Midas Components Limited

| Specification |  |  |  |
| :--- | :--- | :--- | :--- |
| Part |  |  |  |
| Number: |  |  |  |
| Version: |  |  |  |
| Date: |  |  |  |
|  |  | Revision |  |
| No. | Date | Description | Item |
|  |  | Page |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Contents

Page
2. General Specification ..... 4
3. Module Coding System ..... 5
4. Interface Pin Function ..... 6
5. Outline dimension \& Block Diagram ..... 7
6. Optical Characteristics ..... 8
7. Absolute Maximum Ratings ..... 9
8. Electrical Characteristics ..... 9
9. Backlight Information ..... 10
10. Reliability ..... 11
11. IC Information ..... 12
12. Character Generator ROM Pattern ..... 32
13. Inspection specification ..... 33
14. Precautions in use of LCD Modules ..... 37
15. Material List of Components for RoHs ..... 38
16. Recommendable storage ..... 38

## 2. General Specification

The Features is described as follow:
■ Module dimension: $80.0 \times 36.0 \times 13.2$ (max.) mm
■ View area: $66.0 \times 16.0 \mathrm{~mm}$
■ Active area: $56.20 \times 11.5 \mathrm{~mm}$

- Number of Characters: 16 characters $\times 2$ Lines

■ Dot size: $0.55 \times 0.65 \mathrm{~mm}$
■ Dot pitch: $0.60 \times 0.70 \mathrm{~mm}$
■ Character size: $2.95 \times 5.55 \mathrm{~mm}$
■ Character pitch: $3.55 \times 5.95 \mathrm{~mm}$

- LCD type: VA Negative Transmissive
- Duty: $1 / 16$
- View direction: 12 o'clock
- Backlight Type: LED, High light Yellow Green


## Midas LCD Part Number System



## 4. Interface Pin Function

| Pin No. | Symbol | Level | Description |
| :---: | :---: | :---: | :--- |
| 1 | $V_{S S}$ | 0 V | Ground |
| 2 | $\mathrm{~V}_{\mathrm{DD}}$ | 5.0 V | Supply Voltage for logic |
| 3 | VO | (Variable) | Contrast Adjustment |
| 4 | RS | $\mathrm{H} / \mathrm{L}$ | H: DATA, L: Instruction code |
| 5 | R/W | $\mathrm{H} / \mathrm{L}$ | H: Read(MPU $\rightarrow$ Module) L: Write(MPU $\rightarrow$ Module) |
| 6 | E | $\mathrm{H}, \mathrm{H} \rightarrow \mathrm{L}$ | Chip enable signal |
| 7 | DB0 | H/L | Data bus line |
| 8 | DB1 | H/L | Data bus line |
| 9 | DB2 | H/L | Data bus line |
| 10 | DB3 | H/L | Data bus line |
| 11 | DB4 | H/L | Data bus line |
| 12 | DB5 | H/L | Data bus line |
| 13 | DB6 | H/L | Data bus line |
| 14 | DB7 | H/L | Data bus line |
| 15 | Vee | - | Negative Voltage Output |
| 16 | K | - | LED - |

## 5. Outline Dimension \& Block Diagram



Character located $1 \begin{array}{llllllllllll}2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12131415 & 16\end{array}$
DDRAM address 000102030405060708 09 OA OBOCODOE OF
DDRAM address 404142434445464748 49 4A 4B4C4D4E 4F

## 6. Optical Characteristics

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| View Angle | $\theta$ | $\mathrm{CR} \geqq 10$ | - | 60 | - | $\Psi=180^{\circ}$ |
|  | $\theta$ | $\mathrm{CR} \geqq 10$ | - | 25 | - | $\Psi=0^{\circ}$ |
|  | $\theta$ | $\mathrm{CR} \geqq 10$ | - | 40 | - | $\Psi=90^{\circ}$ |
|  | $\theta$ | $\mathrm{CR} \geqq 10$ | - | 40 | - | $\Psi=270^{\circ}$ |
| Contrast Ratio | CR | - | 10 | - | - | - |
|  | T rise | - | - | 300 | 350 | ms |
|  | T fall | - | - | 300 | 350 | ms |

Definition of Operation Voltage (Vop)
Definition of Response Time ( Tr , Tf )



Conditions :
Operating Voltage : Vop Viewing Angle $(\theta, \varphi): 0^{\circ}, 0^{\circ}$
Frame Frequency : 64 HZ Driving Waveform : $1 / \mathrm{N}$ duty, $1 / \mathrm{a}$ bias
Definition of viewing angle( $C R \geqq 2$ )


## 7. Absolute Maximum Ratings

| Item | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Operating Temperature | $\mathrm{T}_{\mathrm{OP}}$ | -20 | - | +70 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature | $\mathrm{T}_{\mathrm{ST}}$ | -30 | - | +80 | ${ }^{\circ} \mathrm{C}$ |
| Input Voltage | $\mathrm{V}_{\mathrm{IN}}$ | -0.3 | - | $\mathrm{V}_{\mathrm{DD}}+0.3$ | V |
| Supply Voltage For Logic | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ | -0.3 | - | 5.5 | V |
| Supply Voltage For LCD | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$ | $\mathrm{~V}_{\mathrm{SS}}-0.3$ | - | $\mathrm{V}_{\mathrm{SS}}+7.0$ | V |

