
Micriµm

© Copyright 2008-2012, Micriµm
All Rights reserved

µC/Modbus

V2.13.00
(µC/Modbus-S and µC/Modbus-M)

User’s Manual

www.Micrium.com

µC/Modbus

2

Table of Contents

 Revision History ... 5

1.00 Introduction ... 6

1.01 Topologies .. 8

1.02 µC/Modbus Architecture ... 10

2.00 Directories and Files .. 13
2.01 Directories and Files, Target Independent Source Code 13

2.02 Directories and Files, RTOS Interface .. 14

2.03 Directories and Files, Product Specific Files 15

2.04 Directories and Files, CPU and Compiler Specific Files 15

3.00 Using µC/Modbus .. 17

3.01 Using µC/Modbus, MB_CfgCh() .. 20

3.02 Using µC/Modbus, MB_ChToPortMap() .. 22

3.03 Using µC/Modbus, MB_Exit() .. 23

3.04 Using µC/Modbus-M, MBM_FC01_CoilRd() 24

3.05 Using µC/Modbus-M, MBM_FC02_DIRd() 26

3.06 Using µC/Modbus-M, MBM_FC03_HoldingRegRd() 28

3.07 Using µC/Modbus-M, MBM_FC03_HoldingRegRdFP() 30

3.08 Using µC/Modbus-M, MBM_FC04_InRegRd() 32

3.09 Using µC/Modbus-M, MBM_FC05_CoilWr() 34

3.10 Using µC/Modbus-M, MBM_FC06_HoldingRegWr() 36

3.11 Using µC/Modbus-M, MBM_FC06_HoldingRegWrFP() 38

3.12 Using µC/Modbus-M, MBM_FC08_Diag() 40

3.13 Using µC/Modbus-M, MBM_FC15_CoilWr() 42

3.14 Using µC/Modbus-M, MBM_FC16_HoldingRegWrN () 44

3.15 Using µC/Modbus-M, MBM_FC16_HoldingRegWrNFP() 46

3.16 Using µC/Modbus, MB_Init() ... 48

3.17 Using µC/Modbus, MB_ModeSet() .. 49

3.18 Using µC/Modbus-S, MB_NodeAddrSet() 50

3.19 Using µC/Modbus-S, MB_WrEnSet() .. 51

4.00 Configuring µC/Modbus ... 52

4.01 Configuring µC/Modbus, MODBUS_CFG_SLAVE_EN 52

4.02 Configuring µC/Modbus, MODBUS_CFG_MASTER_EN 52

4.03 Configuring µC/Modbus, MODBUS_CFG_ASCII_EN 52

µC/Modbus

 3

4.04 Configuring µC/Modbus, MODBUS_CFG_RTU_EN 53

4.05 Configuring µC/Modbus, MODBUS_CFG_MAX_CH 53

4.06 Configuring µC/Modbus, MODBUS_CFG_BUF_SIZE 53

4.07 Configuring µC/Modbus, MODBUS_CFG_FP_EN 53

4.08 Configuring µC/Modbus, MODBUS_CFG_FP_START_IX 53

4.09 Configuring µC/Modbus, MODBUS_CFG_FC01_EN 54

4.10 Configuring µC/Modbus, MODBUS_CFG_FC02_EN 54

4.11 Configuring µC/Modbus, MODBUS_CFG_FC03_EN 54

4.12 Configuring µC/Modbus, MODBUS_CFG_FC04_EN 54

4.13 Configuring µC/Modbus, MODBUS_CFG_FC05_EN 54

4.14 Configuring µC/Modbus, MODBUS_CFG_FC06_EN 54

4.15 Configuring µC/Modbus, MODBUS_CFG_FC08_EN 55

4.16 Configuring µC/Modbus, MODBUS_CFG_FC15_EN 55

4.17 Configuring µC/Modbus, MODBUS_CFG_FC16_EN 55

4.18 Configuring µC/Modbus-S, MODBUS_CFG_FC20_EN 55

4.19 Configuring µC/Modbus-S, MODBUS_CFG_FC21_EN 55

4.20 Configuring µC/Modbus, RAM Memory Requirements 56

5.00 µC/Modbus-S, Accessing application data 57

5.01 µC/Modbus-S, MB_CoilRd() .. 58

5.02 µC/Modbus-S, MB_CoilWr() .. 60

5.03 µC/Modbus-S, MB_DIRd() .. 62

5.04 µC/Modbus-S, MB_InRegRd() .. 64

5.05 µC/Modbus-S, MB_InRegRdFP() .. 66

5.06 µC/Modbus-S, MB_HoldingRegRd() ... 68

5.07 µC/Modbus-S, MB_HoldingRegRdFP() .. 70

5.08 µC/Modbus-S, MB_HoldingRegWr() ... 72

5.09 µC/Modbus-S, MB_HoldingRegWrFP() .. 74

5.10 µC/Modbus-S, MB_FileRd() .. 76

5.11 µC/Modbus-S, MB_FileWr() .. 78

6.00 Board Support Package (BSP) ... 80

6.01 BSP, MB_CommExit() .. 80

6.02 BSP, MB_CommPortCfg() .. 81
6.03 BSP, MB_CommRxTxISR_x_Handler() ... 82
6.04 BSP, MB_CommRxIntEn() ... 83
6.05 BSP, MB_CommRxIntDis() .. 83
6.06 BSP, MB_CommTx1() .. 83
6.07 BSP, MB_CommTxIntEn().. 84
6.08 BSP, MB_CommTxIntDis() ... 84

µC/Modbus

4

6.09 BSP, MB_RTU_TmrInit() .. 85

6.10 BSP, MB_RTU_TmrExit() ... 85

6.11 BSP, MB_RTU_TmrISR_Handler() .. 85

7.00 RTOS Interface .. 86
7.01 RTOS Interface, MB_OS_Init() ... 89
7.02 RTOS Interface, MB_OS_Exit() .. 90

7.03 RTOS Interface, MB_OS_RxSignal() ... 91
7.04 RTOS Interface, MB_OS_RxWait() .. 92
7.05 RTOS Interface, Configuration ... 93

8.00 No-OS Interface ... 94

9.00 µC/Modbus Program Flow ... 97

9.01 µC/Modbus-S, ASCII Rx and Tx .. 98

9.02 µC/Modbus-S, RTU Rx and Tx .. 100

9.03 µC/Modbus-M, ASCII Rx and Tx.. 102

9.04 µC/Modbus-M, RTU Rx and Tx .. 104

10.00 Acronyms, Abbreviations and Mnemonics 106

Licensing 108

References 108

Contacts 108

µC/Modbus

 5

Revision History

Version Date Description
V1.00 2004/09/08 Initial Release

V1.61 2005/07/29 Converted code to use µC/CPU files.

Removed dependencies on ‘stdlib’ functions.
Improved the architecture.

V2.00 2006/05/15 Simplified the code.
Made error return codes 16 bits instead of 8.
Added support for Modbus Master.

V2.10 2006/08/10 Corrected bug with Modbus ASCII LRC calculation. LRC was being computed
on ‘binary’ data instead of the raw ASCII message. Our test tool was
incorrectly calculating LRCs on the binary data and we followed the same
scheme.
Removed all calls to MB_TxErrChkCalc() since the LRC and CRC

calculations for Tx are done just before transmitting the response.

V2.11 2008/11/14 Added single thread support for Modbus Slave.

V2.12 2009/02/02 Now checking for ‘broadcast’ messages in Modbus Slave. We simply execute
the command but we don’t reply.
We also added a check so we don’t read more registers than can fit in a
frame.

V2.13.00 2012/05/17 Corrected bugs, changed version numbering system, improved MISRA-
C:2004 rules support, corrected style issues.

µC/Modbus

6

1.00 Introduction

This document describes µC/Modbus, which implements the Modicon Modbus

Protocol (referred to as Modbus) along with the “Daniel’s Extension” to the Modbus
protocol, as specified by Daniel Flow Products.

For more details on the Modbus protocol, please refer to Modicon’s:

Modicon Modbus Protocol Reference Guide
PI–MBUS–300 Rev. J

The Modbus protocol consists of the reception and transmission of data, in predefined
packets, hereby referred to as “frames”. There are two types of frames that the
Modbus protocol operates with, an ASCII frame, and a Remote Terminal Unit (RTU)
frame. The ASCII frame is a frame based on ASCII hexadecimal characters, while the
RTU frame is strictly a binary implementation. ASCII mode is easier to implement and

debug but offers roughly half the data transfer speed of RTU mode. With µC/Modbus

you can use either mode since implementation and testing has been done by Micrium.

µC/Modbus can support any number of communication channels. The mode of

operation on each channel can either be ASCII or RTU and is selectable on a per
‘channel’ basis.

Figure 1-1 shows the relationship between a product designed using µC/Modbus and

other Modbus masters and slaves products. The ‘Serial Channels’ are typically
RS-232C or RS-485 asynchronous serial interfaces typically using a UART (Universal
Asynchronous Receiver Transmitter).

Figure 1-1, Relationship between Modbus-based products.

Your Product
(Running µC/Modbus)

Modbus Master/Slave

Modbus

Master
(i.e. Client)

Serial Channels
(RS-232C or RS-485)

Modbus

Slave
(i.e. Server)

µC/Modbus

 7

Masters (also known as Clients) initiate all data transfers to one or more Slaves (also
known as Servers) in a system. In other words, only a Master (Client) can read or write
values from/to a Slave (Server).

µC/Modbus can be made to look like having multiple master or slave ports. In fact,

µC/Modbus allows you to have a combination of up to 250 master or slave ports from

a single target system!

µC/Modbus-S indicates that your product contains the Modbus slave implementation

of µC/Modbus and, µC/Modbus-M indicates that your product contains the Modbus

master implementation of µC/Modbus.

You should note that a product can contain both µC/Modbus-S and µC/Modbus-M

at the same time. However, the master and the slave would be on separate ports.

µC/Modbus

8

1.01 Topologies

Figure 1-2 shows the relationship between multiple products (slaves) and a Modbus
master (assuming RS-485).

Figure 1-2, Relationship between Modbus Master and Slaves on RS-485 Network.

Figure 1-3 shows the relationship between multiple products (slaves) and multiple
Modbus masters (assuming RS-485 in the example) with one of those products being

µC/Modbus-M. You will note that only one master can be present on each RS-485

network.

Figure 1-3, Multiple Modbus Masters and Slaves on RS-485 Networks.

Your Product
(Running µC/Modbus-M)

RS-485 Bus

Your Product
(Running µC/Modbus-S)

Your Product
(Running µC/Modbus-S)

RS-485 Bus

Modbus
Master

Your Product
(Running µC/Modbus-S)

Modbus
Master

RS-485 Bus

Your Product
(Running µC/Modbus-S)

Your Product
(Running µC/Modbus-S)

µC/Modbus

 9

Figure 1-4 shows the relationship between multiple products (slaves) and multiple
Modbus masters (assuming RS-232C in the example). As you can see, with RS-232C,

each master needs to have a direct connection to each slave. µC/Modbus supports

this topology since each product can have multiple communication channels. Although
RS-232C requires more point-to-point connections, it offers the benefit of higher
throughput since communications can occur concurrently instead of sequentially.

Figure 1-4, Multiple Modbus Masters and Slaves with RS-232C.

Modbus allows you to read or write integer, floating-point (assuming the Daniels

Extensions) and discrete values from/to your target system. µC/Modbus can read or

write from/to:

up to 65536 16-bit integer values,
up to 65536 32-bit floating-point values,
up to 65536 coils, and
up to 65536 discrete inputs.

Integer and floating-point requests may not be mixed in the same command. Multiple
integer values (up to 125) and multiple floating-point values (up to 62) may be written
via a single command.

Depending on the processor you are using, you should be able to run µC/Modbus

with data rates from 9600 up to 256,000 baud. The baud rate you can attain is actually

limited to the performance of the CPU and not µC/Modbus.

Modbus
Master

Your Product
(Running µC/Modbus-S)

Your Product
(Running µC/Modbus-S)

Modbus
Master

RS-232C Interfaces RS-232C Interfaces

µC/Modbus

10

1.02 µC/Modbus Architecture

Figure 1-5 shows how the µC/Modbus communications stack fits in your product and

also shows which source files are associated with each layer.

MB stands for ModBus, MBS stands for ModBus Slave and MBM stands for ModBus

Master. A file that starts with mb_ indicates that the code in the file is independent of

Modbus Slave or Master. A file that starts with mbs_ contains Modbus Slave specific

code and, of course, a file that will start with mbm_ will contain MODBUS Master specific

code.

F1-5(1) Your product needs to configure µC/Modbus (at compile time) to

establish the maximum number of channels your product will support,
whether some channels will support Modbus ASCII and/or RTU, whether
the ‘Daniels Extensions’ will be supported to provide floating-point, which
Modbus function codes will be supported, whether a product will be a
Master, a Slave or both, etc. Configuration is done by changing a C

header file (mb_cfg.h). This is code that YOU need to provide and

mb_cfg.h typically resides in your product’s directory since it can be

different for each product.

F1-5(2) A Modbus master, connected to your product (that is running

µC/Modbus-S) can read or change just about ANY data in your

application. Access to your data (read or write) is done via a C file that
you provide (mb_data.c). mb_data.c can read integers, coils, discrete

inputs, floating-point values, etc. mb_data.c also allows you to execute

ANY code when data is read or written. For example, if you change the
diameter of a circle and need to compute the surface, you can simply
include the code to compute the surface in mb_data.c. More on this

later. This is code that YOU need to provide and mb_data.c typically

resides in your product’s directory since it can be different for each
product.

F1-5(3) This is the application independent slave code and it knows how to

process Modbus ASCII and/or Modbus RTU packets. You should NOT
have to modify this code.

F1-5(4) The interface to the UARTs in your product is placed in the Board Support

Package (BSP) file called mb_bsp.C. This is a file that you provide in

order to interface to µC/Modbus. Note that each channel can either

communicate via RS-232C or RS-485 (at the interface level). This is code

µC/Modbus

 11

that YOU need to provide and mb_bsp.c is either placed in your

product’s directory or provided by Micrium in the

\Micrium\Software\uC-Modbus\Ports\<CPU>\<compiler>

directory. This is the adaptation layer for the CPU or board you are using.

Figure 1-5, Relationship between modules.

µC/Modbus

mb.c and mb.h

mb_def.h

mb_util.c

mbs_core.c

mbm_core.c

UART Driver

mb_bsp.c

Your Application

mb_cfg.h

UART

(RS-232C or RS-485)

Data Access

mb_data.c

(1)

(2)

(3)

(4) RTOS Interface

mb_os.c

mb_os.h*

(5)

CPU Interface

cpu*.*

(6)

µC/Modbus

12

F1-5(5) µC/Modbus-S can be used with or witouth a RTOS (Real Time

Operating System) eviroment. µC/Modbus-M assumes the presence of

an RTOS. However, you can use just about any RTOS and the RTOS
specifics are actually isolated in a file called mb_os.c. The code for

µC/OS-II, µC/OS-III and Non-OS environment are provided so you don’t

have to change this code if you use µC/OS-II or µC/OS-III in your

product or you use µC/Modbus-S witouth any RTOS. The file mb_os.h.

is only needed when µC/Modbus-S is used witouth any RTOS this is

explained in Section 8.

