FEATURES:

- The IDT72801 is equivalent to two IDT72201 256×9 FIFOs
- The IDT72811 is equivalent to two IDT72211 512×9 FIFOs
- The IDT72821 is equivalent to two IDT72221 $1,024 \times 9$ FIFOs
- The IDT72831 is equivalent to two IDT72231 2,048 x 9 FIFOs
- The IDT72841 is equivalent to two IDT72241 4,096 x 9 FIFOs
- The IDT72851 is equivalent to two IDT72251 8,192 x 9 FIFOs
- Offers optimal combination of large capacity, high speed, design flexibility and small footprint
- Ideal for prioritization, bidirectional, and width expansion applications
- 10 ns read/write cycle time for the IDT72801/72811/72821/72831/ 72841/72851
- Separate control lines and data lines for each FIFO
- Separate Empty, Full, Programmable Almost-Empty and AlmostFull flags for each FIFO
- Enable puts output data lines in high-impedance state
- Space-saving 64-pin Thin Quad Flat Pack (TQFP) and Slim Thin Quad Flatpack (STQFP)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72801/72811/72821/72831/72841/72851 are dual synchronous (clocked)FIFOs. The device isfunctionally equivalentto two IDT72201/72211/ 72221/72231/72241/72251 FIFOs in a single package with all associated control, data, and flag lines assigned to separate pins.

Each of the two FIFOs (designated FIFO A and FIFO B) contained in the IDT72801/72811/72821/72831/72841/72851 has a 9 -bitinputdata port(DA0 -DA8, DB0-DB8) and a 9-bitoutput data port(QA0-QA8, QB0-QB8). Each inputportis controlled by afree-running clock (WCLKA, WCLKB), and two Write Enable pins (WENA1, WENA2, $\overline{\text { WENB1, WENB2). Data is written into each of }}$ thetwo arrays on every rising clock edge of the WriteClock (WCLKA, WCLKB) when the appropriate write enable pins are asserted.

The output port of each FIFO bankis controlled by its associated clock pin (RCLKA, RCLKB) and two Read Enable pins ($\overline{R E N A 1}, \overline{R E N A 2}, \overline{R E N B 1}$, RENB2). The ReadClock canbetied totheWriteClockforsingleclockoperation or the two clocks can run asynchronous of one another fordual clock operation. An Output Enable pin ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}}$) is provided on the read port of each FIFO forthree-state output control.

Each of the two FIFOs has two fixed flags, Empty ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$ and Full ($\overline{\mathrm{FFA}}$, $\overline{\mathrm{FFB}})$. Two programmable flags, Almost-Empty ($\overline{\mathrm{PAEA}}, \overline{\mathrm{PAEB}})$ and Almost-Full ($\overline{\mathrm{PAFA}}, \overline{\mathrm{PAFB}}$), are provided foreach FIFO bank to improve memory utilization. If not programmed, the programmable flags default to empty +7 for $\overline{\text { PAEA }}$ and $\overline{\text { PAEB }}$, and full-7 for $\overline{\text { PAFA }}$ and $\overline{\text { PAFB }}$.

The IDT72801/72811/72821/72831/72841/72851 architecture lends itself to many flexible configurations such as:

- 2-level priority databuffering
- Bidirectional operation
- Width expansion
- Depth expansion

These FIFOs is fabricated using high-performance submicron CMOS technology.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTIONS

The IDT72801/72811/72821/72831/72841/72851s two FIFOs, referred to as FIFO A and FIFO B, are identical in every respect. The following
description defines the input and output signals for FIFOA. The corresponding signal names for FIFO B are provided in parentheses.