## 8. Electrical Characteristics

| Item | Symbol | Condition | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage For <br> Logic | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$ | - | 4.5 | 5.0 | 5.5 | V |
| Supply Voltage For LCD <br> $*$ Note |  | $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ | - | - | - | V |
|  | $\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{0}$ | $\mathrm{Ta}=25^{\circ} \mathrm{C}$ | 6.2 | 6.5 | 6.8 | V |
| $\mathrm{Ta}=70^{\circ} \mathrm{C}$ | - | - | - | V |  |  |
| Input High Volt. | V | - | 2.5 | - | $\mathrm{V}_{\mathrm{DD}}$ | V |
| Input Low Volt. | $\mathrm{V}_{\mathrm{IL}}$ | - | -0.3 | - | 0.6 | V |
| Output High Volt. | $\mathrm{V}_{\mathrm{OH}}$ | - | 3.9 | - | - | V |
| Output Low Volt. | $\mathrm{V}_{\mathrm{OL}}$ | - | - | - | 0.4 | V |
| Supply Current | $\mathrm{I}_{\mathrm{DD}}$ | $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ | - | 2.0 | - | mA |

* Note: Please design the VOP adjustment circuit on customer's main board



## 9. Backlight Information

## Specification

| PARAMETER | SYMBOL | MIN | TYP | MAX | UNIT | TEST CONDITION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Current | ILED | - | 48 | 60 | mA | $\mathrm{V}=5.0 \mathrm{~V}$ |
| Supply Voltage | V | 4.9 | 5.0 | 5.1 | V | - |
| Reverse Voltage | VR | - | - | 5 | V | - |
| Luminance <br> (Without LCD) | IV | 1000 | 1250 | - | CD/M ${ }^{2}$ | ILED=48mA |
| Wave Length | $\lambda p$ | 565 | 570 | 575 | nm | ILED=48mA |
| LED Life Time (For Reference only) | - | - | 50K | - | Hr . | ILED=48mA $25^{\circ} \mathrm{C}, 50-60 \% \mathrm{RH}$, (Note 1) |
| Color | Yellow Green(high light) |  |  |  |  |  |

Note: The LED of $B / L$ is drive by current only, drive voltage is for reference only. drive voltage can make driving current under safety area (current between minimum and maximum).

Drive from Vdd, Pin 16


## 10. Reliability

Content of Reliability Test (wide temperature, $-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$ )

| Environmental Test |  |  |  |
| :---: | :---: | :---: | :---: |
| Test Item | Content of Test | Condition | Note |
| High Temperature storage | Endurance test applying the high storage temperature for a long time. | $\begin{aligned} & 80^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$ | 2 |
| Low Temperature storage | Endurance test applying the low storage temperature for a long time. | $\begin{aligned} & -30^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$ | 1,2 |
| High Temperature Operation | Endurance test applying the electric stress (Voltage \& Current) and the thermal stress to the element for a long time. | $\begin{aligned} & 70^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$ | - |
| Low Temperature Operation | Endurance test applying the electric stress under low temperature for a long time. | $\begin{aligned} & -20^{\circ} \mathrm{C} \\ & 200 \mathrm{hrs} \end{aligned}$ | 1 |
| High Temperature/ Humidity Operation | The module should be allowed to stand at $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ max <br> For 96 hrs under no-load condition excluding the polarizer, <br> Then taking it out and drying it at normal temperature. | $60^{\circ} \mathrm{C}, 90 \% \mathrm{RH}$ <br> 96hrs | 1,2 |
| Thermal shock resistance | The sample should be allowed stand the following 10 cycles of operation | $-20^{\circ} \mathrm{C} / 70^{\circ} \mathrm{C}$ <br> 10 cycles | - |
| Vibration test | Endurance test applying the vibration during transportation and using. | fixed <br> amplitude: <br> 15 mm <br> Vibration. <br> Frequency: <br> $10 \sim 55 \mathrm{~Hz}$. <br> One cycle 60 seconds to 3 directions of $X, Y, Z$ for <br> Each 15 <br> minutes | 3 |
| Static electricity test | Endurance test applying the electric stress to the terminal. | $\begin{aligned} & \mathrm{VS}=800 \mathrm{~V}, \mathrm{RS}= \\ & 1.5 \mathrm{k} \Omega \\ & \mathrm{CS}=100 \mathrm{pF} \\ & 1 \text { time } \end{aligned}$ |  |

Note1: No dew condensation to be observed.
Note2: The function test shall be conducted after 4 hours storage at the normal temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

## 11.IC Information

### 11.1.Function Description

## SYSTEM INTERFACE (Parallel 8-bit bus and 4-bit bus)

This chip has all four kinds interface type with MPU: IIC, 4SPI, 4-bit bus and 8-bit bus. Serial and parallel buses (4-bit/8-bit) are selected by IF1 and IF0 input pins, and 4-bit bus and 8-bit bus is selected by DL bit in the instruction register.
During read or write operation, two 8-bit registers are used. One is data register (DR); the other is instruction register (IR). The data register (DR) is used as temporary data storage place for being written into or read from DDRAM/CGRAM, target RAM is selected by RAM address setting instruction. Each internal operation, reading from or writing into RAM, is done automatically.
So to speak, after MPU reads DR data, the data in the next DDRAM/CGRAM address is transferred into DR automatically. Also after MPU writes data to DR, the data in DR is transferred into DDRAM/CGRAM automatically.
The Instruction register (IR) is used only to store instruction code transferred from MPU. MPU cannot use it to read instruction data.
IR: Instruction Register.
DR: Data Register.

