641FNR2G NLSX0102FCT1G NLSX0102FCT2G NLSX4302EBMUTCG NLVSX4373DR2G PCA9306FMUTAG SY10H351JZ MC100EPT622MNG MAX9374AEKA+T MAX3378EETD+ MAX34405BEZT+ NLSX3014MUTAG NVT4556BUKZ NLSV4T244EMUTAG NLSX5011MUTCG NLV9306USG NLVSX4014MUTAG MAX34405BEZT+T NLSV4T3144MUTAG NSV12200LT1G NLVSX4373MUTAG NB3U23CMNTAG MAX3371ELT+T MAX3008EUP+T NLVPCA9306AMUTCG NLSX3013BFCT1G MAX9378EUA+T NLV7WBD3125USG NLV14504BDTG NLSX3012DMR2G NLSX5012DR2G MAX3391EEUD+T MAX3379EETD+ PI4ULS3V4857GEAEX MAX3391EEBC+T MAX14842ATE+T 74AVCH1T45FZ4-7 CLVC16T245MDGGREP HEF4104BT TC74LCX16245(EL,F) MC10H124FNG CAVCB164245MDGGREP 7WBD383USG NVT2001GM,115 CLVC8T245MRHLTEP 74LVC1G175GS,132