Symbol	Name	1/0	Description
DA0-DA8	A Data Inputs	1	9-bit data inputs to RAM array A.
DB0-DB8	B Data Inputs	I	9-bit data inputs to RAM array B.
$\overline{\mathrm{RSA}}, \overline{\mathrm{RSB}}$	Reset	1	When $\overline{\operatorname{RSA}}(\overline{\mathrm{RSB}})$ is set LOW, the associated internal read and write pointers of array $A(B)$ are set to the first location; $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ and $\overline{\mathrm{PAFA}}(\overline{\mathrm{PAFB}})$ go HIGH, and $\overline{\mathrm{PAEA}}(\overline{\mathrm{PAEB}})$ and $\overline{\mathrm{EFA}}$ ($\overline{\mathrm{EFB}}$) go LOW. After power-up, a reset of both FIFOs A and B is required before an initial Write.
WCLKA WCLKB	WriteClock	1	Data is written into the FIFO A (B) on a LOW-to-HIGH transition of WCLKA (WCLKB) when the write enable(s) are asserted.
$\frac{\overline{\text { WENA1 }}}{\overline{\text { WENB1 }}}$	Write Enable 1	1	If FIFO $A(B)$ is configured to have programmable flags, $\overline{\text { WENA1 }}$ (WENB1) is the only Write Enable pin that can be used. When $\overline{\text { WENA1 }}(\overline{\mathrm{WENB1}})$ is LOW, data $\mathrm{A}(\mathrm{B})$ is written into the FIFO on every LOW-to-HIGH transition WCLKA (WCLKB). If the FIFO is configured to have two write enables, $\overline{\text { WENA1 }}$ (WENB1) must be LOW and WENA2 (WENB2) must be HIGH to write data into the FIFO. Data will not be written into the FIFO if $\overline{F F A}(\overline{F F B})$ is LOW.
WENA2/LDA WENB2/ $\sqrt{\text { LDB }}$	Write Enable 2/ Load	1	FIFO A (B) is configured at reset to have either two write enables or programmable flags. If $\overline{\mathrm{LDA}}(\overline{\mathrm{LDB}})$ is HIGH at reset, this pin operates as a second write enable. If WENA2//(DA (WENB2/(IDB) is LOW at reset this pin operates as a control to load and read the programmable flag offsets for its respective array. If the FIFO is configured to have two write enables, $\bar{W} E \bar{N} \bar{A} \overline{1}$ ($\bar{W} \overline{E N} \bar{B} \overline{1}$) must be LOW and WENA2 (WENB2) must be HIGH to write data into FIFO A (B). Data will not be written into FIFO A (B) if $\overline{F F A}(\overline{F F B})$ is LOW. If the FIFO is configured to have programmable flags, $\overline{\mathrm{LDA}}(\overline{\mathrm{LDB}})$ is held LOW to write or read the programmable flag offsets.
QA0-QA8	AData Outputs	0	9-bit data outputs from RAM array A.
QB0-QB8	BData Outputs	0	9-bit data outputs from RAM array B.
RCLKA RCLKB	Read Clock	1	Data is read from FIFO A (B) on a LOW-to-HIGH transition of RCLKA (RCLKB) when RENA1 ($\overline{\text { RENB1 }})$ and $\overline{\text { RENA2 }}$ (RENB2) are asserted.
$\begin{aligned} & \overline{\overline{\text { RENA1 }}} \\ & \overline{\text { RENB1 }} \end{aligned}$	Read Enable 1	1	When $\overline{\text { ENA1 }}$ ($\overline{\text { EENB1 }}$) and $\overline{\text { ENA2 }}$ (RENB2) are LOW, data is read from FIFO A (B) on every LOW-to-HIGH transition of RCLKA (RCLKB). Data will not be read from Array A (B) if EFA (EFB) is LOW.
$\begin{aligned} & \overline{\text { RENA2 }} \\ & \overline{\text { RENB2 }} \end{aligned}$	Read Enable 2	1	When $\overline{\mathrm{RENA1}}(\overline{\mathrm{RENB1}})$ and $\overline{\mathrm{RENA2}}(\overline{\mathrm{RENB2}})$ are LOW, data is read from the FIFO $A(B)$ on every LOW-to-HIGH transition of RCLKA (RCLKB). Data will not be read from array A (B) if the $\overline{E F A}(E F B)$ is LOW.
$\begin{aligned} & \overline{\mathrm{OEA}} \\ & \overline{\mathrm{OEB}} \end{aligned}$	OutputEnable	1	When $\overline{\mathrm{OEA}}$ ($\overline{\mathrm{OEB}}$) is LOW, outputs DAO-DA8 (DB0-DB8) are active. If $\overline{\mathrm{OEA}}$ ($\overline{\mathrm{OEB}}$) is HIGH, the outputs DA0-DA8 (DB0-DB8) will be in a high-impedance state.
$\begin{aligned} & \overline{\mathrm{EFA}} \\ & \overline{\mathrm{EFB}} \end{aligned}$	EmptyFlag	0	When $\overline{E F A}(\overline{E F B})$ is $L O W$, FIFO A (B) is empty and further data reads from the output are inhibited. When $\overline{E F A}(\overline{E F B})$ is HIGH, FIFO A (B) is not empty. $\overline{\text { EFA }}(\overline{\mathrm{EFB}})$ is synchronized to RCLKA (RCLKB).
$\begin{aligned} & \overline{\mathrm{P} \overline{\mathrm{~A} E \bar{A}}} \\ & \overline{\mathrm{PA}} \overline{\mathrm{~B}} \end{aligned}$	Programmable Almost-Empty Flag	0	When $\overline{\text { PAEA }}(\overline{\mathrm{PAEB}})$ is LOW, FIFO A (B) is almost-empty based on the offset programmed into the appropriate offset register. The default offset at reset is Empty+7. $\overline{\text { PAEA }}(\overline{\text { PAEB }})$ is synchronized to RCLKA (RCLKB).
$\begin{aligned} & \overline{\overline{P A F A}} \\ & \overline{\mathrm{PAFB}} \end{aligned}$	Programmable Almost-Full Flag	0	When $\overline{\text { PAFA }}(\overline{\mathrm{PAFB}})$ is LOW, FIFO A (B) is almost-full based on the offset programmed into the appropriate offset register. The default offset at reset is Full-7. $\overline{\operatorname{PAFA}}(\overline{\mathrm{PAFB}})$ is synchronized to WCLKA (WCLKB).
$\begin{aligned} & \overline{\mathrm{FFA}} \\ & \overline{\mathrm{FFB}} \end{aligned}$	Full Flag	0	When $\overline{F F A}(\overline{F F B})$ is LOW, FIFO A (B) is full and further data writes into the input are inhibited. When $\overline{\text { FFA }}(\overline{\mathrm{FFB}})$ is HIGH, FIFO A (B) is not full. $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ is synchronized to WCLKA (WCLKB).
VCC	Power		+5V power supply pin.
GND	Ground		OV ground pin.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'l	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TSTG	StorageTemperature	-55 to +125	${ }^{\circ} \mathrm{C}$
Iout	DC Output Current	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDEDOPERATINGCONDTTIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage (Com'I \& Ind'I)	4.5	5.0	5.5	V
GND	Supply Voltage (Com'l \& Ind'I)	0	0	0	V
V/H	InputHigh Voltage (Com'I \& Ind'I)	2.0	-	-	V
VIL	InputLow Voltage (Com'l \& Ind'I)	-	-	0.8	V
TA	Operating Temperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	Operating Temperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72801IDT72811IDT72821IDT72831IDT7281Commercial and Industrial ${ }^{(1)}$tcLk $=10,15,25 \mathrm{~ns}$			IDT72851 Commercial and Industrial ${ }^{(1)}$ $\text { tcLK }=10,15,25 \mathrm{~ns}$			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$\left.\underline{\|L\|}\right\|^{(2)}$	InputLeakage Current(Any Input)	-1	-	1	-1	-	1	$\mu \mathrm{A}$
ILO ${ }^{(3)}$	OutputLeakageCurrent	-10	-	10	-10	-	10	$\mu \mathrm{A}$
VOH	Output Logic "1" Voltage, $\mathrm{IOH}=-2 \mathrm{~mA}$	2.4	-	-	2.4	-	-	V
Vol	Output Logic "0" Voltage, IoL $=8 \mathrm{~mA}$	-	-	0.4	-	-	0.4	V
ICC1 ${ }^{(4,5,5,8)}$	Active Power Supply Current (both FIFOs)	-	-	60	-	-	80	mA
ICC2 ${ }^{(4,7,8)}$	Standby Current	-	-	10	-	-	10	mA

