MC100LVEL32

3．3 V ECL $\div 2$ Divider

Description

The MC100LVEL32 is an integrated $\div 2$ divider．The LVEL3 3 is functionally identical to the EL32，but operates from a 3.3 V supply．

The reset pin is asynchronous and is asserted on the rising edge． Upon power－up，the internal flip－flop will attain a random state；the reset allows for the synchronization of multiple LVEL32＇s in a system．

The V_{BB} pin，an internally generated voltage supply，is available to this device only．For single－ended input conditions，the unused differential input is connected to V_{BB} as a switching reference voltage． V_{BB} may also rebias AC coupled inputs．When used，decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA ．When not used， V_{BB} should be left open．

Features

－ 510 ps Propagation Delay
－ 2.6 GHz Typical Maximum Frequency
－ESD Protection：
－＞ 4 KV Human Body Model
－＞ 200 V Machine Model
－The 100 Series Contains Temperature Compensation
－PECL Mode Operating Range：
$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.8 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
－NECL Mode Operating Range：
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.8 V
－Internal Input Pulldown Resistors
－Meets or Exceeds JEDEC Spec EIA／JESD78 IC Latchup Test
－Moisture Sensitivity：
－Level 1 for SOIC－8
－Level 3 for TSSOP－8
－Level 1 for DFN－8
－For Additional Information，see Application Note AND8003／D
－Flammability Rating：UL 94 V－0＠ 0.125 in，
Oxygen Index： 28 to 34
－Transistor Count $=111$ Devices
－These Devices are Pb－Free，Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$
www．onsemi．com

ORDERING INFORMATION

Device	Package	Shipping \dagger
MC100LVEL32DG	SOIC－8 NB （Pb－Free）	98 Units／Tube
MC100LVEL32DR2G	SOIC－8 NB （Pb－Free）	2500 Tape \＆Reel
MC100LVEL32DTG	TSSOP－8 （Pb－Free）	100 Units／Tube
MC100LVEL32DTR2G	TSSOP－8 （Pb－Free）	2500 Tape \＆Reel
MC100LVEL32MNR4G	DFN－8 （Pb－Free）	1000 Tape \＆Reel

\dagger For information on tape and reel specifications，in－ cluding part orientation and tape sizes，please refer to our Tape and Reel Packaging Specifications Brochure，BRD8011／D．

MC100LVEL32

Figure 1. Logic Diagram and Pinout Assessment

Table 1. PIN DESCRIPTION

Pin	Function
CLK*, $^{\text {CLK** }}$	ECL Differential Clock Inputs
Qeset*	ECL Differential Data $\div 2$ Outputs
Reset *	ECL Asynch Reset
V_{CC}	Reference Voltage Output
V_{EE}	Positive Supply
EP	Negative Supply
	(DFN8 only) Thermal exposed pad
	must be connected to a sufficient ther-
	mal conduit. Electrically connect to the
	most negative supply (GND) or leave
	unconnected, floating open.

*Pin will default low when left open, per internal 75 K pull-down to
** Pin will default to $\mathrm{V}_{\mathrm{Cc}} / 2$ when left open per internal $75 \mathrm{~K} \Omega$ pulldown to V_{EE} and $75 \mathrm{~K} \Omega$ pull-up to V_{CC}.

Table 2. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		8 to 0	V
V_{EE}	NECL Mode Power Supply	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		-8 to 0	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & V_{E E}=0 V \\ & V_{C C}=0 V \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 6 \text { to } 0 \\ -6 \text { to } 0 \end{gathered}$	V
V_{1}	PECL Mode Input Voltage NECL Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 6 \text { to } 0 \\ -6 \text { to } 0 \end{gathered}$	V
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
$\mathrm{I}_{\text {BB }}$	$\mathrm{V}_{\text {BB }}$ Sink/Source			± 0.5	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 Ifpm	SOIC-8 NB SOIC-8 NB	$\begin{aligned} & 190 \\ & 130 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8 NB	41 to $44 \pm 5 \%$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { TSSOP-8 } \\ & \text { TSSOP-8 } \end{aligned}$	$\begin{aligned} & 185 \\ & 140 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to $44 \pm 5 \%$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JA }}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	$\begin{aligned} & \hline \text { DFN-8 } \\ & \text { DFN-8 } \end{aligned}$	$\begin{gathered} 129 \\ 84 \end{gathered}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)	<2 to $3 \mathrm{sec} @ 260^{\circ} \mathrm{C}$		265	${ }^{\circ} \mathrm{C}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	(Note 1)	DFN-8	35 to 40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board - 2S2P (2 signal, 2 power)

Table 3. LVPECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ (Note 1))

	Characteristic	-40 ${ }^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
Symbol		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Power Supply Current		29	35		29	35		31	36	mA
V_{OH}	Output HIGH Voltage (Note 2)	2215	2295	2420	2275	2345	2420	2275	2345	2420	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	1470	1605	1745	1490	1595	1680	1490	1595	1680	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	2135		2420	2135		2420	2135		2420	mV
V_{IL}	Input LOW Voltage (Single-Ended)	1490		1825	1490		1825	1490		1825	mV
V_{BB}	Output Voltage Reference	1.92		2.04	1.92		2.04	1.92		2.04	V
$\mathrm{V}_{\text {IHCMR }}$	$\begin{aligned} & \text { Input HIGH Voltage Common Mode } \\ & \text { Range (Differential Configuration) (Note 3) } \\ & V_{\text {PP }}<500 \mathrm{mV} \\ & V_{P P} \geq 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.4 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.3 \end{aligned}$		$\begin{aligned} & 3.1 \\ & 3.1 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current CLK CLK	$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with $V_{C C}$. $V_{\text {EE }}$ can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with V_{EE}, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $\mathrm{V}_{\mathrm{Pp}} \mathrm{min}$ and 1 V .