F1-5(6) µC/Modbus is independent of the CPU and the compiler you use.

However, you need to provide information about the data types specific to
your CPU and compiler. For example, you need to define the following
data types:

CPU_BOOLEAN Boolean (True or False, Yes or No, etc.)

CPU_INT08U 8 bit unsigned integer

CPU_INT16U 32 bit unsigned integer

CPU_INT32U 8 bit unsigned integer

CPU_FP32 32 bit IEEE754 floating-point

Etc.

 These data types are needed because µC/Modbus never uses the

standard C data types (i.e. char, short, int, long, etc.) because they

are non-portable.

 These data types need to be placed in a file called cpu.h (more on this

later).

µC/Modbus

 13

2.00 Directories and Files

The code for µC/Modbus is found in the following directories.

2.01 Directories and Files, Target Independent Source Code

\Micrium\Software\uC-Modbus\Source

This directory contains the UART, OS and CPU independent source files. This
directory contains the following files:

mb.c Master/Slave independent code

mb.h

mb_def.h Modbus Definitions

mb_util.c ASCII convertions utilities

mbs_core.c Slave specific code

mbm_core.c Master specific code

µC/Modbus

14

2.02 Directories and Files, RTOS Interface

\Micrium\Software\uC-Modbus\OS\uCOS-II

\Micrium\Software\uC-Modbus\OS\uCOS-III

These directories contains the code to interface to the µC/OS-II and µC/OS-III

RTOSs and contains the following file:

mb_os.c (See Section 7.00)

If you interface µC/Modbus to different RTOSs, you would place an mb_os.c

file in a separate directory. In other words, all RTOS interface files should be
called mb_os.c but the specifics of the actual RTOS you use would be placed in

a different directory. When you build your product, you obviously need to select
only one RTOS interface – the one specific to your RTOS.

\Micrium\Software\uC-Modbus\OS\None

This directory contains the code to use µC/Modbus-S in a single threaded

environment witouth the need of an RTOS.

mb_os.c (See Section 8.00)

mb_os.h (See Section 8.00)

µC/Modbus

 15

2.03 Directories and Files, Product Specific Files

???\Product

This directory contains your application code. You need to provide the following
files:

mb_cfg.h (See Section 4.00)

mb_data.c (See Section 5.00)

mb_bsp.c (See Section 6.00)

2.04 Directories and Files, CPU and Compiler Specific Files

\Micrium\Software\uC-CPU\<CPU-type>\<compiler>

This directory contains information about your CPU and the compiler you are
using. There are three files that you need to specify:

cpu.h

cpu_a.asm

It’s preferable to ‘modify’ existing files than create new ones from scratch so that
you don’t forget anything. An example of these files is provided with

µC/Modbus.

cpu.h
This file defines CPU/compiler specific data types. The code below shows an

example of the data types needed by µC/Modbus for an ARM CPU and the

IAR Embedded Workbench compiler.

typedef void CPU_VOID;

typedef unsigned char CPU_CHAR;

typedef unsigned char CPU_BOOLEAN;

typedef unsigned char CPU_INT08U;

typedef signed char CPU_INT08S;

typedef unsigned short CPU_INT16U;

typedef signed short CPU_INT16S;

typedef unsigned int CPU_INT32U;

typedef signed int CPU_INT32S;

typedef float CPU_FP32;

typedef double CPU_FP64;

typedef void (*CPU_FNCT_PTR)(void *);

µC/Modbus

16

You also need to specify the type of ‘alignment’ to use as well as the
‘endianness’ of the processor:

#define CPU_CFG_ALIGN_TYPE CPU_ALIGN_TYPE_32

#define CPU_CFG_ENDIAN_TYPE CPU_ENDIAN_TYPE_LITTLE

You also need to define code to disable and enable interrupts. In fact, the code
to disable interrupts should ‘save’ the state of the interrupt enable setting and
then disable interrupts. This is done by an assembly language function called
CPU_SR_Save(). The code to re-enable interrupts should simply restore the

state saved by CPU_SR_Save(). This would be done by a function called

CPU_SR_Restore(). The state of the interrupt enable setting is stored in a

local variable of type CPU_SR as shown below.

typedef CPU_INT32U CPU_SR;

#define CPU_CRITICAL_ENTER() {cpu_sr = CPU_SR_Save();}

#define CPU_CRITICAL_EXIT() {CPU_SR_Restore(cpu_sr);}

You should note that µC/Modbus actually uses CPU_CRITICAL_ENTER() and

CPU_CRITICAL_EXIT() to disable and re-enable interrupts, respectively.

cpu_a.asm
This file contains the code for CPU_SR_Save() and CPU_SR_Restore(). This

code is typically written in assembly language since it generally accesses CPU
registers which are not typically accessible from C. However, if your compiler
allows you to manipulate CPU registers in C, you would implement
CPU_SR_Save() and CPU_SR_Restore() directly in C and call this file cpu.c

instead of cpu_a.asm.

µC/Modbus

 17

3.00 Using µC/Modbus

In order to use µC/Modbus in your product, you need to make sure you have the

following elements:

Setup the µC/CPU for the CPU YOU are using:

You need to create a cpu.h and cpu_a.asm files (see section 2.04).

Setup the BSP for the UARTs and the RTU timer YOU are using:
You need to create a mb_bsp.c file (see section 5). You should note that

µC/Modbus includes a mb_bsp.c for diferrent processors and boards. You

can use these files as examples on how to write the BSP.

Setup the RTOS Interface for the RTOS YOU are using:

µC/Modbus includes RTOS interfaces for µC/OS-II and µC/OS-III (see

section 6). If you are using a different RTOS, you will need to provide an
mb_os.c file. You can actually model your RTOS interface from the one

provided for µC/OS-II and µC/OS-III.

For µC/OS-II and µC/OS-III, don’t forget to configure #defines to setup the

task priority and stack size (should be placed in your application’s app_cfg.h

file).

If your product doesn’t require the use of a RTOS you can used the No-OS port.

This port is only for µC/Modbus-S. µC/Modbus-M always requires a RTOS

interface.

Initialize µC/Modbus and configure your channels.

µC/Modbus is initialized by simply calling MB_Init() and specifying the

Modbus RTU frequency as an argument. Once initialized, you simply need to
configure each Modbus channels (using MB_CfgCh()) as shown in the example

below. Here, our product has three Modbus ports: a Modbus RTU port
communicating at 9600 baud and a Modbus ASCII port communicating at 19200
baud and a Modbus ASCII Master port communicating at 19200 baud. Both
Modbus Slave ports assume Modbus address 1 but, you can specify different
node address for each one if you want.

µC/Modbus

18

MB_Init(1000); // Initialize uC/Modbus, RTU timer at 1000 Hz

MB_CfgCh(1, // ... Modbus Node # for this slave channel

 MODBUS_SLAVE, // ... This is a SLAVE

 0, // ... 0 when a slave

 MODBUS_MODE_RTU, // ... Modbus Mode (_ASCII or _RTU)

 1, // ... Specify UART #1

 9600, // ... Baud Rate

 8, // ... Number of data bits 7 or 8

 MODBUS_PARITY_NONE,// ... Parity: _NONE, _ODD or _EVEN

 1, // ... Number of stop bits 1 or 2

 MODBUS_WR_EN); // ... Enable (_EN) or disable (_DIS) writes

MB_CfgCh(1, // ... Modbus Node # for this slave channel

 MODBUS_SLAVE, // ... This is a SLAVE

 0, // ... 0 when a slave

 MODBUS_MODE_ASCII, // ... Modbus Mode (_ASCII or _RTU)

 1, // ... Specify UART #2

 19200, // ... Baud Rate

 8, // ... Number of data bits 7 or 8

 MODBUS_PARITY_NONE,// ... Parity: _NONE, _ODD or _EVEN

 1, // ... Number of stop bits 1 or 2

 MODBUS_WR_EN); // ... Enable (_EN) or disable (_DIS) writes

IMPORTANT

If your application is using a RTOS interface, once a µC/Modbus-S channel has been

configured, you do not need to do anything else in your code. In other words, a
Modbus master can start communicating with your Modbus slave without having to add
any additional code in your application tasks! Refer to section 7 for details on how this
works.

If your application is not using a RTOS interface, once a µC/Modbus-S channel has

been configured, your application needs to call MB_OS_RxTask()to poll the Modbus

Slave channels. Refer to section 8 for details on how this works.

MB_CfgCh(1, // ... Modbus Node # for this slave channel

 MODBUS_MASTER, // ... This is a MASTER

 OS_TICKS_PER_SEC, // ... One second timeout waiting for slave response

 MODBUS_MODE_ASCII, // ... Modbus Mode (_ASCII or _RTU)

 2, // ... Specify UART #3

 19200, // ... Baud Rate

 8, // ... Number of data bits 7 or 8

 MODBUS_PARITY_NONE,// ... Parity: _NONE, _ODD or _EVEN

 1, // ... Number of stop bits 1 or 2

 MODBUS_WR_EN); // ... Enable (_EN) or disable (_DIS) writes

IMPORTANT

Once a µC/Modbus-M channel has been configured, your application code needs to

call MBM_FC??_???() functions as described in this section in order to obtain data

from Modbus slaves connected to that channel. Refer to section 8 for details on how
this works.

µC/Modbus

 19

Your application interfaces to µC/Modbus via a number of functions that allow you to

change the behavior of channels. For each interface functions µC/Modbus applies to

both Master or Slave channels, µC/Modbus-S applies only to Slave channels and

µC/Modbus-M applies only to Master channels.

µC/Modbus

20

3.01 Using µC/Modbus, MB_CfgCh()

This function is used to configure each Modbus channel in your product. MB_CfgCh()

MUST be called AFTER calling MB_Init(). The function prototype is:

Prototype

MODBUS_CH *MB_CfgCh (CPU_INT08U node_addr,

 CPU_INT08U master_slave,

 CPU_INT32U rx_timeout,

 CPU_INT08U modbus_mode,

 CPU_INT08U port_nbr,

 CPU_INT32U baud,

 CPU_INT08U bits,

 CPU_INT08U parity,

 CPU_INT08U stops,

 CPU_INT08U wr_en);

Arguments

node_addr is the node address of the channel as seen by the Modbus master connected to

your product. Each channel can be ‘seen’ as having the same node address or
have different node addresses for each channel.

master_slave specifies whether this channel is a Modbus Master or a Modbus Slave. Values

for this argument can either be MODBUS_MASTER or MODBUS_SLAVE.

rx_timeout specifies the amount of time that a Modbus master will wait for a response from a

slave. The time is specified in RTOS ticks (consult your RTOS documentation to
determine the tick rate).

modbus_mode specifies the operating mode (ASCII or RTU) and thus, this argument can either

be: MODBUS_MODE_ASCII or MODBUS_MODE_RTU.

port_nbr specifies which physical connection (i.e. port) is associated with the Modbus

channel. In other words, it determines which UART will be associated with the

Modbus channel. port_nbr are typically assigned from 0 to the maximum

number of physical UARTs you have in your product minus one. For example, if
your product has 4 UARTs and all of them can be assigned to a Modbus channel

then the UARTs would be numbered from 0 to 3. However, you don’t have to

number them from 0, the numbering scheme really depends on who writes the

MB_BSP.C file.

baud is the baud rate of the Modbus channel. You would typically specify a ‘standard’

baud rate such as 9600, 19200, 38400, etc.

bits specifies the number of data bits used by the UART. For RTU, you’d typically

specify 8. For ASCII, you can either specify 7 or 8. If you specify 7 bits, you will

probably also need to specify the parity (see next argument).

µC/Modbus

 21

parity specifies the type of parity checking used when you use Modbus ASCII mode (if

you want to use parity checking). Allowable values for this argument are:

 MODBUS_PARITY_NONE,

 MODBUS_PARITY_ODD and

 MODBUS_PARITY_EVEN.

stops specifies the number of stop bits used by the UART. You can either specify 1 or

2. The typical value is 1 but check with the Modbus master node to see if you
need to specify 2.

wr_en this argument specifies whether a Modbus master is allowed to send ‘write’

commands to this Modbus channel. This argument can either be

MODBUS_WR_EN or MODBUS_WR_DIS. In other words, if you don’t want a

Modbus master to change values in your product, simply specify

MODBUS_WR_DIS. Note that your application code can actually change this

setting at run-time by calling MB_WrEnSet() (see section 3.06).

Returned Value
The function returns a pointer to the created channel which you can use when calling
other functions.

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

22

3.02 Using µC/Modbus, MB_ChToPortMap()

This function allows you to change the ‘logical’ mapping to ‘physical’ mapping for each
channel. In other words, this function allows you to change the port assignment

associated with each µC/Modbus channels.

Prototype

void MB_ChToPortMap (MODBUS_CH *pch,

 CPU_INT08U port_nbr)

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()) to map.

port_nbr specifies which physical connection (i.e. port) is associated with the Modbus

channel. In other words, it determines which UART will be associated with the

Modbus channel. port_nbr are typically assigned from 0 to the maximum

number of physical UARTs you have in your product minus one. For example, if
your product has 4 UARTs and all of them can be assigned to a Modbus channel

then the UARTs would be numbered from 0 to 3. However, you don’t have to

number them from 0, the numbering scheme really depends on who writes the

MB_BSP.C file.

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

 23

3.03 Using µC/Modbus, MB_Exit()

MB_Exit() should be called if you no longer want to run µC/Modbus in your product.

Prototype

void MB_Exit (void);

Arguments
None

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

24

3.04 Using µC/Modbus-M, MBM_FC01_CoilRd()

This function is called from YOUR application code to read coils from a Modbus slave.

Prototype

CPU_INT16U MBM_FC01_CoilRd (MODBUS_CH *pch,

 CPU_INT08U slave_addr,

 CPU_INT16U start_addr,

 CPU_INT08U *p_coil_tbl,

 CPU_INT16U nbr_coils);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_addr specifies the slave ‘node address’ that you desire to read the coil

information from. This can be a number between 1 and 255 but
needs to match the number assigned to the slave node.

start_addr specifies the start addres of the coil number. This can be from 0 to

65535.

pcoil_tbl is a pointer to an array of 8 bit values that will receive the value of

all the coils you are reading. The size of the array needs to be at
least (nbr_coils - 1) / 8 + 1. The format of the table is as

follows:

 MSB LSB

 B7 B6 B5 B4 B3 B2 B1 B0

 p_coil_tbl[0] #8 #7 #1

 p_coil_tbl[1] #16 #15 #9

 :

 :

nbr_coils specifies the number of coils you want to read from the slave.