NOTES:

1. Industrial temperature range product for 15 ns and 25 ns speed grade are available as a standard device.
2. Measurements with $0.4 \leq \mathrm{V} \operatorname{IN} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{V} \mathbf{I H}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs open (Iout $=0$).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
6. Typical Icc1 $=2^{*}\left[1.7+0.7^{*} \mathrm{fs}+0.02^{*} \mathrm{CL}{ }^{\star} \mathrm{fs}\right]$ (in mA).

These equations are valid under the following conditions:
$V_{c c}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs = WCLK frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at $\mathrm{fs} / 2, \mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or $\mathrm{GND}+0.2 \mathrm{~V}$, except RCLK and WCLK, which toggle at 20 MHz .
8. ICC1 and ICC2 parameters are improved as compared to previous data sheets.

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	InputCapacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	pF
Cout $^{(1,2)}$	OutputCapacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTE:

1. With output deselected $\left(\overline{O E A}, \overline{O E B} \geq \mathrm{V}_{\mathrm{H}}\right)$.
2. Characterized values, not currently tested.

AC ELECTRICALCHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	CommercialIDT72801L10IDT72811L10IDT72821L10IDT72831L10IDT72841L10IDT72851L10		 Ind ${ }^{\prime}{ }^{(1)}$				Unit
				IDT72801L15 IDT72811L15 IDT72821L15 IDT72831L15 IDT72841L15 IDT72851L15		IDT72801L25 IDT72811L25 IDT72821L25 IDT72831L25 IDT72841L25 IDT72851L25		
		Min	Max.	Min	Max.	Min	Max.	
f	Clock Cycle Frequency	-	100	-	66.7	-	40	MHz
tA	Data Access Time	2	6.5	2	10	2	15	ns
tclk	Clock Cycle Time	10	-	15	-	25	-	ns
teLkh	Clock High Time	4.5	-	6	-	10	-	ns
tcLKL	Clock Low Time	4.5	-	6	-	10	-	ns
tos	Data Setup Time	3	-	4	-	6	-	ns
tor	Data Hold Time	0.5	-	1	-	1	-	ns
tens	Enable Setup Time	3	-	4	-	6	-	ns
tenh	Enable Hold Time	0.5	-	1	-	1	-	ns
trs	Reset Pulse Width ${ }^{(2)}$	10	-	15	-	15	-	ns
trss	Reset Setup Time	8	-	10	-	15	-	ns
trsR	Reset Recovery Time	8	-	10	-	15	-	ns
trsF	Reset to Flag Time and Output Time	-	10	-	15	-	25	ns
tolz	Output Enable to Output in Low-Z ${ }^{(3)}$	0	-	0	-	0	-	ns
toe	Output Enable to Output Valid	3	6	3	8	3	13	ns
tohz	Output Enable to Output in High-Z ${ }^{(3)}$	3	6	3	8	3	13	ns
twFF	Write Clock to Full Flag	-	6.5	-	10	-	15	ns
tREF	Read Clock to Empty Flag	-	6.5	-	10	-	15	ns
tPAF	Write Clock to Programmable \qquad	-	6.5	-	10	-	15	ns
ヤPAE	Read Clock to Programmable Almost-Empty Flag	-	6.5	-	10	-	15	ns
tskew1	Skew Time Between Read Clock and Write Clock for Empty Flag and Full Flag	5	-	6	-	10	-	ns
tskew2	Skew Time Between Read Clock and Write Clock for Programmable Almost-Empty Flag and Programmable Almost-Full Flag	14	-	15	-	18	-	ns

NOTES:

1. Industrial temperature range product for 15 ns and 25 ns speed grade are available as a standard device.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.