Table 4. LVNECL DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}\right.$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
IEE	Power Supply Current		29	35		29	35		31	36	mA
V_{OH}	Output HIGH Voltage (Note 2)	-1085	-1005	-880	-1025	-955	-880	-1025	-955	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 2)	-1830	-1695	-1555	-1810	-1705	-1620	-1810	-1705	-1620	mV
V_{IH}	Input HIGH Voltage (Single-Ended)	-1165		-880	-1165		-880	-1165		-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (Single-Ended)	-1810		-1475	-1810		-1475	-1810		-1475	mV
V_{BB}	Output Voltage Reference	-1.38		-1.26	-1.38		-1.26	-1.38		-1.26	V
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 3) $\begin{aligned} & V_{P P}<500 \mathrm{mV} \\ & V_{P P} \geq 500 \mathrm{mV} \end{aligned}$	$\begin{array}{r} -2.1 \\ -1.9 \end{array}$		$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & -2.1 \\ & -1.9 \end{aligned}$		$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & -2.1 \\ & -1.9 \end{aligned}$		$\begin{aligned} & -0.2 \\ & -0.2 \end{aligned}$	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current CLK CLK	$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\begin{gathered} 0.5 \\ -600 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm . Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary $\pm 0.3 \mathrm{~V}$.
2. Outputs are terminated through a 50Ω resistor to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
3. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{E E}$, max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{I H C M R}$ range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min and 1 V .

Table 5. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0.0 \mathrm{~V}\right.$ or $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.3 \mathrm{~V}$ (Note 1))

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$f_{\text {max }}$	Maximum Toggle Frequency	2.2	2.5		2.4	2.6		2.6	2.8		GHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CLK to Q (Differential) CLK to Q (Single-Ended) Reset to Q	$\begin{aligned} & 350 \\ & 300 \\ & 440 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 555 \end{aligned}$	$\begin{aligned} & 530 \\ & 580 \\ & 640 \end{aligned}$	$\begin{aligned} & 370 \\ & 320 \\ & 450 \end{aligned}$	$\begin{aligned} & 510 \\ & 510 \\ & 540 \end{aligned}$	$\begin{aligned} & 550 \\ & 600 \\ & 650 \end{aligned}$	$\begin{aligned} & 410 \\ & 360 \\ & 480 \end{aligned}$	$\begin{aligned} & 540 \\ & 540 \\ & 580 \end{aligned}$	$\begin{aligned} & 590 \\ & 640 \\ & 680 \end{aligned}$	ps
t_{RR}	Reset Recovery	175	50		175	50		175	50		ps
tpw	Minimum Pulse Width Reset	500	300		500	300		500	300		ps
$\mathrm{t}_{\text {IITTER }}$	Random Clock Jitter (RMS)		2.0			2.0			2.0		ps
V_{PP}	Input Swing (Differential Swing) (Note 2)	150		1000	150		1000	150		1000	mV
t_{r} t_{f}	Output Rise / Fall Times Q (20\%-80\%)	120	225	320	120	225	320	120	225	320	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. $V_{E E}$ can vary $\pm 0.3 \mathrm{~V}$.
2. $\mathrm{V}_{\mathrm{PP}}(\mathrm{min})$ is input swing measured single-ended on each input in differential configuration.

Figure 1. Timing Diagram

MC100LVEL32

Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices)

Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

MC100LVEL32

PACKAGE DIMENSIONS

SOIC-8 NB
D SUFFIX
CASE 751-07
ISSUE AK

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MC100LVEL32

PACKAGE DIMENSIONS

TSSOP-8
DT SUFFIX
CASE 948R-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE
5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

	MILLIMETERS		INCHES			
DIM	MIN	MAX	MIN	MAX		
A	2.90	3.10	0.114	0.122		
B	2.90	3.10	0.114	0.122		
C	0.80	1.10	0.031	0.043		
D	0.05	0.15	0.002	0.006		
F	0.40	0.70	0.016	0.028		
G	0.65 BSC		0.026 BSC			
K	0.25		0.40	0.010		0.016
L	4.90 BSC		0.193 BSC			
M	0°		6°	0°		6°

PACKAGE DIMENSIONS

DFN-8

MN SUFFIX
CASE 506AA
ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSION b APPLIES TO PLATED

TERMINAL AND IS MEASURED BETWEEN TERMINAL AND IS MEASURED BETWE
0.25 AND 0.30 MM FROM TERMINAL.
O.25 AND 0.30 MM FROM TERMINAL.
COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20	
REF		
b	0.20	
D	2.00	
DSC		
E	1.10	
E	1.30	
E2	0.00	
0.70		0.90
e	0.50	
BSC		
K	0.20	----
L	0.25	0.35

BOTTOM VIEW

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG Si53314-B-GMR 4RCD0124KC0ATG P9090-0NLGI8 $\underline{\text { SY100EP33VKG } 850 \text { S1201BGILF } 8004 \mathrm{AC}-13-33 \mathrm{E}-125.00000 \mathrm{X} \text { ISPPAC-CLK5520V-01T100C8P 4RCD0124KC0ATG8 854110AKILF }}$ PI6C4931504-04LIE SI53305-B-GMR 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR NB7NQ621MMUTWG 49FCT3805DPYGI8 49FCT805BTPYG 49FCT805PYGI RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG SY89875UMG-TR 853S011BGILFT 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F 74FCT3807QGI8 74FCT3807PYGI8