µC/Modbus

 25

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

26

3.05 Using µC/Modbus-M, MBM_FC02_DIRd()

This function is called from YOUR application code to read discrete inputs from a
Modbus slave.

Prototype

CPU_INT16U MBM_FC02_DIRd (MODBUS_CH *pch,

 CPU_INT08U slave_addr,

 CPU_INT16U start_addr,

 CPU_INT08U *p_di_tbl,

 CPU_INT16U nbr_di);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_addr specifies the slave ‘node address’ that you desire to read the coil

information from. This can be a number between 1 and 255 but
needs to match the number assigned to the slave node.

start_addr specifies the start addres of the discrete input number. This can be

from 0 to 65535.

p_di_tbl is a pointer to an array of 8 bit values that will receive the value of

all the discrete inputs you are reading. The size of the array needs
to be at least (nbr_di - 1) / 8 + 1. The format of the table

is:

 MSB LSB

 B7 B6 B5 B4 B3 B2 B1 B0

 p_di_tbl[0] #8 #7 #1

 p_di_tbl[1] #16 #15 #9

 :

 :

nbr_di specifies the number of discrete inputs you want to read from the

slave.

µC/Modbus

 27

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

28

3.06 Using µC/Modbus-M, MBM_FC03_HoldingRegRd()

This function is called from YOUR application code to read 16-bit holding registers from
a Modbus slave.

Prototype

CPU_INT16U MBM_FC03_HoldingRegRd (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U start_addr,

 CPU_INT16U *p_reg_tbl,

 CPU_INT16U nbr_regs);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ that you desire to read the

registers from. This can be a number between 1 and 255 but
needs to match the number assigned to the slave node.

start_addr specifies the start address of the holding registers. This can be

from 0 to 65535. Note that the start address must be a number

lower than MODBUS_CFG_FP_START_IX (of the slave) if you

intend to have floating-point registers (i.e you set

MODBUS_CFG_FP_EN to DEF_ENABLED in mb_cfg.h in the slave).

p_reg_tbl is a pointer to an array of unsigned 16 bit values that will receive

the value of all the registers you are reading. The size of the array
needs to be at least nbr_regs. Note that you can ‘cast’ the

unsigned values to signed values. As far as the Modbus protocol is
concerned, it sends and receives 16 bit values and the
interpretation of what these values mean is application specific.

nbr_regs specifies the number of registers you want to read from the slave.

µC/Modbus

 29

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
MODBUS_CFG_FP_START_IX corresponds to that of the slave.

Called By
Your Modbus master application.

Example

µC/Modbus

30

3.07 Using µC/Modbus-M, MBM_FC03_HoldingRegRdFP()

This function is called from YOUR application code to read 32-bit floating-point registers
from a Modbus slave.

Prototype

CPU_INT16U MBM_FC03_HoldingRegRdFP (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U start_addr,

 CPU_FP32 *p_reg_tbl,

 CPU_INT16U nbr_regs);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ that you desire to read the

registers from. This can be a number between 1 and 255 but
needs to match the number assigned to the slave node.

start_addr specifies the start address of the floating-point holding registers.

This can be from MODBUS_CFG_FP_START_IX to 65535 (of the

slave) and assumes that you enabled floating-point support by
setting MODBUS_CFG_FP_EN to DEF_ENABLED in mb_cfg.h in the

slave.

p_reg_tbl is a pointer to an array of 32-bit IEEE-754 format floating-point

values that will receive the value of all the registers you are
reading. The size of the array needs to be at least nbr_regs.

nbr_regs specifies the number of registers you want to read from the slave.

µC/Modbus

 31

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
The floating-point format corresponds to the Daniels Flow control extensions.
Specifically, a register is assumed to be 32 bits and uses the IEEE-754 format.

Floating-support must have been enabled in the slave you are communicating with and,
the start address of the floating-point registers (MODBUS_CFG_FP_START_IX)

corresponds to that of the slave.

Called By
Your Modbus master application.

Example

µC/Modbus

32

3.08 Using µC/Modbus-M, MBM_FC04_InRegRd()

This function is called from YOUR application code to read 16-bit input registers
registers from a Modbus slave.

Prototype

CPU_INT16U MBM_FC04_InRegRd (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U start_addr,

 CPU_INT16U *p_reg_tbl,

 CPU_INT16U nbr_regs);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ that you desire to read the

registers from. This can be a number between 1 and 255 but
needs to match the number assigned to the slave node.

start_addr specifies the start address of the registers. This can be from 0 to

65535. Note that the start address must be a number lower than

MODBUS_CFG_FP_START_IX (of the slave) if you intend to have

floating-point registers (i.e you set MODBUS_CFG_FP_EN to

DEF_ENABLED in mb_cfg.h in the slave).

p_reg_tbl is a pointer to an array of unsigned 16 bit values that will receive

the value of all the registers you are reading. The size of the array
needs to be at least nbr_regs. Note that you can ‘cast’ the

unsigned values to signed values. As far as the Modbus protocol is
concerned, it sends and receives 16 bit values and the
interpretation of what these values mean is application specific.

nbr_regs specifies the number of registers you want to read from the slave.

µC/Modbus

 33

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
MODBUS_CFG_FP_START_IX corresponds to that of the slave.

Called By
Your Modbus master application.

Example

µC/Modbus

34

3.09 Using µC/Modbus-M, MBM_FC05_CoilWr()

This function is called from YOUR application code to write to a single coil on a Modbus
slave.

Prototype

CPU_INT16U MBM_FC05_CoilWr (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_BOOLEAN coil_val);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ that you desire to change the

coil value. This can be a number between 1 and 255 but needs to
match the number assigned to the slave node.

slave_addr specifies the address of the coil that you want to change. This can

be from 0 to 65535.

coil_val is the desired value of the coil and can be either:

MODBUS_COIL_OFF or MODBUS_COIL_ON.

µC/Modbus

 35

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

MODBUS_ERR_COIL_ADDR
If you specified an invalid coil address.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

36

3.10 Using µC/Modbus-M, MBM_FC06_HoldingRegWr()

This function is called from YOUR application code to write to a single 16-bit holding
registers on a Modbus slave.

Prototype

CPU_INT16U MBM_FC06_HoldingRegWr (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_INT16U reg_val);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ of the holding register you want

to change. This can be a number between 1 and 255 but needs to
match the number assigned to the slave node.

slave_addr specifies the address of the holding register that you want to

change. This can be from 0 to 65535.

reg_val is the desired value of the holding register. If the holding register

you are changing is a signed value, simply cast the value to
unsigned. Modbus reads and writes 16-bit values and doesn’t
really care about the sign.

µC/Modbus

 37

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

38

3.11 Using µC/Modbus-M, MBM_FC06_HoldingRegWrFP()

This function is called from YOUR application code to write to a single 32-bit
floating-point holding registers on a Modbus slave.

Prototype

CPU_INT16U MBM_FC06_HoldingRegWrFP (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_FP32 reg_val);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ of the holding register you want

to change. This can be a number between 1 and 255 but needs to
match the number assigned to the slave node.

slave_addr specifies the address of the holding register that you want to

change. This can be from 0 to 65535.

reg_val is the desired floating-point value of the holding register. The

floating-point value assumes an IEEE-754 format.

µC/Modbus

 39

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

40

3.12 Using µC/Modbus-M, MBM_FC08_Diag()

This function is called from YOUR application code to perform a diagnostic check on a
Modbus slave.

Prototype

CPU_INT16U MBM_FC08_Diag (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U fnct,

 CPU_INT16U sub_fnct,

 CPU_INT16U *pval);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ of the slave you want to

performa a diagnostic function to. This can be a number between
1 and 255 but needs to match the number assigned to the slave
node.

fnct specifies the function you want to perform on the slave and you

must specify either:

MODBUS_FC08_LOOPBACK_CLR_CTR

You want to clear the loopback counters in the slave.

MODBUS_FC08_BUS_MSG_CTR

You want to read the counter of messages received by the slave.
This counter keeps track of all messages received whether
processed or not.

MODBUS_FC08_BUS_CRC_CTR

You want to read the counter of bad CRCs detected by the slave.

MODBUS_FC08_BUS_EXCEPT_CTR

You want to read the counter of exceptions detected by the slave.

MODBUS_FC08_SLAVE_MSG_CTR

You want to read the number of message received and processed
by the slave.

µC/Modbus

 41

MODBUS_FC08_SLAVE_NO_RESP_CTR

You want to read the number of messages that have not been
replied to because of bad CRCs, invalid commands, etc.

sub_fnct corresponds to a sub-function argument for the function. At this

time, µC/Modbus does not support sub-functions.

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_DIAG
If you specified an invalid diagnostic function code (i.e. not one of
the function described in the ‘fnct’ argument).

MODBUS_ERR_SUB_FNCT

If you specified an invalid sub-function.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

42

3.13 Using µC/Modbus-M, MBM_FC15_CoilWr()

This function is called from YOUR application code to write to multiple coils on a
Modbus slave.

Prototype

CPU_INT16U MBM_FC15_CoilWr (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_INT08U *p_coil_tbl,

 CPU_INT16U nbr_coils);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ that you desire to change the

coil values. This can be a number between 1 and 255 but needs to
match the number assigned to the slave node.

slave_addr specifies the start address of the coils that you want to change.

This can be from 0 to 65535.

p_coil_tbl is an array of values corresponding to the desired values for the

coils. The format is assumed to be as follows:

 MSB LSB

 B7 B6 B5 B4 B3 B2 B1 B0

 p_coil_tbl[0] #8 #7 #1

 p_coil_tbl[1] #16 #15 #9

 :

 :

nbr_coils specifies the number of coils you are changing. Of course the

array pointed to by p_coil_tbl must contain the corresponding

number of entries.

µC/Modbus

 43

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

44

3.14 Using µC/Modbus-M, MBM_FC16_HoldingRegWrN ()

This function is called from YOUR application code to write to multiple 16-bit holding
registers on a Modbus slave.

Prototype

CPU_INT16U MBM_FC16_HoldingRegWrN (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_INT16U *p_reg_tbl,

 CPU_INT16U nbr_reg);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ of the holding registers you want

to change. This can be a number between 1 and 255 but needs to
match the number assigned to the slave node.

slave_addr specifies the start address of the holding registers that you want to

change. This can be from 0 to 65535.

p_reg_tbl is an array of values corresponding to the desired values of the

holding registers in the slave. If the holding registers you are
changing are signed values, simply cast the value to unsigned.
Modbus reads and writes 16-bit values and doesn’t really care
about the sign.

nbr_reg specifies the number of registers you want to change. Of course

the array pointed to by p_reg_tbl must contain the corresponding

number of values.

µC/Modbus

 45

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

46

3.15 Using µC/Modbus-M, MBM_FC16_HoldingRegWrNFP()

This function is called from YOUR application code to write to multiple 32-bit
floating-point holding registers on a Modbus slave.

Prototype

CPU_INT16U MBM_FC16_HoldingRegWrNFP (MODBUS_CH *pch,

 CPU_INT08U slave_node,

 CPU_INT16U slave_addr,

 CPU_FP32 *p_reg_tbl,

 CPU_INT16U nbr_reg);

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. Of course, ‘pch’ must have been configured as

a Master when you configured the channel.

slave_node specifies the slave ‘node address’ of the floating-point holding

registers you want to change. This can be a number between 1
and 255 but needs to match the number assigned to the slave
node.

slave_addr specifies the start address of the floating-point holding registers

that you want to change. This can be from 0 to 65535.

p_reg_tbl is an array of IEEE-754 floating-point values corresponding to the

desired values of the holding registers in the slave.

nbr_reg specifies the number of registers you want to change. Of course

the array pointed to by p_reg_tbl must contain the corresponding

number of values.

µC/Modbus

 47

Returned Value

MODBUS_ERR_NONE

if the call was successful.

MODBUS_ERR_RX
if a response was not received from the slave within the timeout
specified for this channel (see MB_CfgCh()).

MODBUS_ERR_SLAVE_ADDR

If the transmitted slave address doesn't correspond to the received
slave address

MODBUS_ERR_FC
If the transmitted function code doesn't correspond to the received
function code

MODBUS_ERR_BYTE_COUNT
If the expected number of bytes to receive doesn't correspond to
the number of bytes received.

Notes / Warnings
None

Called By
Your Modbus master application.

Example

µC/Modbus

48

3.16 Using µC/Modbus, MB_Init()

As mentioned in the previous section, MB_Init() needs to be called to initialize

µC/Modbus. When called, MB_Init() creates one task that handles processing of all

frames sent to your product. See section 7 for details.

Prototype

void MB_Init (CPU_INT32U freq);

Arguments

freq corresponds to the RTU timer interrupt frequency you intend to

use. If you don’t use Modbus RTU in your product, simply pass 0.

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

 49

3.17 Using µC/Modbus, MB_ModeSet()

This function allows you to change the Modbus mode of a channel. You would
typically not need to use this function because the channel’s mode would have been set
in MB_CfgCh().

Prototype

void MB_ModeSet (MODBUS_CH *pch,

 CPU_INT08U mode)

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on.

mode specifies whether you want the channel to support ASII or RTU

mode and thus, you must pass either MODBUS_MODE_ASCII or

MODBUS_MODE_RTU, respectively.

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

50

3.18 Using µC/Modbus-S, MB_NodeAddrSet()

This function allows you to change the ‘node address’ that the channel will respond to.
You would typically not need to use this function because the channel’s address would
have been set in MB_CfgCh().

void MB_NodeAddrSet (MODBUS_CH *pch,

 CPU_INT08U addr)

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. This channel must have been configured as a
Modbus slave.

addr is the node number and can be anything from 1 to 255.

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus slave application.

Example

µC/Modbus

 51

3.19 Using µC/Modbus-S, MB_WrEnSet()

This function allows you to enable or disable writes to parameters in your product. In
other words, this allows channels to act as read-only channels. You would typically not
need to use this function because the channel read/write privilege would have been set
in MB_CfgCh().

void MB_WrEnSet (MODBUS_CH *pch,

 CPU_INT08U wr_en)

Arguments

pch is a pointer to the channel (returned by MB_CfgCh()). This pointer

specifies onto which channel the Modbus master will be
communicating on. This channel must have been configured as a
Modbus slave.

wr_en wr_en determines whether writes are enabled or not. You must

pass either: MODBUS_WR_EN or MODBUS_WR_DIS.

Returned Value
None

Notes / Warnings
None

Called By
Your Modbus master or slave application.

Example

µC/Modbus

52

4.00 Configuring µC/Modbus

Configuration of µC/Modbus is done at compile time via about 20 #define constants.

Configuration values are found in mb_cfg.h which should be placed in your product’s

directory or, you can copy the #define constants in a header file of your choice. It’s

recommended that you copy the mb_cfg.h file that is provided with the µC/Modbus

distribution and modify its content instead of creating mb_cfg.h from scratch. This

way you have a better chance of not forgetting any #define constants. Default values

are shown in RED.