AC TEST CONDITIONS

In Pulse Levels	GND to 3.0V
InputRise/Fall Times	3 ns
InputTiming ReferenceLevels	1.5 V
OutputReferenceLevels	1.5 V
OutputLoad	See Figure 1

or equivalent circuit
Figure 1. Output Load
*Includes jig and scope capacitances.

SIGNAL DESCRIPTIONS

FIFO A and FIFOB are identical in every respect. Thefollowing description explains the interaction of inputand outputsignals forFIFOA. The corresponding signal names for FIFO B are provided in parentheses.

INPUTS:

Data In (DA0 - DA8, DB0 - DB8) - DA0 - DA8 are the nine data inputs for memory array A. DB0 - DB8 are the nine data inputs for memory array B.

CONTROLS:

Reset ($\overline{\text { RSA }}, \overline{\text { RSB }})$ —Reset ofFIFOA (B) is accomplished whenever $\overline{\mathrm{RSA}}$ $(\overline{\mathrm{RSB}})$ input is taken to a LOW state. During Reset, the internal read and write pointers associated with the FIFO are setto the firstlocation. AResetis required after power-up before a write operation cantake place. TheFull Flag $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ and Programmable Almost-Full flag PAFA ($\overline{\text { PAFB }}$) will be reset to HIGH after tRSF. TheEmpty Flag $\overline{E F A}(\overline{\mathrm{EFB}})$ and Programmable Almost-Empty flag $\overline{\mathrm{PAEA}}$ $(\overline{\mathrm{PAEB}})$ will be reset to LOW after tRSF. During Reset, the output register is initialized to all zeros and theoffsetregisters are initialized to theirdefaultvalues.

Write Clock (WCLKA, WCLKB) - A write cycle to Array A (B) is initiated on the LOW-to-HIGH transition of WCLKA (WCLKB). Data setup and hold times must be met with respect to the LOW-to-HIGH transition of WCLKA (WCLKB). The Full Flag FFA ($\overline{F F B}$) and Programmable Almost-Full flag $\overline{\text { PAFA }}(\overline{\mathrm{PAFB}})$ are synchronized with respect to the LOW-to-HIGH transition oftheWriteClockWCLKA(WCLKB).

The Write and Read Clocks can be asynchronous or coincident.
Write Enable 1 ($\overline{\text { WENA1 }}, \overline{\text { WENB1 }})$ - If FIFO A (B) is configured for programmable flags, $\overline{\mathrm{WENA1}}(\overline{\mathrm{WENB1}})$ is the only enable control pin. In this configuration, when $\overline{\text { WENA1 }}$ (WENB1) is LOW, data can be loaded into the input register of RAM Array A(B) on the LOW-to-HIGH transition of every WriteClock WCLKA(WCLKB). Data is stored in Array A(B) sequentially and independently of any ongoing read operation.

In this configuration, when $\overline{\text { WENA1 }}(\overline{\text { WENB1 }}$) is HIGH, the inputregisterholds the previous data and no new data is allowed to be loaded into the register.

If the FIFO is configured to have two write enables, which allows for depth expansion. See Write Enable 2 paragraph below for operation in this configuration.

To prevent data overflow, $\overline{\text { FFA }}(\overline{\mathrm{FFB}})$ will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, the $\overline{F F A}(\overline{\mathrm{FFB}})$ will goHIGH after twFF, allowing a valid write to begin. $\overline{\text { WENA1 }}$ ($\overline{\text { WENB1 }}$) is ignored when FIFO $A(B)$ is full.

Read Clock (RCLKA, RCLKB) —Data can be read from Array A (B) on the LOW-to-HIGH transition ofRCLKA (RCLKB). The Empty Flag $\overline{\mathrm{EFA}}(\overline{\mathrm{EFB}})$ and Programmable Almost-Empty Flag $\overline{\text { PAEA }}(\overline{\mathrm{PAEB}})$ are synchronized with respect to the LOW-to-HIGH transition of RCLKA (RCLKB).

The Write and Read Clocks can be asynchronous or coincident.
Read Enables ($\overline{\text { RENA1 }}, \overline{\text { RENA2 }}, \overline{\text { RENB1 }}, \overline{\text { RENB2 }})$ — When both Read Enables $\overline{\text { RENA1 }}, \overline{\text { RENA2 }}$ ($\overline{\text { RENB1 }}, \overline{\text { RENB2 }}$) are LOW, data is read from Array A (B) to the output register on the LOW-to-HIGH transition of the Read Clock RCLKA (RCLKB).

When either of the two Read Enable $\overline{\text { RENA11, }} \overline{\text { RENA2 }}$ ($\overline{\text { RENB1 }}, \overline{\text { RENB2 }}$) associated with FIFOA(B) is HIGH, theoutputregister holds the previous data and no new data is allowed to be loaded into the register.

When all the data has been read from FIFOA (B), the Empty Flag $\overline{\mathrm{EFA}}(\overline{\mathrm{EFB}})$ will goLOW, inhibiting further read operations. Onceavalid writeoperationhas been accomplished, $\overline{\mathrm{EFA}}(\overline{\mathrm{EFB}})$ will go HIGH after tREF and a valid read can begin. The Read Enables $\overline{\text { RENA1 }}, \overline{\operatorname{RENA} 2}(\overline{\mathrm{RENB1}}, \overline{\text { RENB2 }})$ are ignored when FIFO $A(B)$ is empty.