| RS | R/W | Operation |
| :--- | :--- | :--- |
| 0 | 0 | Instruction write operation (MPU writes Instruction code into IR) |
| 0 | 1 | Read busy flag (DB7) and address counter (DB0 - DB6) |
| 1 | 0 | Data write operation (MPU writes data into DR |
| 1 | 1 | Data read operation (MPU reads data from DR) |

## BUSY FLAG (BF) (only support parallel 8-bit bus and 4-bit bus)

When $\mathrm{BF}=$ "High", it indicates that the internal operation is being processed. So during this time the next instruction cannot be accepted. BF can be read, when RS = Low and R/W = High (Read Instruction Operation); through DB7 before executing the next instruction, be sure that BF is not High.

## DISPLAY DATA RAM (DDRAM)

DDRAM stores display data of maximum $80 \times 8$ bits ( 80 characters). DDRAM address is set in the address counter (AC) as a hexadecimal number. (Refer to Figure 1.)


Figure 1 DDRAM Address
Since DDRAM has 8 bits data. It is possible to access 256 CGROM/CGRAM fonts.

## 1-line display ( $\mathrm{N}=0$ ) (Figure 2)

When there are fewer than 80 display characters, the display begins at the head position. For example, if using only the Controller, 8 characters are displayed. See Figure 3.
When the display shift operation is performed, the DDRAM address shifts. See Figure 3.


Figure 2 1-Line Display


Figure 3 1-Line by 8-Character Display Example

## 2-line display ( $\mathrm{N}=1$ ) (Figure 4)

Case 1: When the number of display characters is less than $40 \times 2$ lines, the two lines are displayed from the head. Note that the first line end address and the second line start address are not consecutive. For example, when just the Controller is used, 8 characters x 2 lines are displayed. See Figure 5.
When display shift operation is performed, the DDRAM address shifts. See Figure 5.

| Display <br> Position | 1 | 2 | 3 | 4 | 5 | 6 |  | 38 | 39 | 40 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 02 | 03 | 04 | 05 | . $\ldots$. | 25 | 26 | 27 |
| Address <br> (hexadecimal) | 40 | 41 | 42 | 43 | 44 | 45 |  | 65 | 66 | 67 |

Figure 4 2-Lines Display

| Display Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DDRAM Address | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |
|  | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 |
| $\begin{gathered} \text { For } \\ \text { Shift Left } \end{gathered}$ | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 |
|  | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| For |  |  |  |  |  |  |  |  |
| Shift Right | 27 | 00 | 01 | 02 | 03 | 04 | 05 | 06 |
|  | 67 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Figure 5 2-Lines by 8-Character Display Example
Case 2: For a 16-character x 2-line display, the Controller can be extended using one 40-output extension driver. See Figure 6.
When display shift operation is performed, the DDRAM address shifts. See Figure 6.
Display


| For <br> Shift <br> Left | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | $0 A$ | $0 B$ | $0 C$ | $0 D$ | 0 E | 0 F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | H


| For | 27 | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 0 A | 0B | 0C | 0D | 0E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Right | 67 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4 C | 4D | 4 E |

Figure 6 2-Lines by 16-Character Display Example

## TIMING GENERATION CIRCUIT

Timing generation circuit generates clock signals for the internal operations.

## ADDRESS COUNTER (AC)

Address Counter (AC) stores DDRAM/CGRAM address, transferred from IR.
After writing into (reading from) DDRAM/CGRAM/SEGRAM, AC is automatically increased (decreased) by 1.
When RS = "Low" and R/W = "High", AC can be read through DB0-DB6

## CURSOR/BLINK CONTROL CIRCUIT

It controls cursor/blink ON/OFF and black/white inversion at cursor position.

## LCD DRIVER CIRCUIT

LCD Driver circuit has 16 common and 40 segment signals for 2 -line display ( $\mathrm{N}=1$ ) or 8 common and 40 segments for 1-line display ( $\mathrm{N}=0$ ) for LCD driving.
Data from CGRAM/CGROM is transferred to 40 bit segment latches serially, and then it is stored to 40 bit shift latch.

## CGROM (CHARACTER GENERATOR ROM)

CGROM has 10,240 bits ( 256 characters $\times 5 \times 8$ dot)
CGRAM (CHARACTER GENERATOR RAM)
CGRAM has up to 5.8 dots 8 characters. By writing font data to CGRAM, user defined character can be used (refer to Table 2).

## $5 \times 8$ dots Character Pattern

Table 2. Relationship between Character Code (DDRAM) and Character Pattern (CGRAM)


Notes:

1. Character code bits 0 to 2 correspond to CGRAM address bits 3 to 5 ( 3 bits: 8 types).
2. CGRAM address bits 0 to 2 designate the character pattern line position. The 8th line is the cursor position and its display is formed by a logical OR with the cursor. Maintain the 8th line
data, corresponding to the cursor display position, at 0 as the cursor display. If the 8th line data is 1,1 bit will light up the 8th line regardless of the cursor presence.
3. Character pattern row positions correspond to CGRAM data bits 0 to 4 (bit 4 being at the left).
4. As shown Table 2, CGRAM character patterns are selected when character code bits 4 to 7 are all 0 and $\mathrm{MW}=0$. However, since character code bit 3 has no effect, the H display example above can be selected by either character code 00 H or 08 H .
5. 1 for CGRAM data corresponds to display selection and 0 to non-selection.
"-": Indicates no effect.