4.01 Configuring µC/Modbus, MODBUS_CFG_SLAVE_EN

This #define constant specifies whether your product will support Modbus slave (or

server) mode. Set this #define to DEF_ENABLED to enable SLAVE code. Set this

#define to DEF_DISABLED to disable SLAVE code. You must have purchased the

µC/Modbus-S package in order to set this #define to DEF_ENABLED.

4.02 Configuring µC/Modbus, MODBUS_CFG_MASTER_EN

This #define constant specifies whether your product will support Modbus master (or

client) mode. Set this #define to DEF_ENABLED to enable MASTER code. Set this

#define to DEF_DISABLED to disable Master code You must have purchased the

µC/Modbus-M package in order to set this #define to DEF_ENABLED .

4.03 Configuring µC/Modbus, MODBUS_CFG_ASCII_EN

This #define constant specifies whether your product will support the Modbus ASCII

protocol. Setting this value to DEF_ENABLED allows any Modbus channel to be

configured for Modbus ASCII mode. Note that each channel must be configured to
either Modbus ASCII or Modbus RTU mode at run-time. Setting
MODBUS_CFG_ASCII_EN to DEF_ENABLED doesn’t mean that your product MUST use

ASCII mode, it just means that the code to support Modbus ASCII will be included in
the compilation.

µC/Modbus

 53

4.04 Configuring µC/Modbus, MODBUS_CFG_RTU_EN

This #define constant specifies whether your product will support the MODBUS RTU

protocol. Setting this value to DEF_ENABLED allows any Modbus channel to be

configured for Modbus RTU mode. Note that each channel must be configured to
either MODBUS ASCII or MODBUS RTU mode at run-time. Setting
MODBUS_CFG_RTU_EN to DEF_ENABLED doesn’t mean that your product MUST use

RTU mode, it just means that the code to support MODBUS RTU will be included in the
compilation.

4.05 Configuring µC/Modbus, MODBUS_CFG_MAX_CH

µC/Modbus allows you to provide multiple communication ‘channels’ in your product.

Each channel allows a MODBUS master to request data from your product. If your
product only provides one channel, you should set MODBUS_CFG_MAX_CH to 1.

4.06 Configuring µC/Modbus, MODBUS_CFG_BUF_SIZE

MODBUS protocol packets can contain up to 256 bytes of data. To hold this data, each

µC/Modbus channel allocates storage buffers: TWO for received packets and TWO

for transmit packets. If your application sends and receives small packets, you can
reduce the buffer size in order to conserve RAM. However, we recommend that you
leave MODBUS_CFG_BUF_SIZE to it’s default value of 255. With 255, a Modbus

channel will require 1020 bytes of RAM for buffers.

4.07 Configuring µC/Modbus, MODBUS_CFG_FP_EN

When set to DEF_ENABLED , this #define constant is used to enable code generation

for floating-point support of the “Daniels Flow Meter Floating-Point Extension”. The
default value should be DEF_DISABLED.

4.08 Configuring µC/Modbus, MODBUS_CFG_FP_START_IX

This #define establishes the start address for floating-point numbers use in Input

Registers and Holding Registers. Basically, integer input registers and holding registers
go from address (or index) 0 to MODBUS_CFG_FP_START_IX-1 and floating-point input

registers and holding registers, from MODBUS_CFG_FP_START_IX to 65535.

µC/Modbus

54

4.09 Configuring µC/Modbus, MODBUS_CFG_FC01_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support Coil Read commands (Function Code #1). When set to DEF_DISABLED ,

code will not be generated for this command.

4.10 Configuring µC/Modbus, MODBUS_CFG_FC02_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support Discrete Input Read commands (Function Code #2). When set to
DEF_DISABLED , code will not be generated for this command.

4.11 Configuring µC/Modbus, MODBUS_CFG_FC03_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support Holding register Read commands (Function Code #3). When set to
DEF_DISABLED , code will not be generated for this command.

4.12 Configuring µC/Modbus, MODBUS_CFG_FC04_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support Input register Read commands (Function Code #4). When set to
DEF_DISABLED , code will not be generated for this command.

4.13 Configuring µC/Modbus, MODBUS_CFG_FC05_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support Coil Write commands (Function Code #5). When set to DEF_DISABLED ,

code will not be generated for this command.

4.14 Configuring µC/Modbus, MODBUS_CFG_FC06_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support writing to a single Holding Register commands (Function Code #6). When set
to DEF_DISABLED , code will not be generated for this command.

µC/Modbus

 55

4.15 Configuring µC/Modbus, MODBUS_CFG_FC08_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support diagnostic loopback commands (Function Code #8). When set to
DEF_DISABLED , code will not be generated for this command.

4.16 Configuring µC/Modbus, MODBUS_CFG_FC15_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support the Multiple Coil Write command (Function Code #15). When set to
DEF_DISABLED , code will not be generated for this command.

4.17 Configuring µC/Modbus, MODBUS_CFG_FC16_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support the Multiple Holding Register Write command (Function Code #16). When set
to DEF_DISABLED , code will not be generated for this command.

4.18 Configuring µC/Modbus-S, MODBUS_CFG_FC20_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support the File Read command (Function Code #20). When set to DEF_DISABLED,

code will not be generated for this command.

4.19 Configuring µC/Modbus-S, MODBUS_CFG_FC21_EN

When set to DEF_ENABLED, this #define determines whether µC/Modbus will

support the File Write command (Function Code #21). When set to DEF_DISABLED,

code will not be generated for this command.

µC/Modbus

56

4.20 Configuring µC/Modbus, RAM Memory Requirements

The amount of RAM required by each µC/Modbus channel is shown in the table

below. The table assumes that pointers are 32 bits wide.

Table 3-1, RAM Requirements for each µC/Modbus channel.

Data Type Data Type Size

(Bytes)

#Elements for Specific Data Type Total

Bytes
CPU_BOOLEAN 1 1 1

CPU_INT08U 1 8 +

4 * MODBUS_CFG_BUF_SIZE

1028

CPU_INT16U 2 13 +

2 * MODBUS_CFG_RTU_EN

30

CPU_INT32U 4 4 16

CPU_INT08U * 4 2 8

 Total (per µC/Modbus channel):

(see MB_ChSize)

1083

The ‘global’ variable MB_TotalRAMSize contains the total amount of RAM (in bytes)

needed by µC/Modbus for the configuration you specify. Similarly, MB_ChSize

contains the amount of RAM (in bytes) needed by each Modbus channel. Both of these
‘variables’ are 32-bit values and are actually declared as ‘const’ and thus, use 8 bytes

of ROM and no RAM.

µC/Modbus

 57

5.00 µC/Modbus-S, Accessing application data

µC/Modbus-S accesses your application data via interface functions that are defined

in mb_data.c. Specifically, functions that YOU provided in this file are called by

µC/Modbus-S to read and write coils, integers, floating-point values and more. It’s up

to you to decide how your data is accessed. Specifically, you can use tables, functions,
switch statements, etc. Examples are provided in this section. This flexibility also

allows you to execute code whenever a data is read or written.

You must thus write the code for the following functions:

MB_CoilRd()

MB_CoilWr()

MB_DIRd()

MB_InRegRd()

MB_InRegRdFP()

MB_HoldingRegRd()

MB_HoldingRegRdFP()

MB_HoldingRegWr()

MB_HoldingRegWrFP()

MB_FileRd()

MB_FileWr()

µC/Modbus

58

5.01 µC/Modbus-S, MB_CoilRd()

MB_CoilRd() is called when a Modbus master sends a Function Code 1 command.

MB_CoilRd() returns the value of a single coil. MB_CoilRd() should only be called

by µC/Modbus.

Prototype
CPU_BOOLEAN MB_CoilRd (CPU_INT16U coil,

 CPU_INT16U *perr)

Arguments
coil Is the coil number that you want to read and can be a number

between 0 and 65535 (depending on your product). It is up to you
to decide which coil is assigned to what variable in your product.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the coil number you specified is a valid coil

and you are able to have code access the value of this coil.

 MODBUS_ERR_RANGE if the coil number passed as an argument is

not a valid coil number for your product.

Returned Value
MB_CoilRd() returns the current value of the specified coil number (TRUE or

FALSE). If an invalid coil number is specified, you should return FALSE.

Notes / Warnings
Code is enabled when MODBUS_CFG_FC01_EN is set to DEF_ENABLED in your

product’s mb_cfg.h file.

Called By:
MBS_FC01_CoilRd() in mbs_core.c

µC/Modbus

 59

Example
In this example, our product has 163 coils. 160 coils are placed in a table called
AppCoilTbl[]. The other three coils are actually variables that we treat as coils to

allow a Modbus master to read the status of those values. The first 160 coils are
assigned coil numbers 0 to 159. Coil numbers 200, 201 and 202 correspond to the
following application variables: AppStatus, AppRunning and AppLED, respectively.

CPU_INT08U AppCoilTbl[20];

CPU_BOOLEAN AppStatus;

CPU_BOOLEAN AppRunning;

CPU_BOOLEAN AppLED;

CPU_BOOLEAN MB_CoilRd (CPU_INT16U coil, CPU_INT16U *perr)

{

 CPU_INT08U ix;

 CPU_INT08U bit_nbr;

 *perr = MODBUS_ERR_NONE;

 if (coil < 20 * sizeof(CPU_INT08U)) {

 ix = coil / 8;

 bit_nbr = coil % 8;

 if (AppCoilTbl[ix] & (1 << bit_nbr)) {

 return (TRUE);

 } else {

 return (FALSE);

 }

 return (val);

 } else {

 switch (coil) {

 case 200:

 return (AppStatus);

 case 201:

 return (AppRunning);

 case 202:

 return (AppLED);

 default:

 *perr = MODBUS_ERR_RANGE;

 return (0);

 }

 }

}

µC/Modbus

60

5.02 µC/Modbus-S, MB_CoilWr()

MB_CoilWr() is called when a Modbus master sends a Function Code 5 and Function

Code 15 command. MB_CoilWr() changes the value of a single coil. MB_CoilWr()

should only be called by µC/Modbus.

Prototype
void MB_CoilWr (CPU_INT16U coil,

 CPU_BOOLEAN coil_val;

 CPU_INT16U *perr)

Arguments
coil Is the coil number that you want to change and can be a number

between 0 and 65535 (depending on your product). It is up to you
to decide which coil is assigned to what variable in your product.

coil_val Is the value you want to change the coil to and can be either
DEF_TRUE or DEF_FALSE.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the coil number you specified is a valid coil

and you are able to have code access the value of this coil.

 MODBUS_ERR_RANGE if the coil number passed as an argument is

not a valid coil number for your product.

Returned Value
None

Notes / Warnings
Code is enabled when either MODBUS_CFG_FC05_EN is set to DEF_ENABLED or

MODBUS_CFG_FC15_EN is set to DEF_ENABLED in your product’s mb_cfg.h file.

Called By:
MBS_FC05_CoilWr() and MBS_FC15_CoilWrMultiple() in mbs_core.c

µC/Modbus

 61

Example
In this example, our product has 163 coils. 160 coils are placed in a table called
AppCoilTbl[]. The other three coils are actually variables that we treat as coils to

allow a MODBUS master to read the status of those values. The first 160 coils are
assigned coil numbers 0 to 159. Coil numbers 200, 201 and 202 correspond to the
following application variables: AppStatus, AppRunning and AppLED, respectively.

CPU_INT08U AppCoilTbl[20];

CPU_BOOLEAN AppStatus;

CPU_BOOLEAN AppRunning;

CPU_BOOLEAN AppLED;

void MB_CoilWr (CPU_INT16U coil, CPU_BOOLEAN coil_val, CPU_INT16U *perr)

{

 CPU_INT08U ix;

 CPU_INT08U bit_nbr;

 *perr = MODBUS_ERR_NONE;

 if (coil < 20 * sizeof(CPU_INT08U)) {

 ix = coil / 8;

 bit_nbr = coil % 8;

 CPU_CRITICAL_ENTER();

 if (coil_val == TRUE) {

 AppCoilTbl[ix] |= (1 << bit_nbr);

 } else {

 AppCoilTbl[ix] &= ~(1 << bit_nbr);

 }

 CPU_CRITICAL_EXIT();

 } else {

 switch (coil) {

 case 200:

 AppStatus = coil_val;

 break;

 case 201:

 AppRunning = coil_val;

 break;

 case 202:

 AppLED = coil_val;

 break;

 default:

 *perr = MODBUS_ERR_RANGE;

 break;

 }

 }

}

µC/Modbus

62

5.03 µC/Modbus-S, MB_DIRd()

MB_DIRd() is called when a Modbus master sends a Function Code 2 command.

MB_DIRd() read the value of a single discrete input. MB_DIRd() should only be

called by µC/Modbus.

Prototype
CPU_BOOLEAN MB_DIRd (CPU_INT16U di,

 CPU_INT16U *perr)

Arguments
di Is the discrete input number that you want to read and can be a

number between 0 and 65535 (depending on your product). It is
up to you to decide which discrete input is assigned to what
variable in your product.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the discrete input number you specified is a

valid discrete input and you are able to have code access the value
of this discrete input.

 MODBUS_ERR_RANGE if the discrete input number passed as an

argument is not a valid discrete input number for your product.

Returned Value
MB_DIRd() returns the current value of the specified discrete input (TRUE or FALSE).

If an invalid discrete input number is specified, you should return FALSE.

Notes / Warnings
Code is enabled when MODBUS_CFG_FC02_EN is set to DEF_ENABLED in your

product’s mb_cfg.h file.

Called By:
MBS_FC02_DIRd() in mbs_core.c

µC/Modbus

 63

Example
In this example, our product has 19 discrete inputs. 16 of these discrete are placed in
AppDITbl[] by your application. The other three discrete inputs actually represent the

status of three switches that your application reads and places the status into the
following variables: AppSwStart, AppSwStop and AppSwReset. A pressed switch is

indicated by a TRUE and a released switch is represented by a FALSE.

Your systems Engineer decided to assign Modbus discrete input numbers 100, 101 and
102 to the three switches and the other discrete inputs to 103 through 118.

CPU_BOOLEAN AppDITbl[16];

CPU_BOOLEAN AppSwStart;

CPU_BOOLEAN AppSwStop;

CPU_BOOLEAN AppSwReset;

CPU_BOOLEAN MB_DIRd (CPU_INT16U di, CPU_INT16U *perr)

{

 *perr = MODBUS_ERR_NONE;

 switch (di) {

 case 100:

 return (AppSwStart);

 case 101:

 return (AppSwStop);

 case 102:

 return (AppSwReset);

 case 103:

 case 104:

 case 105:

 case 106:

 case 107:

 case 108:

 case 109:

 case 110:

 case 111:

 case 112:

 case 113:

 case 114:

 case 115:

 case 116:

 case 117:

 case 118:

 return (AppDITbl[di – 103]);

 default:

 *perr = MODBUS_ERR_RANGE;

 return (FALSE);

 }

}

µC/Modbus

64

5.04 µC/Modbus-S, MB_InRegRd()

MB_InRegRd() is called when a Modbus master sends a Function Code 4 command.