Output Enable ($\overline{\mathrm{OEA}}, \overline{\mathrm{OEB}})$-When OutputEnable $\overline{\mathrm{OEA}}(\overline{\mathrm{OEB}})$ is enabled (LOW), the parallel outputbuffers ofFIFOA(B) receive datafromtheirrespective outputregister. When OutputEnable $\overline{\mathrm{OEA}}(\overline{\mathrm{OEB}})$ is disabled (HIGH), the QA (QB) output data bus is in a high-impedance state.

Write Enable 2/Load (WENA2/(̄DA, WENB2//̄DB) — This is a dualpurpose pin. FIFO $A(B)$ is configured at Reset to have programmable flags or to have two write enables, which allows depth expansion. IfWENA2/ $\overline{\mathrm{LDA}}$ (WENB2/ $\overline{\mathrm{DB}}$) is setHIGHatReset $\overline{\mathrm{RSA}}=\mathrm{LOW}(\overline{\mathrm{RSB}}=\mathrm{LOW})$, this pinoperates as a second write enable pin.

If FIFO $A(B)$ is configured to have two write enables, when Write Enable $1 \overline{\mathrm{WENA} 1}(\overline{\mathrm{WENB1}})$ is LOW andWENA2/LDA $(\mathrm{WENB} 2 / \overline{\mathrm{LDB}}$) isHIGH, data canbe loaded into the input register and RAM array on the LOW-to-HIGH transition of every Write Clock WCLKA (WCLKB). Data is stored in the array sequentially and independently of any ongoing read operation.

In this configuration, when $\overline{W E N A 1}(\overline{\mathrm{WENB1}})$ is HIGH and/orWENA2/LDA (WENB2/LDB) is LOW, the inputregister of Array A holds the previous dataand no new data is allowed to be loaded into the register.

To prevent data overflow, the Full Flag $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ will go LOW, inhibiting furtherwrite operations. Upon the completion of a valid read cycle, $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ will go HIGH after tWFF, allowing a valid write to begin. $\overline{\text { WENA1, }}$ ($\overline{\mathrm{WENB1}}$) and WENA2/ $\overline{\mathrm{LDA}}($ WENB2 $/ \overline{\mathrm{LDB}}$) are ignored when the FIFO is full.

FIFO $A(B)$ is configured to have programmable flags when the WENA2/ $\overline{\mathrm{LDA}}(\mathrm{WENB} 2 / \overline{\mathrm{LDB}})$ is setLOW atReset $\overline{\mathrm{RSA}}=\mathrm{LOW}(\overline{\mathrm{RSB}}=\mathrm{LOW})$. EachFIFO containsfour8-bitoffset registers which can be loaded with data on the inputs, or read on the outputs. See Figure 3 for details of the size of the registers and the defaultvalues.

If FIFO $A(B)$ is configured to have programmable flags, when the $\overline{W E N A 1}$ ($\overline{\mathrm{WENB1}})$ and WENA2/LDA $(\mathrm{WENB2} / \overline{\mathrm{LDB}})$ are set LOW, data on the DA (DB) inputs are written into the Empty (LeastSignificantBit) Offset registeron the first LOW-to-HIGH transition of the WCLKA (WCLKB). Data are written into the Empty (Most Significant Bit) Offset register on the second LOW-to-HIGH transition ofWCLKA(WCLKB), into the Full (LeastSignificantBit) Offsetregister on the third transition, and into the Full (Most Significant Bit) Offset register on the fourth transition. The fifth transition ofWCLKA(WCLKB) again writes to the Empty (LeastSignificantBit) Offsetregister.

However, writing all offset registers does nothave to occurat one time. One or two offset registers can be written and then by bringing $\overline{\mathrm{LDA}}(\overline{\mathrm{LDB}}) \mathrm{HIGH}, \mathrm{FIFO}$ $A(B)$ is returned to normal read/write operation. When $\overline{\mathrm{LDA}}(\overline{\mathrm{LDB}})$ is set LOW, and WENA1 ($\overline{\mathrm{WENB1}}$) is LOW, the next offset register in sequence is written.

The contents oftheoffsetregisters canbe read onthe QA(QB)outputs when WENA2 $/ \overline{\mathrm{LDA}}(\mathrm{WENB} 2 / \overline{\mathrm{LDB}})$ is setLOW and bothRead Enables $\overline{R E N A 1}, \overline{R E N A 2}$ ($\overline{\text { RENB1 }}, \overline{\text { RENB2 }})$ are setLOW. Data canbe read on the LOW-to-HIGH transition of the Read Clock RCLKA (RCLKB).

$\overline{\text { LDA }}$	$\overline{\text { WENA1 }}$	WCLKA	OPERATION ON FIFO A
$\overline{\text { LDB }}$	$\overline{\text { WENB1 }}$	WCLKB	OPERATION ON FIFO B
0	0	\sim	Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB)
0	1	\square	No Operation
1	0	\square	Write Into FIFO
1	1	\square	NoOperation

NOTE:

1. For the purposes of this table, WENA2 and WENB2 $=\mathrm{V}$ н.
2. The same selection sequence applies to reading from the registers. $\overline{\text { RENA1 }}$ and $\overline{\text { RENA2 }}$ (RENB1 and $\overline{\text { RENB2 }}$) are enabled and read is performed on the LOW-toHIGH transition of RCLKA (RCLKB).