### 11.2.Instruction Table

| Instruction | RS | RW | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 | Description | $\begin{gathered} \text { Description } \\ \text { Time } \\ (540 \mathrm{KHz}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Read display data | 1 | 1 | Read data |  |  |  |  |  |  |  | Read data into DDRAM/CGRAM/SEGRAM | 18.5us |
| Write display data | 1 | 0 | Write data |  |  |  |  |  |  |  | Write data into DDRAM/CGRAM/SEGRAM | 18.5us |
| Clear Display | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | Write " 20 H " to DDRAM, and set DDRAM address to " 00 H " from AC | 0.76 ms |
| Return Home | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X | Set DDRAM address to " $00 \mathrm{H}^{\prime}$ from AC and return cursor to its original position if shifted. The contents of DDRAM are not changed. | 0.76 ms |
| Entry Mode Set | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S | Assign cursor moving direction and specify display shift. These operations are performed during data read and write. <br> I/D="1": increment <br> $\mathrm{I} / \mathrm{D}=$ ="0": decrement | 18.5us |
| Display ON/OFF | 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |  | 18.5 us |
| Cursor or Display shift | $0$ | 0 | 0 | 0 | 0 | 1 | S/C | R/L | X | X | Cursor or display shift $\mathrm{S} / \mathrm{C}=$ " 1 ": display shift $\mathrm{S} / \mathrm{C}=$ " 0 ": cursor shift <br> $R / L=$ " 1 ": shift to right <br> R/L="0": shift to left | 18.5 us |
| Function Set | 0 | 0 | $0$ | 0 | 1 | DL | N | F | X | X | Set Interface Data Length DL=8-bit interface/ 4 -bit interface $\mathrm{N}=2$-line/1-line display $\mathrm{F}=5 \mathrm{x} 8$ Font Size $/ 5 \times 11$ Font Size | 18.5us |
| Set CGRAM Address | 0 | 0 | 0 | 1 | AC5 | AC4 | AC3 | AC2 | ACl | ACO | Set CGRAM address in address counter | 18.5us |
| Set DDRAM Address | 0 | 0 | 1 | AC6 | AC5 | AC4 | AC3 | AC2 | ACl | AC0 | Set DDRAM address in address counter | 18.5us |
| Read Busy Flag and Address | 0 | 1 | BF | AC6 | AC5 | AC4 | AC3 | AC2 | ACl | AC0 | Can know internal operation is ready or not by reading BF. <br> The contents of address counter can also be read. <br> BF="1": busy state <br> $B F=" 0$ ": ready state | Ous |

## Clear Display

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Clear all the display data by writing "20H" (space code) to all DDRAM address, and set DDRAM address to " 00 H " into AC (address counter). Return cursor to the original status; namely, bring the cursor to the left edge on first line of the display. Make entry mode increment (l/D = "1").

## Return Home:

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | X |

Return Home is cursor return home instruction. Set DDRAM address to " 00 H " into the address counter. Return cursor to its original site and return display to its original status, if shifted. A content of DDRAM does not change.

Entry Mode Set:

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | I/D | S |

Set the moving direction of cursor and display.

## I/D: Increment/decrement of DDRAM address (cursor or blink)

I/D = 1: cursor/blink moves to right and DDRAM address is increased by 1.
I/D = 0: cursor/blink moves to left and DDRAM address is decreased by 1.

* CGRAM operates the same as DDRAM, when read/write from or to CGRAM


## S: Shift of entire display

When DDRAM read (CGRAM read/write) operation or $S=$ "Low", shift of entire display is not performed.
If $S=$ "High" and DDRAM write operation, shift of entire display is performed according to I/D value (I/D = "1": shift left, I/D = "0": shift right).

| S | I/D | Description |
| :---: | :---: | :--- |
| H | H | Shift the display to the left |
| H | L | Shift the display to the right |

## Display ON/OFF

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | D | C | B |

Control display/cursor/blink ON/OFF 1 bit register.

## D: Display ON/OFF control bit.

$D=1$ : entire display is turned on.
$\mathrm{D}=0$ : display is turned off, but display data is remained in DDRAM.

## C: Cursor ON/OFF control bit.

$C=1$ : cursor is turned on.
$C=0$ : cursor is disappeared in current display, but I/D register remains its data.

## B: Cursor Blink ON/OFF control bit.

$B=1$ : cursor blink is on, that performs alternate between all the high data and display character at the cursor position. If fosc has 540 kHz frequency, blinking has 185 ms interval.
$B=0$ : blink is off.