MB_InRegRd() read the value of a single input register. Integer input registers are

numbered from 0 through (MODBUS_CFG_FP_START_IX – 1).

MODBUS_CFG_FP_START_IX allows you to specify the start of ‘floating-point’ (see

section 5.05, MD_InRegRdFP()). MB_InRegRd() should only be called by

µC/Modbus.

Prototype
CPU_INT16U MB_InRegRd (CPU_INT16U reg,

 CPU_INT16U *perr)

Arguments
reg Is the desired input register to read and can be a number between

0 and MODBUS_CFG_FP_START_IX-1 (depending on your

product). It is up to you to decide what application variable is
assigned to each input register number. Note that if your product
doesn’t have any floating-point registers but a large number of
input registers, you can set MODBUS_CFG_FP_START_IX to
65535.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the input register number you specified is a

valid input register and you are able to have code access the value
of this input register.

 MODBUS_ERR_RANGE if the input register number passed as an

argument is not a valid input register number for your product.

Returned Value
MB_InRegRd() returns the current value of the specified input register as an

unsigned value. Of course, you can also return ‘signed’ values but those need to be
cast to CPU_INT16U. You should note that the value will not be changed if you cast a

signed variable to CPU_INT16U. The Modbus master will receive the proper value

and it’s up to the Modbus master to properly retrieve the signed data . If an invalid
input register number is specified, you should return 0.

µC/Modbus

 65

Notes / Warnings
Code is enabled when MODBUS_CFG_FC04_EN is set to DEF_ENABLED in your

product’s mb_cfg.h file.

Called By:
MBS_FC04_InRegRd() in mbs_core.c

Example
In this example, our product has 4 integer variables that we want to assign to input
registers. Your systems Engineer decided to assign Modbus input register numbers
1000, 1001, 1002 and 1003 to the four integer values. You will notice that we disable
interrupts to access the variables. This is done in case your CPU is an 8-bit CPU and
data accesses to 16-bit values are not atomic.

CPU_INT16S AppTemp;

CPU_INT16U AppCtr;

CPU_INT16S AppPres;

CPU_INT16U AppRxPktCtr;

CPU_INT16U MB_InRegRd (CPU_INT16U reg, CPU_INT16U *perr)

{

 CPU_INT16U val;

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case 1000:

 CPU_CRITICAL_ENTER();

 val = (CPU_INT16U)AppTemp;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1001:

 CPU_CRITICAL_ENTER();

 val = AppCtr;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1002:

 CPU_CRITICAL_ENTER();

 val = (CPU_INT16U)AppPres;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1003:

 CPU_CRITICAL_ENTER();

 val = AppRxPktCtr;

 CPU_CRITICAL_EXIT();

 return (val);

 default:

 *perr = MODBUS_ERR_RANGE;

 return (0);

 }

}

µC/Modbus

66

5.05 µC/Modbus-S, MB_InRegRdFP()

MB_InRegRdFP() is called when a Modbus master sends a Function Code 4

command. MB_InRegRdFP() read the value of a single input register but, it assumes

that you are trying to access a floating-point variable. Floating-point input registers are
numbered from MODBUS_CFG_FP_START_IX to 65535 (or less if you don’t have a lot

of floating-point registers). MODBUS_CFG_FP_START_IX allows you to specify the

start of ‘floating-point’. MB_InRegRdFP() should only be called by µC/Modbus.

Prototype
CPU_FP32 MB_InRegRdFP (CPU_INT16U reg,

 CPU_INT16U *perr)

Arguments
reg Is the desired input register to read and can be a number between

MODBUS_CFG_FP_START_IX and 65535 (depending on your

product). It is up to you to decide what application variable is
assigned to each input register number. Note that if your product
doesn’t have any floating-point registers but a large number of
input registers, you can set MODBUS_CFG_FP_START_IX to
65535.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the input register number you specified is a

valid input register and you are able to have code access the value
of this input register.

 MODBUS_ERR_RANGE if the input register number passed as an

argument is not a valid input register number for your product.

Returned Value
MB_InRegRdFP() returns the current value of the specified floating-point input

register as a 32-bit IEEE-754 unsigned value. If an invalid input register number is
specified, you should return (CPU_FP32)0.

Notes / Warnings
Code is enabled when both MODBUS_CFG_FC04_EN is set to DEF_ENABLED and

MODBUS_CFG_FP_EN is set to DEF_ENABLED in your product’s mb_cfg.h file.

µC/Modbus

 67

Called By:
MBS_FC04_InRegRd() in mbs_core.c

Example
In this example, our product has 4 floating-point variables that we want to assign to
input registers. Your systems Engineer decided to assign MODBUS input register
numbers MODBUS_CFG_FP_START_IX+0, MODBUS_CFG_FP_START_IX+1,

MODBUS_CFG_FP_START_IX+2 and MODBUS_CFG_FP_START_IX+3 to the four

floating-point values. You will notice that we disable interrupts to access the variables.
This is done in case your CPU does not allow atomic access to the 32-bit floating-point
values.

CPU_FP32 AppTempAir;

CPU_FP32 AppTempFuel;

CPU_FP32 AppPresAir;

CPU_FP32 AppPresFuel;

CPU_FP32 MB_InRegRdFP (CPU_INT16U reg, CPU_INT16U *perr)

{

 CPU_FP32 val;

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case MODBUS_CFG_FP_START_IX + 0:

 CPU_CRITICAL_ENTER();

 val = AppTempAir;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 1:

 CPU_CRITICAL_ENTER();

 val = AppTempFuel;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 2:

 CPU_CRITICAL_ENTER();

 val = AppPresAir;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 3:

 CPU_CRITICAL_ENTER();

 val = AppPresFuel;

 CPU_CRITICAL_EXIT();

 return (val);

 default:

 *perr = MODBUS_ERR_RANGE;

 return ((CPU_FP32)0);

 }

}

µC/Modbus

68

5.06 µC/Modbus-S, MB_HoldingRegRd()

MB_HoldingRegRd() is called when a Modbus master sends a Function Code 3

command. MB_HoldingRegRd() read the value of a single holding register. Integer

holding registers are numbered from 0 through (MODBUS_CFG_FP_START_IX – 1).

MODBUS_FP_START_IX allows you to specify the start of ‘floating-point’ (see section

5.07, MD_HoldingRegRdFP()). MB_HoldingRegRd() should only be called by

µC/Modbus.

Prototype
CPU_INT16U MB_HoldingRegRd (CPU_INT16U reg,

 CPU_INT16U *perr)

Arguments
reg Is the desired holding register to read and can be a number

between 0 and MODBUS_CFG_FP_START_IX-1 (depending on

your product). It is up to you to decide what application variable is
assigned to each holding register number. Note that if your product
doesn’t have any floating-point registers but a large number of
holding registers, you can set MODBUS_CFG_FP_START_IX to
65535.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the holding register number you specified is

a valid holding register and you are able to have code access the
value of this holding register.

 MODBUS_ERR_RANGE if the holding register number passed as an

argument is not a valid holding register number for your product.

Returned Value
MB_HoldingRegRd() returns the current value of the specified holding register as

an unsigned value. Of course, you can also return ‘signed’ values but those need to
be cast to CPU_INT16U. You should note that the value will not be changed if you

cast a signed variable to CPU_INT16U. The Modbus master will receive the proper

value and it’s up to the Modbus master to properly retrieve the signed data . If an
invalid holding register number is specified, you should return 0.

µC/Modbus

 69

Notes / Warnings
Code is enabled when MODBUS_CFG_FC03_EN is set to DEF_ENABLED in your

product’s mb_cfg.h file.

Called By:
MBS_FC03_HoldingRegRd() in mbs_core.c

Example
In this example, our product has 4 integer variables that we want to assign to holding
registers. Your systems Engineer decided to assign Modbus holding register numbers
1000, 1001, 1002 and 1003 to the four integer values. You will notice that we disable
interrupts to access the variables. This is done in case your CPU is an 8-bit CPU and
data accesses to 16-bit values are not atomic.

CPU_INT16S AppTemp;

CPU_INT16U AppCtr;

CPU_INT16S AppPres;

CPU_INT16U AppRxPktCtr;

CPU_INT16U MB_HoldingRegRd (CPU_INT16U reg, CPU_INT16U *perr)

{

 CPU_INT16U val;

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case 1000:

 CPU_CRITICAL_ENTER();

 val = (CPU_INT16U)AppTemp;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1001:

 CPU_CRITICAL_ENTER();

 val = AppCtr;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1002:

 CPU_CRITICAL_ENTER();

 val = (CPU_INT16U)AppPres;

 CPU_CRITICAL_EXIT();

 return (val);

 case 1003:

 CPU_CRITICAL_ENTER();

 val = AppRxPktCtr;

 CPU_CRITICAL_EXIT();

 return (val);

 default:

 *perr = MODBUS_ERR_RANGE;

 return (0);

 }

}

µC/Modbus

70

5.07 µC/Modbus-S, MB_HoldingRegRdFP()

MB_HoldingRegRdFP() is called when a Modbus master sends a Function Code 3

command. MB_HoldingRegRdFP() read the value of a single holding register but, it

assumes that you are trying to access a floating-point variable. Floating-point holding
registers are numbered from MODBUS_CFG_FP_START_IX to 65535 (or less if you

doesn’t have a lot of floating-point registers). MODBUS_CFG_FP_START_IX allows you

to specify the start of ‘floating-point’. MB_HoldingRegRdFP() should only be called

by µC/Modbus.

Prototype
CPU_FP32 MB_HoldingRegRdFP (CPU_INT16U reg,

 CPU_INT16U *perr)

Arguments
reg Is the desired holding register to read and can be a number

between MODBUS_CFG_FP_START_IX and 65535 (depending on

your product). It is up to you to decide what application variable is
assigned to each holding register number. Note that if your product
doesn’t have any floating-point registers but a large number of
holding registers, you can set MODBUS_CFG_FP_START_IX to
65535.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the holding register number you specified is

a valid holding register and you are able to have code access the
value of this holding register.

 MODBUS_ERR_RANGE if the holding register number passed as an

argument is not a valid holding register number for your product.

Returned Value
MB_HoldingRegRdFP() returns the current value of the specified floating-point

holding register as a 32-bit IEEE-754 unsigned value. If an invalid holding register
number is specified, you should return (CPU_FP32)0.

µC/Modbus

 71

Notes / Warnings
Code is enabled when both MODBUS_CFG_FC03_EN is set to DEF_ENABLED and

MODBUS_CFG_FP_EN is set to DEF_ENABLED in your product’s mb_cfg.h file.

Holding registers and input registers are completely different and can be assigned to
different variables.

Called By:
MBS_FC03_HoldingRegRd() in mbs_core.c

Example
In this example, our product has 4 floating-point variables that we want to assign to
holding registers. Your systems Engineer decided to assign Modbus holding register
numbers MODBUS_CFG_FP_START_IX+0, MODBUS_CFG_FP_START_IX+1,

MODBUS_CFG_FP_START_IX+2 and MODBUS_CFG_FP_START_IX+3 to the four

floating-point values. You will notice that we disable interrupts to access the variables.
This is done in case your CPU does not allow atomic access to the 32-bit floating-point
values.

CPU_FP32 AppTempAir;

CPU_FP32 AppTempFuel;

CPU_FP32 AppPresAir;

CPU_FP32 AppPresFuel;

CPU_FP32 MB_HoldingRegRdFP (CPU_INT16U reg, CPU_INT16U *err)

{

 CPU_FP32 val;

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case MODBUS_CFG_FP_START_IX + 0:

 CPU_CRITICAL_ENTER();

 val = AppTempAir;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 1:

 CPU_CRITICAL_ENTER();

 val = AppTempFuel;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 2:

 CPU_CRITICAL_ENTER();

 val = AppPresAir;

 CPU_CRITICAL_EXIT();

 return (val);

 case MODBUS_CFG_FP_START_IX + 3:

 CPU_CRITICAL_ENTER();

 val = AppPresFuel;

 CPU_CRITICAL_EXIT();

 return (val);

 default:

 *perr = MODBUS_ERR_RANGE;

 return ((CPU_FP32)0);

 }

}

µC/Modbus

72

5.08 µC/Modbus-S, MB_HoldingRegWr()

MB_HoldingRegWr() is called when a Modbus master sends a Function Code 6 and

Function Code 16 command. MB_HoldingRegWr() writes a single holding register

value. Integer holding registers are numbered from 0 through

(MODBUS_CFG_FP_START_IX – 1). MODBUS_CFG_FP_START_IX allows you to

specify the start of ‘floating-point’ (see section 5.09, MD_HoldingRegWrFP()).

MB_HoldingRegWr() should only be called by µC/Modbus.

Prototype
void MB_HoldingRegWr (CPU_INT16U reg,

 CPU_INT16U reg_val,

 CPU_INT16U *perr)

Arguments
reg Is the desired holding register to read and can be a number

between 0 and MODBUS_CFG_FP_START_IX-1 (depending on

your product). It is up to you to decide what application variable is
assigned to each holding register number. Note that if your product
doesn’t have any floating-point registers but a large number of
holding registers, you can set MODBUS_CFG_FP_START_IX to
65535.

reg_val Is the desired value for the specified holding register and can be a
number between 0 and 65535. Note that your product could have

a signed 16-bit integer but this function will ‘temporarily’ treat it as
an unsigned value. However, the assignment is performed
correctly and your application variable will have the sign set
correctly.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the holding register number you specified is

a valid holding register and you are able to have code access the
value of this holding register.

 MODBUS_ERR_RANGE if the holding register number passed as an

argument is not a valid holding register number for your product.

µC/Modbus

 73

Returned Value
None

Notes / Warnings
Code is enabled when either MODBUS_CFG_FC06_EN is set to DEF_ENABLED or

MODBUS_CFG_FC16_EN is set to DEF_ENABLED in your product’s mb_cfg.h file.

Called By:
MBS_FC06_HoldingRegWr() and MBS_FC16_HoldingRegWr() in mbs_core.c

Example
In this example, our product has 2 integer variables that we want to assign to holding
registers. Your systems Engineer decided to assign Modbus holding register numbers
1004 and 1005 to the two integer values. You will notice that we disable interrupts to
access the variables. This is done in case your CPU is an 8-bit CPU and data
accesses to 16-bit values are not atomic.