A read and write should not be performed simultaneously to the offset registers.

OUTPUTS:

Full Flag ($\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}})$ — $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ will go LOW, inhibiting further write operations, when Array A(B) is full. Ifno reads are performed after reset, $\overline{\mathrm{FFA}}$ (FFB) will go LOW after 256 writes to the IDT72801's FIFO A (B); 512 writes to the IDT72811's FIFOA(B); 1,024 writestothe IDT72821'sFIFOA(B);2,048 writes to the IDT72831's FIFO A (B); 4,096 writes to the IDT72841's FIFO A (B); or 8,192 writes to the IDT72851's FIFO A (B).

FFA($\overline{\mathrm{FFB}}$) is synchronized with respecttothe LOW-to-HIGH transition of the WriteClockWCLKA (WCLKB).

Empty Flag ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$-EFA(EFB) will go LOW, inhibiting further read operations, when the read pointer is equal to the write pointer, indicating that Array $A(B)$ is empty.

EFA (EFB) is synchronized with respect to the LOW-to-HIGH transition of the Read Clock RCLKA (RCLKB).

Figure 2. Writing to Offset Registers for FIFOs A and B

72821 - DUAL 1,024 x 9

72831 - DUAL 2,048 x 9

Figure 3. Offset Register Formats and Default Values for the A and B FIFOs

Programmable Almost-Full Flag ($\overline{\text { PAFA }}, \overline{\mathrm{PAFB}})-\overline{\text { PAFA }}(\overline{\mathrm{PAFB}})$ will goLOW when the amountofdatain Array $A(B)$ reachesthealmost-full condition. Ifno reads are performed after Reset, $\overline{\mathrm{PAFA}}$ ($\overline{\text { PAFB }}$) will go LOW after (256-m) writes to the IDT72801's FIFO A (B); (512-m) writes to the IDT72811's FIFO A (B); ($1,024-\mathrm{m}$) writes to the IDT72821's FIFO A (B); $(2,048-\mathrm{m})$ writes to the IDT72831's FIFO A (B); ($4,096-\mathrm{m}$) writes to the IDT72841's FIFO A (B); or (8,192-m) writes to the IDT72851's FIFO A (B).

FFA(FFB) is synchronized with respecttothe LOW-to-HIGH transition ofthe Write Clock WCLKA (WCLKB). The offset " m " is defined in the Full Offset registers.

Ifthere is no Full offsetspecified, $\overline{\mathrm{PAFA}}(\overline{\mathrm{PAFB}})$ will go LOW atFull-7 words.
$\overline{\mathrm{PAFA}}(\overline{\mathrm{PAFB}})$ is synchronized with respectothe LOW-to-HIGH transition ofWCLKA(WCLKB).

Programmable Almost-Empty Flag ($\overline{\text { PAEA }}, \overline{\text { PAEB }})-\overline{\text { PAEA }}(\overline{\text { PAEB }})$ will goLOW when the read pointeris " $n+1$ "locationsless than the write pointer. The offset" n " is defined inthe Empty Offset registers. Ifno reads are performed after Reset, $\overline{\text { PAEA }}(\overline{\mathrm{PAEB}})$ will go HIGH after " $n+1$ " writes to FIFO A(B).

Ifthere is no Empty offsetspecified, $\overline{\text { PAEA }}(\overline{\text { PAEB }}$) will go LOW at Empty +7 words.
$\overline{\operatorname{PAEA}}(\overline{\mathrm{PAEB}})$ is synchronized with respectothe LOW-to-HIGH transition of the Read Clock RCLKA (RCLKB).

Data Outputs (QA0-QA8, QB0-QB8) - QAo- QA8 are the nine data outputs for memory array A, QBo - QB8 are the nine data outputs for memory array B.

TABLE 1: STATUS FLAGS FOR A AND B FIFOS

NUMBER OF WORDS IN ARRAY A		$\overline{\text { FFA }}$	$\overline{\text { PAFA }}$	$\overline{\text { PAEA }}$	$\overline{\text { EFA }}$	
NUMBER OF WORDS IN ARRAY B		$\overline{\text { FFB }}$	$\overline{\text { PAFB }}$	$\overline{\text { PAEB }}$	$\overline{\text { EFB }}$	
72801	72811	72821				
0	0	0	H	H	L	L
1 ton ${ }^{(1)}$	1 to $n^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	L	H
$(\mathrm{n}+1)$ to $(256-(\mathrm{m}+1))$	$(\mathrm{n}+1)$ to $(512-(\mathrm{m}+1))$	$(\mathrm{n}+1)$ to $(1,024-(\mathrm{m}+1))$	H	H	H	H
$(256-\mathrm{m})^{(2)}$ to 255	$(512-\mathrm{m})^{(2)}$ to 511	$(1,024-\mathrm{m})^{(2)}$ to 1,023	H	L	H	H
256	512	1,024	L	L	H	H

NUMBER OF WORDS IN ARRAY A			FFA	$\overline{\text { PAFA }}$	$\overline{\text { PAEA }}$	EFA
NUMBER OF WORDS IN ARRAY B			$\overline{\text { FFB }}$	$\overline{\text { PAFB }}$	$\overline{\text { PAEB }}$	$\overline{\mathrm{EF}} \overline{\mathrm{B}}$
72831	72841	72851				
0	0	0	H	H	L	L
1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	H	H	L	H
$(\mathrm{n}+1)$ to $(2,048-(\mathrm{m}+1)$)	$(\mathrm{n}+1)$ to (4,096-(m+1))	$(\mathrm{n}+1)$ to (8,192-(m+1))	H	H	H	H
$(2,048-\mathrm{m})^{(2)}$ to 2,047	$(4,096-m)^{(2)}$ to 4,095	$(8,192-m)^{(2)}$ to 8,191	H	L	H	H
2,048	4,096	8,192	L	L	H	H