Cursor or Display Shift

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | S/C | R/L | - | - |

Without writing or reading of display data, shift right/left cursor position or display. This instruction is used to correct or search display data (refer to Table 4). During 2 -line mode display, cursor moves to the 2nd line after 40th digit of 1st line.
Note that display shift is performed simultaneously by the shift enable instruction. When displayed data is shifted repeatedly, all display lines shifted simultaneously. When display shift is performed, the contents of address counter are not changed.
Table 4. Shift Patterns According to S/C and R/L Bits

| S/C | R/L |  |
| :---: | :---: | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | Shift cursor to the left, address counter is decreased by 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | Shift cursor to the right, address counter is increased by 1 |
| $\mathbf{1}$ | $\mathbf{0}$ | Shift all the display to the left, cursor moves according to the display |
| $\mathbf{1}$ | $\mathbf{1}$ | Shift all the display to the right, cursor moves according to the display |

Function Set

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | DL | N | F | X | X |

DL: Interface data length control bit
When DL = "High", it means 8 -bit bus mode with MPU.
When DL = "Low", it means 4-bit bus mode with MPU. So to speak, DL is a signal to select 8 -bit or 4 -bit bus mode.
When 4-bit bus mode, it needs to transfer 4-bit data by two times.
IF using IIC and 4-SPI interface, DL bit must be setting to " 1 "
N : Display line number control bit
When $\mathrm{N}=$ "Low", it means 1 -line display mode.
When $\mathrm{N}=$ "High", 2-line display mode is set.

## F: Display font type control bit

When $\mathrm{F}=$ "Low", it means $5 \times 8$ dots format display mode

When $\mathrm{F}=$ "High", $5 \times 11$ dots format display mode.

| $\mathbf{N}$ | $\mathbf{F}$ | No. of Display Lines | Character Font | Duty Factor |
| :---: | :---: | :---: | :---: | :---: |
| L | L | 1 | $5 \times 8$ | $1 / 8$ |
| L | H | 1 | $5 \times 11$ | $1 / 11$ |
| H | x | 2 | $5 \times 8$ | $1 / 16$ |

## Set CGRAM Address

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

Set CGRAM address to AC.
This instruction makes CGRAM data available from MPU.

## Set DDRAM Address

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

Set DDRAM address to AC.
This instruction makes DDRAM data available from MPU.
When 1 -line display mode ( $\mathrm{N}=0$ ), DDRAM address is from " 00 H " to "4FH"
In 2-line display mode ( $\mathrm{NW}=0$ ), DDRAM address in the 1 st line is from " 00 H " - " 27 H ", and DDRAM address in the 2nd line is from "40H" - "67H".

Read Busy Flag and Address (only support parallel 8 -bit bus and 4 bit bus)

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | BF | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 |

This instruction shows whether Controller is in internal operation or not. If the resultant BF is "high", it means the internal operation is in progress and you have to wait until BF to be Low, and then the next instruction can be performed. In this instruction you can read also the value of address counter.

## Write Data to RAM

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Write binary 8-bit data to DDRAM/CGRAM/SEGRAM.
The selection of RAM from DDRAM, CGRAM, is set by the previous address set instruction: DDRAM address set, CGRAM address set. RAM set instruction can also determine the AC direction to RAM.
After write operation, the address is automatically increased/decreased by 1, according to the
entry mode.

Read Data from RAM (only support parallel 8-bit bus and 4 bit bus)

| RS | R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DB0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Read binary 8-bit data from DDRAM/CGRAM.
The selection of RAM is set by the previous address set instruction. If address set instruction of RAM is not performed before this instruction, the data that read first is invalid, because the direction of $A C$ is not determined.
If you read RAM data several times without RAM address set instruction before read operation, you can get correct RAM data from the second, but the first data would be incorrect, because there is no time margin to transfer RAM data.
In case of DDRAM read operation, cursor shift instruction plays the same role as DDRAM address set instruction: it also transfer RAM data to output data register. After read operation address counter is automatically increased/decreased by 1 according to the entry mode.
After CGRAM read operation, display shift may not be executed correctly.

* In case of RAM write operation, after this AC is increased/decreased by 1 like read operation. In this time, AC indicates the next address position, but you can read only the previous data by read instruction.


## OUTLINE

To overcome the speed difference between internal clock of Controller and MPU clock, Controller performs internal operation by storing control information to IR (Instruction Register) or DR (data Register).
The internal operation is determined according to the signal from MPU, composed of read/write and data bus.
I Nstruction can be divided largely four kinds;
*Controller function set instructions (set display methods, set data length, etc.)
*Address set instructions to internal RAM
*Data transfer instructions with internal RAM
*Others
The address of internal RAM is automatically increased or decreased by 1.
NOTE: During internal operation, Busy Flag (DB7) is read high. Busy Flag check must be preceded the next instruction.
Busy flag check must be proceeded the next instruction.
When an MPU program with Busy Flag (DB7) checking is made, $1 / 2$ Fosc (is necessary) for executing the next instruction by the falling edge of the " $E$ " signal after the Busy Flag (DB7)
goes to "Low".

## INTERFACE WITH MPU

Controller can transfer data in bus mode (4-bit or 8-bit) or serial mode with MPU. In case of 4-bit bus mode, data transfer is performed by two times to transfer 1 byte data. When interfacing data lengths are 4-bit, only 4 ports, from DB4 - DB7, are used as data bus. At first higher 4-bit (in case of 8-bit bus mode, the contents of DB4 - DB7) are transferred, and then lower 4- bit (in case of 8-bit bus mode, the contents of DB0-DB3) are transferred. So transfer is performed by two times.
Busy Flag outputs "High" after the second transfer are ended.
. When interfacing data length are 8-bit, transfer is performed at a time through 8 ports, from DB0 - DB7.
Interface is selected by IF1, IF0 pins (refer to Bonding Note for IF1, IF0 on Page 10)

| IF1 | IF0 | Interface select |
| :---: | :---: | :---: |
| open | open | $68008 / 4$ bit |
| open | Bonding to VDD | IIC |
| Bonding to VDD | open | 4 -line SPI |

## INTERFACE WITH MPU IN BUS MODE

## Interface with 8-bit MPU

If 8-bits MPU is used, Controller can connect directly with that. In this case, port E, RS, R/W and DB0 to DB7 need to interface each other. Example of timing sequence is shown below.