CPU_INT16U AppCtr1;

CPU_INT16U AppCtr2;

void MB_HoldingRegWr (CPU_INT16U reg, CPU_INT16U reg_val, CPU_INT16U *err)

{

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case 1004:

 CPU_CRITICAL_ENTER();

 AppCtr1 = reg_val;

 CPU_CRITICAL_EXIT();

 Break;

 case 1005:

 CPU_CRITICAL_ENTER();

 AppCtr = reg_val;

 CPU_CRITICAL_EXIT();

 break;

 default:

 *perr = MODBUS_ERR_RANGE;

 break;

 }

}

µC/Modbus

74

5.09 µC/Modbus-S, MB_HoldingRegWrFP()

MB_HoldingRegWrFP() is called when a Modbus master sends a Function Code 6

and Function Code 16 command. MB_HoldingRegWrFP() writes a single

floating-point holding register value. Floating-point holding registers are numbered from
MODBUS_CFG_FP_START_IX to 65535. In other words, MODBUS_CFG_FP_START_IX

allows you to specify the start of ‘floating-point’ holding register addresses.

MB_HoldingRegWrFP() should only be called by µC/Modbus.

Prototype
void MB_HoldingRegWrFP (CPU_INT16U reg,

 CPU_FP32 reg_val,

 CPU_INT16U *perr)

Arguments
reg Is the desired holding register to read and can be a number

between MODBUS_CFG_FP_START_IX and 65535 (depending on

your product). It is up to you to decide what application variable is
assigned to each floating-point holding register number. Note that
if your product doesn’t have any floating-point registers but a large
number of integer holding registers, you can set
MODBUS_CFG_FP_START_IX to 65535.

reg_val Is the desired value for the specified holding register and can be
any IEEE-754 floating point value.

perr Is a pointer to a variable that will contain an error code based on
the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE if the floating-point holding register number

you specified is a valid floating-point holding register and you are
able to have code access the value of this floating-point holding
register.

 MODBUS_ERR_RANGE if the floating-point holding register number

passed as an argument is not a valid floating-point holding register
number for your product.

µC/Modbus

 75

Returned Value
None

Notes / Warnings
Code is enabled when either MODBUS_CFG_FC06_EN is set to DEF_ENABLED or

MODBUS_CFG_FC16_EN is set to DEF_ENABLED in your product’s mb_cfg.h file.

Called By:
MBS_FC06_HoldingRegWr() and MBS_FC16_HoldingRegWr() in mbs_core.c

Example
In this example, our product has 2 floating-point integer variables that we want to assign
to floating-point holding registers. Your systems Engineer decided to assign MODBUS
floating-point holding register numbers MODBUS_CFG_FP_START_IX+0 and

MODBUS_CFG_FP_START_IX+1 to the two floating-point variables. You will notice that

we disable interrupts to access the variables. This is done in case your CPU does not
perform floating-point data accesses atomically.

CPU_FP32 AppDiameter; /* Modbus Holding Register # MODBUS_CFG_FP_START_IX + 0 */

CPU_FP32 AppCircumference;

CPU_FP32 AppTempDegC; /* Modbus Holding Register # MODBUS_CFG_FP_START_IX + 1 */

CPU_FP32 AppTempDegF;

void MB_HoldingRegWrFP (CPU_INT16U reg, CPU_FP32 reg_val, CPU_INT16U *perr)

{

 CPU_FP32 temp_val;

 *perr = MODBUS_ERR_NONE;

 switch (reg) {

 case MODBUS_CFG_FP_START_IX + 0:

 temp_val = reg_val * (CPU_FP32)3.141592654; /* Compute circumference */

 CPU_CRITICAL_ENTER();

 AppDiameter = reg_val;

 AppCircumference = temp_val;

 CPU_CRITICAL_EXIT();

 Break;

 case MODBUS_CFG_FP_START_IX + 1:

 temp_val = reg_val * (CPU_FP32)1.8 + (CPU_FP32)32.0; /* C -> F Conversion */

 CPU_CRITICAL_ENTER();

 AppTempDegC = reg_val;

 AppTempDegF = temp_val;

 CPU_CRITICAL_EXIT();

 break;

 default:

 *perr = MODBUS_ERR_RANGE;

 break;

 }

}

As shown in the example above, computations are performed when a value is changed.

µC/Modbus

76

5.10 µC/Modbus-S, MB_FileRd()

MB_FileRd() is called when a Modbus master sends a Function Code 20 command.

MB_FileRd() reads a single integer value from a file. As mentionned in the Modbus

specifications, a file is an organization of records. Each file can contain up to 10,000
records (addressed from 0 to 9999). You must 'map' the File/Record/Ix to the actual
application's corresponding data. MB_FileRd() should only be called by

µC/Modbus.

Prototype
CPU_INT16U MB_FileRd (CPU_INT16U file_nbr,

 CPU_INT16U record_nbr,

 CPU_INT16U ix,

 CPU_INT08U record_len,

 CPU_INT16U *perr)

Arguments
file_nbr Is the number of the desired file.

record_nbr Is the desired record within the file, a number between 0 and 9999.

ix Is the desired entry in the specified record.

record_len Is the total length of the record.

perr Is a pointer to a variable that will contain an error code based on

the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE the specified file/record/entry is valid and your

code is returning its current value.

 MODBUS_ERR_FILE if the specified file_nbr is not a valid file

number in your product.

 MODBUS_ERR_RECORD if the specified record_nbr is not a valid

record number in the specified file.

 MODBUS_ERR_IX if the specified ix is not a valid index into the

specified record.

µC/Modbus

 77

Returned Value
MB_FileRd() returns the current value of the element in the file as an unsigned

value. Of course, you can also return ‘signed’ values but those need to be cast to
CPU_INT16U. You should note that the value will not be changed if you cast a signed

variable to CPU_INT16U. The Modbus master will receive the proper value and it’s

up to the Modbus master to properly retrieve the signed data . If an error is detected,
you should return 0.

Notes / Warnings
Code is enabled when MODBUS_CFG_FC20_EN is set to DEF_ENABLED in your

product’s mb_cfg.h file.

Called By:
MBS_FC20_FileRd() in mbs_core.c

Example
In this example, we have two ‘files’ that we implemented as an array of 16-bit integers.

#define APP_MAX_FILES 2

#define APP_FILE_MAX_RECORDS 10

#define APP_FILE_MAX_VALUES 100

CPU_INT16U AppFile[APP_MAX_FILES][APP_FILE_MAX_RECORDS][APP_FILE_MAX_VALUES];

CPU_INT16U MB_FileRd (CPU_INT16U file_nbr,

 CPU_INT16U record_nbr,

 CPU_INT16U ix,

 CPU_INT08U record_len,

 CPU_INT16U *perr)

{

 CPU_INT16U val;

 *perr = MODBUS_ERR_NONE;

 if (file_nbr >= APP_MAX_FILES) {

 *perr = MODBUS_ERR_FILE;

 return (0);

 }

 if (record_nbr >= APP_FILE_MAX_RECORDS) {

 *perr = MODBUS_ERR_RECORD;

 return (0);

 }

 if (ix >= APP_FILE_MAX_VALUES) {

 *perr = MODBUS_ERR_IX;

 return (0);

 }

 CPU_CRITICAL_ENTER();

 val = AppFile[file_nbr][record_nbr][ix];

 CPU_CRITICAL_EXIT();

 return (val);

}

µC/Modbus

78

5.11 µC/Modbus-S, MB_FileWr()

MB_FileWr() is called when a Modbus master sends a Function Code 21 command.

MB_FileWr() writes a single integer value to a file. As mentionned in the Modbus

specifications, a file is an organization of records. Each file can contain up to 10,000
records (addressed from 0 to 9999). You must 'map' the File/Record/Ix to the actual
application's corresponding data. MB_FileWr() should only be called by

µC/Modbus.

Prototype
void MB_FileWr (CPU_INT16U file_nbr,

 CPU_INT16U record_nbr,

 CPU_INT16U ix,

 CPU_INT08U record_len,

 CPU_INT16U val,

 CPU_INT16U *perr)

Arguments
file_nbr Is the number of the desired file.

record_nbr Is the desired record within the file, a number between 0 and 9999.

ix Is the desired entry in the specified record.

record_len Is the total length of the record.

val Is the value to write to the file/record.

perr Is a pointer to a variable that will contain an error code based on

the outcome of the call. Your code thus needs to return one of the
following error codes:

 MODBUS_ERR_NONE the specified file/record/entry is valid and your

code is returning its current value.

 MODBUS_ERR_FILE if the specified file_nbr is not a valid file

number in your product.

 MODBUS_ERR_RECORD if the specified record_nbr is not a valid

record number in the specified file.

 MODBUS_ERR_IX if the specified ix is not a valid index into the

specified record.

µC/Modbus

 79

Returned Value
None.

Notes / Warnings
Code is enabled when MODBUS_FC21_EN is set to DEF_ENABLED in your product’s

mb_cfg.h file.

Called By:
MBS_FC21_FileWr() in mbs_core.c

Example
In this example, we have two ‘files’ that we implemented as an array of 16-bit integers.

#define APP_MAX_FILES 2

#define APP_FILE_MAX_RECORDS 10

#define APP_FILE_MAX_VALUES 100

CPU_INT16U AppFile[APP_MAX_FILES][APP_FILE_MAX_RECORDS][APP_FILE_MAX_VALUES];

CPU_INT16U MB_FileWr (CPU_INT16U file_nbr,

 CPU_INT16U record_nbr,

 CPU_INT16U ix,

 CPU_INT08U record_len,

 CPU_INT16U val,

 CPU_INT16U *perr)

{

 *perr = MODBUS_ERR_NONE;

 if (file_nbr >= APP_MAX_FILES) {

 *perr = MODBUS_ERR_FILE;

 return;

 }

 if (record_nbr >= APP_FILE_MAX_RECORDS) {

 *perr = MODBUS_ERR_RECORD;

 return;

 }

 if (ix >= APP_FILE_MAX_VALUES) {

 *perr = MODBUS_ERR_IX;

 return;

 }

 CPU_CRITICAL_ENTER();

 AppFile[file_nbr][record_nbr][ix] = val;

 CPU_CRITICAL_EXIT();

}

µC/Modbus

80

6.00 Board Support Package (BSP)

µC/Modbus can work with just about any UART. You need to provide a few simple

interface functions to work with your hardware. These functions should be placed in a
file called mb_bsp.c. Micrium provides examples of mb_bsp.c as part of the

µC/Modbus release.

6.01 BSP, MB_CommExit()

This function is called by MB_Exit() to close all serial interfaces used by

µC/Modbus. Your application DOES NOT need to call this function. The pseudo-

code for this function is shown below:

void MB_CommExit (void)

{

 /* Disable all uC/Modbus Rx interrupts */

 /* Disable all uC/Modbus Tx interrupts */

 /* Remove interrupt vectors (if needed) */

}

µC/Modbus

 81

6.02 BSP, MB_CommPortCfg()

This function is called by MB_CfgCh() to configure the UART communication settings

for a channel. MB_CommPortCfg() must NOT be called by your application. The

function prototype is shown below:

void MB_CommPortCfg (MODBUS_CH *pch,

 CPU_INT08U port_nbr,

 CPU_INT32U baud,

 CPU_INT08U bits,

 CPU_INT08U parity,

 CPU_INT08U stops);

pch is a pointer to the communication channel to configure. This pointer is

returned to your application when you call MB_CfgCh().

port_nbr is the ‘physical’ port number associated with the µC/Modbus

communication channel. For example, µC/Modbus channel #0 could be

associated with your 5
th

 UART. In other words, µC/Modbus channels

can be assigned to any ‘physical’ serial port in your system – there doesn’t
need to be a one-to-one correspondence.

baud is the desired baud rate for the channel. You should write code to support

the standard baud rates: 9600, 19200, 38400, 76800, 115200 and

256000 baud.

bits is the number of bits used for the UART. It’s typically 7 or 8. The most

common is 8 bits.

parity is the type of parity checking scheme used for the serial port. The choices

are: MODBUS_PARITY_NONE, MODBUS_PARITY_ODD and

MODBUS_PARITY_EVEN. The most common is MODBUS_PARITY_NONE.

stops specifies the number of stop bits used. The choices are typically 1 or 2. 1

stop bit is the most common.

µC/Modbus

82

6.03 BSP, MB_CommRxTxISR_x_Handler()

Most UARTs allow you to generate an interrupt when either a byte is received or when
a byte has been sent. If your UART generates an interrupt when either a byte is
received or when one has been sent then, you would need to write a function that
determines whether the interrupt was caused by a received by or by a byte sent. In this
case, you would write a function called MBS_CommRxTxISR_x_Handler() where the

‘x’ indicates the physical UART (example 1, 2, 3 …). The pseudo-code for this function
is shown below. The code in RED is code that you have to write. You should COPY all
the other code as is.

void MB_CommRxTxISR_x_Handler (void)

{

 CPU_INT08U c;

 CPU_INT08U ch;

 MODBUS_CH *pch;

 pch = &MB_ChTbl[0];

 for (ch = 0; ch < MODBUS_MAX_CH; ch++) {

 if (pch->PortNbr == port_nbr) {

 if (Rx Interrupt) {

 c = Read byte from UART;

 Clear Rx Interrupt;

 pch->RxCtr++;

 MB_RxByte(pch, c); // Pass byte to Modbus to process

 }

 if (Tx Interrupt) {

 pch->TxCtr++;

 MB_TxByte(pch); // Send next byte in response

 Clear Tx Interrupt;

 }

 break;

 } else {

 pch++;

 }

 }

 Clear spurious interrupts;

}

µC/Modbus

 83

6.04 BSP, MB_CommRxIntEn()

This function is called by µC/Modbus to enable Rx interrupts from a UART.

void MB_CommRxIntEn(MODBUS_CH *pch)

{

 switch (pch->PortNbr) {

 /* Enable Rx interrupts for specified UART */

 }

}

6.05 BSP, MB_CommRxIntDis()

This function is called by µC/Modbus to disable Rx interrupts from a UART.

void MB_CommRxIntDis(MODBUS_CH *pch)

{

 switch (pch->PortNbr) {

 /* Disable Rx interrupts for specified UART */

 }

}

6.06 BSP, MB_CommTx1()

This function is called by µC/Modbus to send a SINGLE byte to the UART associated

with the µC/Modbus channel.

void MB_CommTx1 (MODBUS_CH *pch,

 CPU_INT08U c)

{

 switch (pch->PortNbr) {

 /* Write byte ‘c’ to specified UART */

 }

}

µC/Modbus

84

6.07 BSP, MB_CommTxIntEn()

This function is called by µC/Modbus to enable Tx interrupts from a UART.

void MB_CommTxIntEn(MODBUS_CH *pch)

{

 switch (pch->PortNbr) {

 /* Enable Tx interrupts from specified UART */

 }

}

6.08 BSP, MB_CommTxIntDis()

This function is called by µC/Modbus to disable Tx interrupts from a UART.

void MB_CommTxIntDis(MODBUS_CH *pch)

{

 switch (pch->PortNbr) {

 /* Disable Tx interrupts from specified UART */

 }

}

µC/Modbus

 85

6.09 BSP, MB_RTU_TmrInit()

This function is called by MB_Init() to initialize the RTU timer. freq specifies the

frequency used for the RTU timer interrupts.

void MB_RTU_TmrInit(CPU_INT32U freq);

6.10 BSP, MB_RTU_TmrExit()

This function is called by MB_Exit() to stop RTU timer interrupts.

void MB_RTU_TmrExit(void);

6.11 BSP, MB_RTU_TmrISR_Handler()

This function is the ISR handler for RTU timer interrupts. The pseudo-code for this
function is shown below:

void MB_RTU_TmrISR_Handler (void)

{

 Clear the RTU timer interrupt source;

 MB_RTU_TmrCtr++; // Indicate that we had activities on this interrupt

 MB_RTU_TmrUpdate(); // Check for RTU timers that have expired

}

µC/Modbus

86

7.00 RTOS Interface

µC/Modbus-S migh use an RTOS interface, µC/Modbus-M assumes the presence

of an RTOS but, it doesn’t assume any specific RTOS. In fact, µC/Modbus was

designed to work with just about commercial RTOS by providing a simple RTOS
interface layer.