NOTES:

1. $\mathrm{n}=$ Empty Offset ($\mathrm{n}=7$ default value)
2. $m=$ Full Offset ($m=7$ default value)

NOTES:

1. Holding WENA2/ $\overline{\mathrm{LDA}}$ (WENB2/ $\overline{\mathrm{LDB}}$) HIGH during reset will make the pin act as a second write enable pin. Holding WENA2/ $/ \overline{\mathrm{LDA}}$ (WENB2/LDB) LOW during reset will make the pin act as a load enable for the programmable flag offset registers.
2. After reset, QAO-QA8 (QB0 - QB8) will be LOW if $\overline{\mathrm{OEA}}(\overline{\mathrm{OEB}})=0$ and tri-state if $\overline{\mathrm{OEA}}(\overline{\mathrm{OEB}})=1$.
3. The clocks RCLKA, WCLKA (RCLKB, WCLKB) can be free-running during reset.

Figure 4. Reset Timing

NOTE:

1. tsKEW1 is the minimum time between a rising RCLKA (RCLKB) edge and a rising WCLKA (WCLKB) edge for $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ to change during the current clock cycle. If the time between the rising edge of RCLKA (RCLKB) and the rising edge of WCLKA (WCLKB) is less than tsKEW1, then $\overline{\mathrm{FFA}}(\overline{\mathrm{FFB}})$ may not change state until the next WCLKA (WCLKB) edge.

Figure 5. Write Cycle Timing

WENA2 (WENB2)

NOTE:

1. tsKEW1 is the minimum time between a rising WCLKA (WCLKB) edge and a rising RCLKA (RCLKB) edge for $\overline{\mathrm{EFA}}$ ($\overline{\mathrm{EFB}}$) to change during the current clock cycle. If the time between the rising edge of RCLKA (RCLKB) and the rising edge of WCLKA (WCLKB) is less than tsKEW1, then $\overline{E F A}$ ($\overline{\mathrm{EFB}}$) may not change state until the next RCLKA (RCLKB)

Figure 6. Read Cycle Timing

Figure 7. First Data Word Latency Timing

NOTE:

1. Only one of the two write enable inputs, $\overline{\mathrm{WEN} 1}$ or $\overline{\mathrm{WEN} 2}$, needs to go inactive to inhibit writes to the FIFO.

Figure 8. Full Flag Timing

NOTE:

1. When tskew $1 \geq$ minimum specification, tfRL maximum $=$ tCLK + tskew1
tskew1 < minimum specification, tfRL maximum = 2tcLK + tskEW1 or tCLK + tsKEW1
The Latency Timings apply only at the Empty Boundary ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}=\mathrm{LOW}$).

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset.
2. $(256-m)$ words for the IDT72801; (512-m) words the IDT72811; (1,024-m) words for the IDT72821; (2,048-m) words for the IDT72831; (4,096-m) words for the IDT72841; or (8,192-m) words for the IDT72851
3. tSKEW2 is the minimum time between a rising RCLKA (RCLKB) edge and a rising WCLKA (WCLKB) edge for $\overline{\mathrm{PAFA}}(\overline{\mathrm{PAFB}})$ to change during that clock cycle. If the time between the rising edge of RCLKA (RCLKB) and the rising edge of WCLKA (WCLKB) is less than tsKEW2, then $\overline{\text { PAFA }}(\overline{\mathrm{PAFB}})$ may not change state until the next WCLKA (WCLKB) rising edge.
4. If a write is performed on this rising edge of the write clock, there will be Full - $(m-1)$ words in FIFO $A(B)$ when $\overline{\text { PAFA }}(\overline{\mathrm{PAFB}})$ goes LOW.

Figure 10. Programmable Full Flag Timing

WCLKA (WCLKB)

NOTES:

1. $\mathrm{n}=\overline{\mathrm{PAE}}$ offset.
2. tsKEw2 is the minimum time between a rising WCLKA (WCLKB) edge and a rising RCLKA (RCLKB) edge for $\overline{\operatorname{PAEA}}(\overline{\mathrm{PAEB}})$ to change during that clock cycle. If the time between the rising edge of WCLKA (WCLKB) and the rising edge of RCLKA (RCLKB) is less than tskEW2, then $\overline{\text { PAEA }}(\overline{\mathrm{PAEB}})$ may not change state until the next RCLKA (RCLKB) rising edge.
3. If a read is performed on this rising edge of the read clock, there will be Empty $+(n-1)$ words in FIFO $A(B)$ when $\overline{\text { PAEA }}(\overline{\mathrm{PAEB}})$ goes LOW.