Example of 8-bit Bus Mode Timing Sequence

## Interface with 4-bit MPU

If 4-bit MPU is used, Controller can connect directly with this. In this case, port E, RS, R/W and DB4 - DB7 need to interface each other. The transfer is performed by two times. Example of timing sequence is shown below.


Example of 4-bit Bus Mode Timing Sequence
For serial interface data, bus lines (DB5 to DB7) are used. 4-Line SPI
If 4-Pin SPI mode is used, CSB (DB5), SID (DB7), SCLK (DB6), and RS are used. They are chip selection; serial input data, serial clock input, and data/instruction section, relatively. The example of timing sequence is shown below.


RS
Note: Following is the master SPI clock mode of MPU.
Idle state for clock is a high level, data transmitted on rising edge of SCLK, and data is hold during low level.

For serial interface data, bus lines (DB5(CSB), DB6(SDA) and DB7(SCL)) are used.
IIC interface
The IIC interface receives and executes the commands sent via the IIC Interface. It also receives RAM data and sends it to the RAM.
The IIC Interface is for bi-directional, two-line communication between different ICs or modules. Serial data line
SDA (DB6) and a Serial clock line SCL (DB7) must be connected to a positive supply via a pull-up resistor.

Data transfer may be initiated only when the bus is not busy.
*The CSB (DB5) Pin must be setting to "VSS".

* When IIC interface is selected, the DL register must be set to " 1 ".


## BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the
HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control
signal. Bit transfer is illustrated in Fig.9.1


Fig. 9.1 Bit transfer

## START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in
Fig.9.2


Fig .9.2 Definition of START and STOP conditions

## SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.9.3

- Transmitter: the device, which sends the data to the bus
- Receiver: the device, which receives the data from the bus
- Master: the device, which initiates a transfer, generates clock signals and terminates a transfer - Slave: the device addressed by a master
- Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- Synchronization: procedure to synchronize the clock signals of two or more devices.



## ACKNOWLEDGE

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an Acknowledge after the reception of each byte. A master receiver must also generate an Acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the Acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an Acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the IIC
Interface is illustrated in Fig.9.4


Fig .9.4 Acknowledgement on the 2-line Interface

## IIC Interface protocol

The Controller supports command, data write addressed slaves on the bus.
Before any data is transmitted on the IIC Interface, the device, which should respond, is addressed first.
Four 7 -bit slave addresses ( $0111100,0111101,0111110$ and 0111111) are reserved for the Controller. The least significant bit of the slave address is set by connecting the input SA0 (DB0) and SA1 (DB1) to either logic 0 (VSS) or logic 1 (VDD).
The IIC Interface protocol is illustrated in Figure.9.5
The sequence is initiated with a START condition (S) from the IIC Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the IIC Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves.
A command word consists of a control byte, which defines Co and A 0 , plus a data byte.
The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1 , these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended Controller device. If the A0 bit of the last control byte is set to logic 0 , these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the IIC interface-bus master issues a STOP condition (P). If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

## Write Mode


" $R / W$ always " 0 ": IC can only slave receiver

Fig .9.5 2-line Interface protocol

| Co | 0 | Last control byte to be sent. Only a stream of data bytes is allowed to follow. <br> This stream may only be terminated by s STOP or RE-START condition. |
| :---: | :---: | :--- |
|  | 1 | Another control byte will follow the data byte unless a STOP or RE-START condition is received. |

## INITIALIZING

## INITIALIZING BY INTERNAL RESET CIRCUIT

When the power is turned on, Controller is initialized automatically by power on reset circuit. During the initialization, the following instructions are executed, and BF (Busy Flag) is kept "High"(busy state) to the end of initialization.

## Clear Display Instruction

Write "20H" to all DDRAM

## Set Functions Instruction

DL = 1: 8-bit bus mode
$\mathrm{N}=0$ : 1 -line display
$\mathrm{F}=0: 5 \times 8$ dot character font
Display ON/OFF Instruction
D = 0: Display OFF
$C=0$ : Cursor OFF
B = 0: Blink OFF

## Set Entry Mode Instruction

I/D = 1: Increment by 1
$S=0$ : No entire display shift Note:
If the electrical characteristics conditions listed under the table Power Supply Conditions Using Internal Reset Circuit are not met, the internal reset circuit will not operate normally and will fail to initialize the Controller. For such a case, initialization must be performed by the MPU as explain by the following figure.