µC/Modbus is provided with a µC/Modbus RTOS interface layer so you can start

using µC/Modbus if you are also using µC/OS-II or µC/OS-III in your product or,

use this interface layer as an example for your own RTOS.

Figure 7-1 shows a flow diagram of receive model.

Figure 7-1, µC/Modbus Rx Tasking Model.

RTU Timer

UART Rx

RTU Timer

ISR

UART Rx

ISR

Modbus Rx

Task

MB_OS_RxSignal(pch)

MB_OS_RxSignal(pch)

#if (MODBUS_CFG_RTU_EN == DEF_ENABLED)

(2)

(1)

(3)

(4)

(5)

Pend

µC/Modbus

 87

F7-1(1) µC/Modbus uses a single task to receive packets from any channel.

The ‘Modbus Rx Task’ simply waits for a Modbus packet from any

channel. Assuming µC/OS-II as the RTOS, a message queue is used for

this purpose. For µC/OS-III, the message queue is built into the task.

When a packet is received, a pointer to the channel that received the
packet is posted to the message queue indicating to the ‘Modbus Rx
Task’ which channel received the packet. The ‘Modbus Rx Task’ then
simply parses the packet and formulates a response that will be forwarded
appropriately.

F7-1(2) We assume that byte reception from a UART is interrupt driven.

Received bytes are placed in a receive buffer until a complete packet is
received. If the channel is configured for Modbus ASCII, an end of packet
is signaled by a line feed character (i.e. 0x0A). If the channel is

configured for Modbus RTU then the end of a packet is signaled by not
receiving bytes for at least the time it takes to send 3.5 bytes (see Modbus
RTU specification).

F7-1(3) Assuming Modbus ASCII, the end of a packet is signaled by calling

MB_OS_RxSignal() and specifying a pointer to the channel on which a

packet was received.

F7-1(4) If your product needs to support the Modbus RTU mode, you will need to

provide a timer that interrupts the CPU in order to keep track of end of
packets. Basically, when bytes are received on a channel, an RTU
counter for that channel is reset to a value based on the baud rate of the
channel (see table 7-1).

Table 7-1, RTU Timeouts based on channel Baud Rate.

Baud Rate RTU Timeout
(Time for 3.5 Bytes)

RTU Timeout
(Counts at 1 KHz)

9,600 3646 µS 5

19,200 1823 µS 3

38,400 911 µS 2

76,800 456 µS 2

115,200 304 µS 2

256,000 137 µS 2

 For example, if a channel is configured for 19,200 Baud then, an end of

packet (in RTU mode) is assumed to occur when no bytes are received
after 1800 µS (microseconds). If your RTU timer is setup to interrupt
every millisecond then you would need roughly two such interrupts before
you conclude that a packet was received. We decided to assume that a
packet is received after at least the time it would take to receive 5.0 bytes
instead of 3.5 bytes. Also, because of the asynchronous feature of the

µC/Modbus

88

timer with respect to received bytes, we decided to count at least TWO
RTU interrupts to conclude that a packet was received.

You can have better granularity for the timeout if you increase the RTU
timer interrupt rate. However, this also increases the amount of overhead
you are placing on your CPU.

F7-1(5) When the RTU timer interrupt occurs, the timeout counter for each of the

channels that are configured for RTU mode are decremented. When a
counter reaches 0, a signal is set to the ‘Modbus Rx Task’ for that

channel. This tells the ‘Modbus Rx Task’ that a packet was received on
that channel and needs to be processed. The signal is also performed by
calling MB_OS_RxSignal().

In order to provide the RTOS functionality described above, you need to define three
functions in a file called MB_OS.C:

MB_OS_Init()

MB_OS_Exit()

MB_OS_RxSignal()

MB_OS_RxWait()

µC/Modbus

 89

7.01 RTOS Interface, MB_OS_Init()

This function is called by µC/Modbus to initialize the RTOS interface for the RTOS

you are using. You would typically create the ‘Modbus Rx Task’ and setup the
mechanism needed to signal this task when a packet is received or an RTU timeout
occurred for the channel.

Prototype
void MB_OS_Init(void);

Arguments
None.

Returned Value
None.

Notes / Warnings
None.

Called By:
MB_Init() in mb.c

Example

µC/Modbus

90

7.02 RTOS Interface, MB_OS_Exit()

This function is called by MB_Exit() (see mb.c) to gracefully terminate the Modbus

task. In the case of µC/OS-II, we would simply delete the ‘Modbus Rx Task’ and the

message queue. In the case of µC/OS-III, we would simply delete the ‘Modbus Rx

Task’ since the message queue is built into the task.

Prototype
void MB_OS_Exit(void);

Arguments
None.

Returned Value
None.

Notes / Warnings
None.

Called By:
MB_Exit() in mb.c

Example

µC/Modbus

 91

7.03 RTOS Interface, MB_OS_RxSignal()

This function signals the reception of a complete packet. It is called by either the RTU
timer interrupt for each channel that has not received characters within the timeout
period or, by Modbus ASCII channels when a line feed character (i.e. 0x0A) is received.

Prototype
void MB_OS_RxSignal(MODBUS_CH *pch);

Arguments
pch specifies a pointer to the Modbus channel data structure

associated with the received packet.

Returned Value
None.

Notes / Warnings
None.

Called By:
MB_RTU_TmrUpdate() or MB_ASCII_RxByte() in mb.c

Example

µC/Modbus

92

7.04 RTOS Interface, MB_OS_RxWait()

This function waits for a response from a slave. MB_OS_RxWait() is called from a

Modbus master task after it sent a command to a slave and is waiting for a response. If
the response is not received within the timeout specified when the channel was
configured (see MB_CfgCh()) then this function returns to the caller and notifies it of

the timeout.

Prototype
void MB_OS_RxWait(MODBUS_CH *pch, CPU_INT16U *perr);

Arguments
 pch specifies a pointer to the Modbus channel data structure

associated with the received packet.

perr is a pointer to an error code indicating the outcome of the call and

can be one of the following errors:

MODBUS_ERR_NONE

the call was successful

MODBUS_ERR_TIMED_OUT

A response was not received within the specified timeout.

MODBUS_ERR_NOT_MASTER

You called this function from a non-master channel

MODBUS_ERR_INVALID

An invalid error occurred. Refer to MB_OS.C for details.

Notes / Warnings
None.

Called By:
MBM_FC??_???() in MBM_CORE.C

Example

µC/Modbus

 93

7.05 RTOS Interface, Configuration

If you use µC/OS-II, you need to configure the following #define constants:

OS_Q_EN The size needs to be as large as the number

of Modbus channels.
OS_SEM_EN If you use Modbus Master, you need to enable

semaphore services.
MB_OS_CFG_RX_TASK_ID

MB_OS_CFG_RX_TASK_PRIO

MB_OS_CFG_RX_TASK_STK_SIZE

If you use µC/OS-III, you need to configure the following #define constants:

OS_CFG_Q_EN The size of the message queue will be set to

the number of channels (i.e.
MODBUS_CFG_MAX_CH) in mb_os.c.

OS_CFG_SEM_EN If you use Modbus Master, you need to enable
semaphore services.

MB_OS_CFG_RX_TASK_PRIO

MB_OS_CFG_RX_TASK_STK_SIZE

These constants need to be defines in you application.

µC/Modbus

94

8.00 No-OS Interface

µC/Modbus-S can be configured to work in a single threaded environment (no RTOS

needed).

The No-OS port uses the same RTOS interface layer provided by µC/Modbus. This

layer is explained in Section 7.00.

Figure 8-1 shows a flow diagram of receive model in a environment that doesn’t use an
RTOS.

Figure 8-1, µC/Modbus Rx Polling Model.

F8-1(1) µC/Modbus uses a queue structure indicating the channel that has

received a packet. Your application must call MB_OS_RxTask() to poll

the status of the queue, if the queue contains at least one element then
this function will call MB_RxTask() which simply parses the packet and

formulates a response that will be forwarded appropriately. The
frequency at which the poling function is called is defined by your
application.

RTU Timer

UART Rx

RTU Timer

ISR

UART Rx

ISR

Queue

Structure

MB_OS_RxSignal(pch)

MB_OS_RxSignal(pch)

#if (MODBUS_CFG_RTU_EN == DEF_ENABLED)

(2)

(1)

(3)

(4)

(5)

Modbus Rx

Polling Function
(Called by your application)

µC/Modbus

 95

F8-1(2) We assume that byte reception from a UART is interrupt driven.
Received bytes are placed in a receive buffer until a complete packet is
received. If the channel is configured for Modbus ASCII, an end of packet
is signaled by a line feed character (i.e. 0x0A). If the channel is

configured for Modbus RTU then the end of a packet is signaled by not
receiving bytes for at least the time it takes to send 3.5 bytes (see Modbus
RTU specification).

F8-1(3) Assuming Modbus ASCII, the end of a packet is signaled by calling

MB_OS_RxSignal() and specifying a pointer to the channel on which a

packet was received.

F8-1(4) If your product needs to support the Modbus RTU mode, you will need to

provide a timer that interrupts the CPU in order to keep track of end of
packets. Basically, when bytes are received on a channel, an RTU
counter for that channel is reset to a value based on the baud rate of the
channel (see table 7-1).

Table 7-1, RTU Timeouts based on channel Baud Rate.

Baud Rate RTU Timeout
(Time for 3.5 Bytes)

RTU Timeout
(Counts at 1 KHz)

9,600 3646 µS 5

19,200 1823 µS 3

38,400 911 µS 2

76,800 456 µS 2

115,200 304 µS 2

256,000 137 µS 2

 For example, if a channel is configured for 19,200 Baud then, an end of

packet (in RTU mode) is assumed to occur when no bytes are received
after 1800 µS (microseconds). If your RTU timer is setup to interrupt
every millisecond then you would need roughly two such interrupts before
you conclude that a packet was received. We decided to assume that a
packet is received after at least the time it would take to receive 5.0 bytes
instead of 3.5 bytes. Also, because of the asynchronous feature of the
timer with respect to received bytes, we decided to count at least TWO
RTU interrupts to conclude that a packet was received.

You can have better granularity for the timeout if you increase the RTU
timer interrupt rate. However, this also increases the amount of overhead
you are placing on your CPU.

µC/Modbus

96

F8-1(5) When the RTU timer interrupt occurs, the timeout counter for each of the
channels that are configured for RTU mode are decremented. When a
counter reaches 0, a signal is set to the ‘Modbus Rx Task’ for that

channel. This tells the ‘Modbus Rx Task’ that a packet was received on
that channel and needs to be processed. The signal is also performed by
calling MB_OS_RxSignal().

µC/Modbus

 97

9.00 µC/Modbus Program Flow

This section describes the path taken by messages received and replied to by a Modbus channel. Each
channel contains 4 buffers as shown in figure 9-1 along with variables used to manage these buffers.

Figure 8-1, µC/Modbus Buffer Management

.RxCtr

.RxBufByteCtr

.RxBufPtr
.RxBuf[]

.RxFrameData[]

.TxFrameData[]

.TxBuf[]

UART

UART

Rx

Tx
.TxCtr

.TxBufByteCtr

.TxBufPtr

.TxFrameNDataByte

.TxFrameCRC

.RxFrameNDataByte

.RxFrameCRC

µC/Modbus

98

9.01 µC/Modbus-S, ASCII Rx and Tx

It might be useful to follow the code for the description provided below.

MB_CommRxTxISR_Handler() – mb_bsp.c
Characters received on a UART are processed by the MB_CommRxTxISR_Handler()unless the

UART has a separate interrupt for Rx and Tx. In this case, the function would be called
MB_CommRxISR_Handler(). The received character is extracted from the UART and passed to

the MB_RxByte() function for processing.

MB_RxByte() – mb.c
MB_RxByte() determines whether the character received needs to be passed to the ASCII or

RTU handler. If ASCII, the character is passed to MB_ASCII_RxByte().

MB_ASCII_RxByte() – mb.c
MB_ASCII_RxByte() places received characters in .RxBuf[]. If the received character is a

‘colon’ character (i.e. ‘:’), we reset the pointer to the beginning of the .RxBuf[] because this

signals a new message from a Modbus master. We signal the Rx Task if the character received
is a ‘line feed’ (i.e. 0x0A) and the message received is destined for the matching node address of

the channel. Signaling of the task is done by calling MB_OS_RxSignal() (mb_os.c).

MB_OS_RxTask() – mb_os.c
All Modbus communications is handled by a single Rx Task called MB_OS_RxTask(). The task

waits for a message to be sent to it by MB_ASCII_RxByte(). The message is actually a pointer

to the Modbus channel where the message was received from. MB_OS_RxTask() calls

MB_RxTask() (mb.c) which in turn calls MBS_RxTask() (mbs_core.c). MBS_RxTask()

determines whether the message was an ASCII or RTU message and calls MBS_ASCII_Task()

(mbs_core.C) or MBS_RTU_Task() (mbs_core.C), respectively to do the actual processing of

the message received.

MBS_ASCII_Task() – mbs_core.c
At this point, we received a message from a Modbus master which was directed to the node
address of the channel. However, we don’t know yet whether the message is valid.
MBS_ASCII_Task() calls MB_ASCII_Rx() (mb.c) which converts the ASCII frame to a binary

format. The converted message is placed in .RxFrameData[].

MBS_ASCII_Task() then calls MB_ASCII_RxCalcLRC() to determine whether the received

LRC which is part of the message matches the calculated LRC of the message. Note that the
LRC is computed by summing up ALL the ASCII characters in the received message except the
colon, LRC and CR/LF and then doing a twos complement. In other words, the LRC consist only
of the node address, function code and data sent by the Modbus master.

If we have a valid message, we then call MBS_FCxx_Handler() to parse the received message

and formulate a response back to the master.