Figure 12. Write Offset Register Timing

Figure 13. Read Offset Register Timing

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION - When FIFO A (B) is in a Single Device Configuration, the Read Enable 2 $\overline{\text { RENA2 }}(\overline{\text { RENB2 }})$ control input
can be grounded (see Figure 14). In this configuration, the Write Enable 2/ Load WENA2/ $\overline{\mathrm{LDA}}$ (WENB2//̄DB) pin is set LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

Figure 14. Block Diagram of One of the IDT72801/72811/72821/72831/72841/72851's two FIFOs configured as a single device

WIDTH EXPANSION CONFIGURATION - Word width may be increased simply by connecting the corresponding input control signals of FIFOs A and B. A composite flag should be created for each of the endpoint status flags $\overline{\mathrm{EFA}}$ and $\overline{\mathrm{EFB}}$, also $\overline{\mathrm{FFA}}$ and $\overline{\mathrm{FFB}}$). The partial status flags $\overline{\mathrm{PAEA}}, \overline{\mathrm{PAFB}}, \overline{\mathrm{PAEA}}$ and $\overline{\mathrm{PAFB}}$ can be detected from any one device. Figure 15 demonstrates an 18-bitword width using the two FIFOs contained in one IDT72801/72811/72821/72831/72841/72851. Any word width can
be attained by adding additional IDT72801/72811/72821/72831/72841/ 72851s.

When these devices are in a Width Expansion Configuration, the Read Enable 2 ($\overline{\text { RENA2 }}$ and $\overline{\text { RENB2 }}$) control inputs can be grounded (see Figure 15). In this configuration, the Write Enable 2/Load (WENA2/LDA, WENB2/ $\overline{\mathrm{LDB}}$) pins are set LOW at Reset so that the pin operates as a control to load and read the programmable flag offsets.

Figure 15. Block diagram of the two FIFOs contained in one IDT72801/72811/
72821/72831/72841/72851 configured for an 18-bit width-expansion

TWO PRIORITY DATA BUFFER CONFIGURATION

The two FIFOs contained in the IDT72801/72811/72821/72831/72841/ 72851 canbeusedto prioritizetwodifferenttypes ofdatashared onasystembus. When writing from the bus to the FIFO, control logic sorts the intermixed data
accordingtotype, sending onekind to FIFOA and theotherkind to FIFOB. Then, at theoutputs, each datatype istransferred toitsappropriatedestination. Additional IDT72801/72811/72821/72831/72841/72851s permit more than two priority levels. Priority buffering is particularly useful in network applications.

Figure 16. Block Diagram of Two Priority Configuration

BIDIRECTIONAL CONFIGURATION

The two FIFOs of the IDT72801/72811/72821/72831/72841/72851 can be used to buffer data flow in two directions. In the example that follows, a
processor can write data to a peripheral controller via FIFO A, and, in turn, the peripheral controller can write the processor via FIFO B.

Figure 17. Block Diagram of Bidirectional Configuration

DEPTH EXPANSION — IDT72801/72811/72821/72831/72841/72851 can be adapted to applications that require greater than 256/512/1,024/ 2,048/4,096/8,192 words. The existence of double enable pins on the read and write ports allow depth expansion. The Write Enable 2/Load (WENA2, WENB2) pins are used as a second write enables in a depth expansion configuration, thus the Programmable flags are set to the default values. Depth expansion is possible by using one enable input for system control while the other enable input is controlled by expansion logic to direct the flow of data. A typical application would have the expansion logic alternate data
accessfromonedevice tothenextinasequential manner. TheseFIFOsoperate in the Depth Expansion configuration when the following conditions are met:

1. WENA2/LDA and WENB2/LDB pins are held HIGH during Reset so that these pins operate as second Write Enables.
2. External logic is used to control the flow of data.

Please see the Application Note" DEPTH EXPANSION OF IDT'S SYNCHRONOUS FIFOs USING THE RING COUNTER APPROACH" for details of this configuration.

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for 15 ns and 25 ns speed grade are available as a standard device.
2. Green parts are available. For specific speeds and packages contact your sales office.

DATASHEET DOCUMENT HISTORY

$04 / 24 / 2001$	pgs. 4, 5 and 16.
$02 / 10 / 2006$	pgs. 1 and 16.
$01 / 13 / 2009$	pg. 16.
$03 / 20 / 2013$	pg. $1,3,7$ and 16.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for FIFO category:
Click to view products by IDT manufacturer:
Other Similar products are found below :
72V82L20PAGI CY7C425-25LMB CY7C454-14LMB 72V2113L7-5BCGI 72V201L10PFG CY7C464A-10JI 5962-88666903YA 5962-
8986302YA 5962-9071503MXA 5962-9961502QYA 5962-9158505MXA 5962-8986305ZA 5962-8986305UA 5962-8986303XA 5962-
8986302ZA 5962-89523052A 5962-8866904XA 72V201L15PFGI 72225LB10JG 7202LA25JGI 7202LA15PDGI 7206L15JG 7208L20JG
72241L10JG 723622L15PFG 72T72115L5BBGI 72V36110L7-5PFGI 72V3660L6PFG CY7C419-15JC CY7C425-20VXC CY7C429-20VC
7202LA15JGI 7203L15TPGI 7208L25JGI 7281L15PAGI 72T18125L5BBI 72T36125L10BB 72T36125L5BBGI 72V3690L6PFG
CY7C433-10AC CY7C4251-10AI CY7C433-10AXC 5962-8986306YA 7281L12PAG 72V3660L7-5PFGI 72V231L15PFGI 7204L12JG8
7206L25TPGI 7202LA50JG8 72210L10TPG