### 11.3.Timing Characteristics

Timing Characteristics
Writing data from MPU to IC (Parallel 8-bit bus and 4-bit bus)


Reading data from IC to MPU(Parallel 8-bit bus and 4-bit bus)


In 6800 interface $\left(\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}\right)$

| Write Mode (Writing data from MPU to IC ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Enable Cycle Time | Pin E <br> (except clear display) | 1000 | - | - | ns |
| $\mathrm{T}_{\mathrm{PW}}$ | Enable Pulse Width | $\operatorname{Pin} \mathrm{E}$ | 450 | - | - | ns |
| $\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$ | Enable Rise/Fall Time | Pin E | - | - | 25 | ns |
| $\mathrm{T}_{\text {AS }}$ | Address Setup Time | Pins: RS,RW, E | 60 | - | - | ns |
| $\mathrm{T}_{A H}$ | Address Hold Time | Pins: RS,RW, E | 20 | - | - | ns |
| $\mathrm{T}_{\mathrm{DSW}}$ | Data Setup Time | Pins: DB0 - DB7 | 195 | - | - | ns |
| $\mathrm{T}_{\mathrm{H}}$ | Data Hold Time | Pins: DB0 - DB7 | 10 | - | - | ns |
| Read Mode (Reading Data from IC to MPU) |  |  |  |  |  |  |
| Tc | Enable Cycle Time | Pin E | 1000 | - | - | ns |
| $\mathrm{T}_{\mathrm{PW}}$ | Enable Pulse Width | Pin E | 450 | - | - | ns |
| $\mathrm{T}_{\mathrm{R},} \mathrm{T}_{\mathrm{F}}$ | Enable Rise/Fall Time | Pin E | - | - | 25 | ns |
| $\mathrm{T}_{\text {AS }}$ | Address Setup Time | Pins: RS,RW, E | 60 | - | - | ns |
| $\mathrm{T}_{\text {AH }}$ | Address Hold Time | Pins: RS,RW, E | 20 | - |  | ns |
| $\mathrm{T}_{\mathrm{DDR}}$ | Data Setup Time | Pins: DB0 - DB7 | - | - | 360 | ns |
| $\mathrm{T}_{\mathrm{H}}$ | Data Hold Time | Pins: DB0 - DB7 | 5 | - | - | ns |

In 6800 interface $\left(T A=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}\right)$

| Write Mode (Writing data from MPU to IC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\mathrm{C}}$ | Enable Cycle Time | Pin E (except clear display) | 500 | - |  | ns |
| $\mathrm{T}_{\text {PW }}$ | Enable Pulse Width | Pin E | 230 | - | - | ns |
| $\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$ | Enable Rise/Fall Time | Pin E | - | - | 20 | ns |
| $\mathrm{T}_{\text {AS }}$ | Address Setup Time | Pins: RS,RW, E | 40 | - | - | ns |
| $\mathrm{T}_{\text {AH }}$ | Address Hold Time | Pins: RS,RW, E | 10 | - | - | ns |
| $\mathrm{T}_{\text {DSW }}$ | Data Setup Time | Pins: DB0 - DB7 | 80 | - | - | ns |
| $\mathrm{T}_{\mathrm{H}}$ | Data Hold Time | Pins: DB0 - DB7 | 10 | - | - | ns |
| Read Mode (Reading Data from IC to MPU) |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{c}}$ | Enable Cycle Time | Pin E | 500 | - | - | ns |
| $\mathrm{T}_{\text {PW }}$ | Enable Pulse Width | Pin E | 230 | - | - | ns |
| $\mathrm{T}_{\mathrm{R},} \mathrm{T}_{\mathrm{F}}$ | Enable Rise/Fall Time | Pin E | - | - | 20 | ns |
| $\mathrm{T}_{\text {AS }}$ | Address Setup Time | Pins: RS,RW, E | 40 | - | - | ns |
| $\mathrm{T}_{\text {AH }}$ | Address Hold Time | Pins: RS,RW, E | 10 | - | - | ns |
| $\mathrm{T}_{\mathrm{DDR}}$ | Data Setup Time | Pins: DB0 - DB7 | - | - | 120 | ns |
| $\mathrm{T}_{\text {H }}$ | Data Hold Time | Pins: DB0 - DB7 | 10 | - | - | ns |

### 11.4.Initializing of LCM

## Serial Interface Mode(Fosc=540KHz)



## 12.Character Generator ROM Pattern



## 13. Inspection specification





| NO | Item | Criterion | AQL |
| :---: | :---: | :---: | :---: |
| 07 | Cracked glass | The LCD with extensive crack is not acceptable. | 2.5 |
| 08 | Backlight elements | 8.1 Illumination source flickers when lit. <br> 8.2 Spots or scratched that appear when lit must be judged. <br> Using LCD spot, lines and contamination standards. <br> 8.3 Backlight doesn't light or color wrong. | $\begin{array}{\|l} 0.65 \\ 2.5 \\ \\ 0.65 \end{array}$ |
| 09 | Bezel | 9.1 Bezel may not have rust, be deformed or have fingerprints, stains or other contamination. <br> 9.2 Bezel must comply with job specifications. | $\begin{array}{\|l\|} 2.5 \\ 0.65 \end{array}$ |
| 10 | PCB , COB | 10.1 COB seal may not have pinholes larger than 0.2 mm or contamination. <br> 10.2 COB seal surface may not have pinholes through to the IC. <br> 10.3 The height of the COB should not exceed the height indicated in the assembly diagram. <br> 10.4 There may not be more than 2 mm of sealant outside the seal area on the PCB. And there should be no more than three places. <br> 10.5 No oxidation or contamination PCB terminals. <br> 10.6 Parts on PCB must be the same as on the production characteristic chart. There should be no wrong parts, missing parts or excess parts. <br> 10.7 The jumper on the PCB should conform to the product characteristic chart. <br> 10.8 If solder gets on bezel tab pads, LED pad, zebra pad or screw hold pad, make sure it is smoothed down. <br> 10.9 The Scraping testing standard for Copper Coating of PCB $X * Y<=2 m^{2}$ | 2.5 <br> 2.5 <br> 0.65 <br> 2.5 <br> 2.5 <br> 0.65 <br> 0.65 <br> 2.5 <br> 2.5 |
| 11 | Soldering | 11.1 No un-melted solder paste may be present on the PCB. <br> 11.2 No cold solder joints, missing solder connections, oxidation or icicle. <br> 11.3 No residue or solder balls on PCB. <br> 11.4 No short circuits in components on PCB. | $\begin{array}{\|l\|} \hline 2.5 \\ 2.5 \\ \\ 2.5 \\ 0.65 \end{array}$ |