The response is sent to the master by calling MB_ASCII_Tx().

MBS_FCxx_Handler() – mbs_core.c
This function determines what the master wants by looking at the ‘Function Code’ in the received
message. The appropriate Modbus function code handler is called accordingly:
MBS_FC??_???(). The response is placed in the .TxFrameData[] buffer in binary format.

µC/Modbus

 99

MB_ASCII_Tx() – mb.c
This function is called when we need to send a response back to a Modbus master.
MB_ASCII_Tx() simply converts the response which was placed in .TxFrameData[] and

converts it to ASCII. The converted data is placed in the .TxBuf[].

The LRC of the outgoing frame is calculated by calling MB_ASCII_TxCalcLRC(). Note that the

LRC is computed by summing up ALL the ASCII characters to be transmitted except the colon,
LRC and CR/LF and then doing a twos complement. In other words, the LRC consist only of the
node address, function code and data sent to the Modbus master.

MB_ASCII_Tx() then calls MB_Tx() to setup transmission.

MB_Tx() – mb.c
This function is called to send a message to a Modbus master. Here, we simply point the
.TxBufPtr at the beginning of the .TxBuf[] and transmit the first byte by calling

MB_TxByte() (mb.c) in order to ‘kick start’ transmission interrupts. Note that in a lot of cases,

transmission interrupts occur ONLY after a character has been transmitted.

MB_TxByte() – mb.c
MB_TxByte() in turn calls MB_CommTx1() (mb_bsp.c) which sends a byte to the UART and

enables Tx interrupts.

µC/Modbus

100

9.02 µC/Modbus-S, RTU Rx and Tx

It might be useful to follow the code for the description provided below.

MB_CommRxTxISR_Handler() – mb_bsp.c
Bytes received on a UART are processed by the MB_CommRxTxISR_Handler() unless the

UART has a separate interrupt for Rx and Tx. In this case, the function would be called
MB_CommRxISR_Handler(). The received byte is extracted from the UART and passed to the

MB_RxByte() function for processing.

MB_RxByte() – mb.c
MB_RxByte() determines whether the byte received needs to be passed to the ASCII or RTU

handler. If RTU, the byte is passed to MB_RTU_RxByte().

MB_RTU_RxByte() – mb.c
MB_RTU_RxByte() places received bytes in .RxBuf[]. Because in RTU, frames are delimited

by time, MB_RTU_RxByte() resets the RTU timer for the channel indicating that we didn’t receive

an end of frame yet. The received byte is simply placed in the receive buffer, .RxBuf[].

Signaling of a complete frame is done by timing out on the RTU timer for that channel (See
MB_RTU_TmrUpdate() in mb.c).

MB_OS_RxTask() – mb_os.c
All Modbus communications is handled by a single Rx Task called MB_OS_RxTask(). The task

waits for a message from the RTU timer handler that indicates that a complete frame has been
received. The message is actually a pointer to the Modbus channel where the message was
received from. MB_OS_RxTask() calls MB_RxTask() (mb.c) which in turn calls

MBS_RxTask() (mbs_core.c). MBS_RxTask() determines whether the message was an

ASCII or RTU message and calls MBS_ASCII_Task() (mbs_core.c) or MBS_RTU_Task()

(MBS_CORE.C), respectively to do the actual processing of the message received.

MBS_RTU_Task() – mbs_core.c
At this point, we received a message from a Modbus master which was directed to the node
address of the channel. However, we don’t know yet whether the message is valid.
MBS_RTU_Task() calls MB_RTU_Rx() (mb.c) which copies the frame received from the

.RxBuf[] to the .RxFrameData[] buffer.

MBS_RTU_Task() then calls MB_RTU_RxCalcCRC() to determine whether the received CRC

which is part of the message matches the calculated CRC of the message. Note that the CRC is
computed for ALL the bytes received except for the CRC portion itself. In other words, the CRC
consist only of the node address, function code and data sent by the Modbus master.

If we have a valid message, we then call MBS_FCxx_Handler() (mbs_core.C) to parse the

received message and formulate a response back to the master.

The response is sent to the master by calling MB_RTU_Tx().

MBS_FCxx_Handler() – mbs_core.c
This function determines what the master wants by looking at the ‘Function Code’ in the received
message. The appropriate Modbus function code handler is called accordingly:
MBS_FC??_???(). The response is placed in the .TxFrameData[] buffer in binary format.

µC/Modbus

 101

MB_RTU_Tx() – mb.c
This function is called when we need to send a response back to a Modbus master.
MB_RTU_Tx() simply copies the response which was placed in .TxFrameData[] into the

.TxBuf[].

The CRC of the outgoing frame is calculated by calling MB_RTU_TxCalcCRC(). Note that the

CRC is computed on ALL the bytes to be transmitted except the CRC itself. In other words, the
CRC consist only of the node address, function code and data sent to the Modbus master.

MB_RTU_Tx() then calls MB_Tx() to setup transmission.

MB_Tx()
This function is called to send a message to a Modbus master. Here, we simply point the
.TxBufPtr at the beginning of the .TxBuf[] and transmit the first byte by calling

MB_TxByte() (mb.c) in order to ‘kick start’ transmission interrupts. Note that in a lot of cases,

transmission interrupts occur ONLY after a character has been transmitted.

MB_TxByte()
MB_TxByte() in turn calls MB_CommTx1() which sends a byte to the UART and enables Tx

interrupts.

µC/Modbus

102

9.03 µC/Modbus-M, ASCII Rx and Tx

It might be useful to follow the code for the description provided below.

MBM_FC??_????() – mbm_core.c
Your Modbus master application calls one of the MBM_FC??_???() functions (see section 3) to

send a command to a slave. This function creates a command frame to send to the Modbus
slave which is sent by calling MBM_TxCmd().

MBM_TxCmd() – mbm_core.c
This function determines whether the Master channel is configured for Modbus ASCII or RTU and
calls MB_ASCII_Tx() or MB_RTU_Tx() accordingly.

MB_ASCII_Tx() – mb.c
In ASCII mode, this function is called to send the command to a Modbus slave. MB_ASCII_Tx()

simply converts the command which was placed in .TxFrameData[] and converts it to ASCII.

The converted data is placed in the .TxBuf[].

The LRC of the outgoing frame is calculated by calling MB_ASCII_TxCalcLRC(). Note that the

LRC is computed by summing up ALL the ASCII characters to be transmitted except the colon,
LRC and CR/LF and then doing a twos complement. In other words, the LRC consist only of the
node address, function code and data sent to the Modbus slave.

MB_ASCII_Tx() then calls MB_Tx() to setup transmission.

MB_Tx() – mb.c
This function is called to send a message to a Modbus slave. Here, we simply point the
.TxBufPtr at the beginning of the .TxBuf[] and transmit the first byte by calling

MB_TxByte() (mb.c) in order to ‘kick start’ transmission interrupts. Note that in a lot of cases,

transmission interrupts occur ONLY after a character has been transmitted.

MB_TxByte() – mb.c
MB_TxByte() in turn calls MB_CommTx1() (MB_BSP.C) which sends a byte to the UART and

enables Tx interrupts.

MB_OS_Wait() – mb_os.c
When the command is sent, MBM_FC??_???() calls MB_OS_Wait() to wait for a response from

the slave but with a timeout. If the response is not received within the specified timeout (see
MB_CfgCh()) then we flush the Rx buffer. If a response is received, we call MBM_RxReply() to

parse the response.

MB_CommRxTxISR_Handler() – mb_bsp.c
Characters received on a UART are processed by the MB_CommRxTxISR_Handler()unless the

UART has a separate interrupt for Rx and Tx. In this case, the function would be called
MB_CommRxISR_Handler(). The received character is extracted from the UART and passed to

the MB_RxByte() function for processing.

MB_RxByte() – mb.c
MB_RxByte() determines whether the character received needs to be passed to the ASCII or

RTU handler. If ASCII, the character is passed to MB_ASCII_RxByte().

µC/Modbus

 103

MB_ASCII_RxByte() – mb.c
MB_ASCII_RxByte() places received characters in .RxBuf[]. If the received character is a

‘colon’ character (i.e. ‘:’), we reset the pointer to the beginning of the .RxBuf[] because this

signals a new message from a Modbus master. We call MB_OS_RxSignal() (mb_os.c) if the

character received is a ‘line feed’ (i.e. 0x0A) to indicate that the response was received. This

wakes up the task that sent the command to the slave and thus, the MBM_FC??_???() function

is resumed (right after the MB_OS_RxWait() call).

MBM_RxReply() – mbm_core.c
MBM_RxReply() determines whether the channel is set for ASCII or RTU and calls

MB_ASCII_Rx() or MB_RTU_Rx() to receive the packet.

MB_ASCII_Rx() – mb.c
MB_ASCII_Rx() determines if the packet received contains the proper format and checksum. If

we received a valid packet, MB_ASCII_Rx() returns to MBM_RxReply() which in turns returns

to the MBM_FC??_???() function.

MBM_FC??_???() – mbm_core.c
MBM_FC??_???() then parses the response and returns the requested information to its caller.

µC/Modbus

104

9.04 µC/Modbus-M, RTU Rx and Tx

It might be useful to follow the code for the description provided below.

MBM_FC??_????() – mbm_core.c
Your Modbus master application calls one of the MBM_FC??_???() functions (see section 3) to

send a command to a slave. This function creates a command frame to send to the Modbus
slave which is sent by calling MBM_TxCmd().

MBM_TxCmd() – mbm_core.c
This function determines whether the Master channel is configured for Modbus ASCII or RTU and
calls MB_ASCII_Tx() or MB_RTU_Tx() accordingly.

MB_RTU_Tx() – mb.c
This function is called when we need to send a command to a Modbus slave. MB_RTU_Tx()

simply copies the command which was placed in .TxFrameData[] into the .TxBuf[].

The CRC of the outgoing frame is calculated by calling MB_RTU_TxCalcCRC(). Note that the

CRC is computed on ALL the bytes to be transmitted except the CRC itself. In other words, the
CRC consist only of the node address, function code and data sent to the Modbus slave.

MB_RTU_Tx() then calls MB_Tx() to setup transmission.

MB_Tx()
This function is called to send a message to a Modbus slave. Here, we simply point the
.TxBufPtr at the beginning of the .TxBuf[] and transmit the first byte by calling

MB_TxByte() (mb.c) in order to ‘kick start’ transmission interrupts. Note that in a lot of cases,

transmission interrupts occur ONLY after a character has been transmitted.

MB_TxByte()
MB_TxByte() in turn calls MB_CommTx1() which sends a byte to the UART and enables Tx

interrupts.

MB_OS_Wait() – mb_os.c
When the command is sent, MBM_FC??_???() calls MB_OS_Wait() to wait for a response from

the slave but with a timeout. If the response is not received within the specified timeout (see
MB_CfgCh()) then we flush the Rx buffer. If a response is received, we call MBM_RxReply() to

parse the response.

MB_CommRxTxISR_Handler() – mb_bsp.c
Characters received on a UART are processed by the MB_CommRxTxISR_Handler()unless the

UART has a separate interrupt for Rx and Tx. In this case, the function would be called
MB_CommRxISR_Handler(). The received character is extracted from the UART and passed to

the MB_RxByte() function for processing.

MB_RxByte() – mb.c
MB_RxByte() determines whether the character received needs to be passed to the ASCII or

RTU handler. If RTU, the character is passed to MB_RTU_RxByte().

µC/Modbus

 105

MB_RTU_RxByte() – mb.c
MB_RTU_RxByte() places received bytes in .RxBuf[]. Because in RTU, frames are delimited

by time, MB_RTU_RxByte() resets the RTU timer for the channel indicating that we didn’t receive

an end of frame yet. The received byte is simply placed in the receive buffer, .RxBuf[].

Signaling of a complete frame is done by timing out on the RTU timer for that channel (See
MB_RTU_TmrUpdate() in mb.c).

MBM_RxReply() – mbm_core.c
MBM_RxReply() determines whether the channel is set for ASCII or RTU and calls

MB_ASCII_Rx() or MB_RTU_Rx() to receive the packet.

MB_RTU_Rx() – mb.c
MB_RTU_Rx() determines if the packet received contains the proper format and checksum. If we

received a valid packet, MB_RTU_Rx() returns to MBM_RxReply() which in turns returns to the

MBM_FC??_???() function.

MBM_FC??_???() – mbm_core.c
MBM_FC??_???() then parses the response and returns the requested information to its caller.

µC/Modbus

106

10.00 Acronyms, Abbreviations and Mnemonics

µC/Modbus includes a number of acronyms, abbreviations and mnemonics and some

are listed in Table 10-1.

This … Means …

An Analog

App Application

Buf Buffer

Cfg Configuration

Ch Channel

Comm Communication

Ctr Counter

DI Discrete Input

Dis Disable

DO Discrete Output

En Enable

Err Error

FC Function Code

FP Floating Point

Id Identifier

In Input

Init Initialization

ISR Interrupt Service Routine

Ix Index

MB Modbus

MBM Modbus Master

MBS Modbus Slave

Nbr Number

OS Operating System

Out Output

Pkt Packet

Prio Priority

µC/Modbus

 107

Rd Read

Reg Register

RTU Remote Terminal Unit

Rx Receive

Stk Stack

Tmr Timer

Tx Transmit

Val Value

Wr Write

µC/Modbus

108

Licensing

µC/Modbus is licensed on a per end-product basis. Specifically, each different

product that embeds µC/Modbus in a commercial product requires a different license.

A license allows you to manufacture an unlimited number of units of the product that

embeds µC/Modbus for the life of that product. In other words, a µC/Modbus

license is royalty free. Contact Micrium for pricing information.

References

µC/OS-II, The Real-Time Kernel, 2
nd

 Edition
Jean J. Labrosse
Elsevier, 2002

ISBN 978-1578201037

µC/OS-III, The Real-Time Kernel
Jean J. Labrosse
MicriumPress, 2009

ISBN 978-0-9823375-3-0

Modicon Modbus Protocol Reference Guide
PI-MBUS-300 Rev. J
http://www.modicon.com/TECHPUBS/TECHPUBNEW/PI_MBUS_300.pdf

Contacts

Micriµm
949 Crestview Circle
Weston, FL 33327
USA
+1 954 217 2036
+1 954 217 2037 (FAX)
e-mail: uC-Modbus@Micrium.com
WEB: www.Micrium.com

MODICON, Inc.

Industrial Automation Systems
One High Street
North Andover, Massachusetts 01845
USA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for micrium manufacturer:

Other Similar products are found below :

BKX-TCPX-STF107-P-P1 BKX-K3XX-TILM3S-P-P1

https://www.x-on.com.au/manufacturer/micrium
https://www.x-on.com.au/mpn/micrium/bkxtcpxstf107pp1
https://www.x-on.com.au/mpn/micrium/bkxk3xxtilm3spp1