| NO | Item | Criterion | AQL |
| :---: | :---: | :---: | :---: |
| 12 | General appearance | 12.1 No oxidation, contamination, curves or, bends on interface Pin (OLB) of TCP. <br> 12.2 No cracks on interface pin (OLB) of TCP. <br> 12.3 No contamination, solder residue or solder balls on product. <br> 12.4 The IC on the TCP may not be damaged, circuits. <br> 12.5 The uppermost edge of the protective strip on the interface pin must be present or look as if it causes the interface pin to sever. <br> 12.6 The residual rosin or tin oil of soldering (component or chip component) is not burned into brown or black color. <br> 12.7 Sealant on top of the ITO circuit has not hardened. <br> 12.8 Pin type must match type in specification sheet. <br> 12.9 LCD pin loose or missing pins. <br> 12.10 Product packaging must the same as specified on packaging specification sheet. <br> 12.11 Product dimension and structure must conform to product specification sheet. | 2.5 <br> 0.65 <br> 2.5 <br> 2.5 <br> 2.5 <br> 2.5 <br> 2.5 <br> 0.65 <br> 0.65 <br> 0.65 <br> 0.65 |

## 14. Precautions in use of LCD Modules

1. Avoid applying excessive shocks to the module or making any alterations or modifications to it.
2. Don't make extra holes on the printed circuit board, modify its shape or change the components of LCD module.
3. Don't disassemble the LCM.
4. Don't operate it above the absolute maximum rating.
5. Don't drop, bend or twist LCM.
6. Soldering: only to the I/O terminals.
7. Storage: please storage in anti-static electricity container and clean environment.
8. 0 lGDV have the right to change the passive components
(Resistors,capacitors and other passive components will have different appearance and color caused by the different supplier.)
9. 0 lGDV have the right to change the PCB Rev.

## 15. Material List of Components for RoHs

1. 0 LGDV hereby declares that all of or part of products, including, but
not limited to, the LCM, accessories or packages, manufactured and/or delivered to your company (including your subsidiaries and affiliated company) directly or indirectly by our company (including our subsidiaries or affiliated companies) do not intentionally contain any of the substances listed in all applicable EU directives and regulations, including the following substances.
Exhibit A : The Harmful Material List

| Material | $(\mathrm{Cd})$ | $(\mathrm{Pb})$ | $(\mathrm{Hg})$ | $(\mathrm{Cr} 6+)$ | PBBs | PBDEs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Limited <br> Value | 100 <br> ppm | 1000 <br> ppm |

Above limited value is set up according to RoHS.
2. Process for RoHS requirement :
(1) Use the $\mathrm{Sn} / \mathrm{Ag} / \mathrm{Cu}$ soldering surface; the surface of Pb -free solder is rougher than we used before.
(2) Heat-resistance temp. :

Reflow : $250^{\circ} \mathrm{C}$, 30 seconds Max. ;
Connector soldering wave or hand soldering: $320^{\circ} \mathrm{C}, 10$ seconds max.
(3) Temp. curve of reflow, max. Temp. : $235 \pm 5^{\circ} \mathrm{C}$;

Recommended customer's soldering temp. of connector : $280^{\circ} \mathrm{C}, 3$ seconds.

## 16. Recommendable storage

1. Place the panel or module in the temperature $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and the humidity below $65 \% \mathrm{RH}$
2. Do not place the module near organics solvents or corrosive gases.
3. Do not crush, shake, or jolt the module

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for midas manufacturer:
Other Similar products are found below :
MCT070LA12W1024600LML MCOT128064BY-WM MCOB21609AV-EWP MC42004A6W-SPTLY MC22008B6W-SPR MCT035G12W320240LML MC11605A6WR-SPTLY-V2 MC21605H6W-BNMLW-V2 MCOT048064A1V-YI

MCT101E0CW1280800LMLIPS MCT104A0W1024768LML MCT070Z0W800480LML MCT0144C6W128128PML MCIB-16-LVDS-
CABLE MC41605A6W-FPTLA-V2 MCOT128064UA1V-WM MCT101E0TW1280800LMLIPS MCT150B0W1024768LML
MCT050HDMI-A-RTP MCT050HDMI-A-CTP MCT070Z0TW1W800480LML MCT050ACA0CW800480LML MC42008A6W-SPTLY MC42005A12W-VNMLY MC42005A12W-VNMLG MCT052A6W480128LML MC21605A6WK-BNMLW-V2 MCOT256064A1A-BM MCOT22005A1V-EYM MC20805A12W-VNMLG MC21605B6WD-BNMLW-V2 MC22405A6WK-BNMLW-V2 MC41605A6WK-FPTLW-V2 MCT101HDMI-A-RTP MCT024L6W240320PML MCCOG21605D6W-FPTLWI MC21605A6WD-SPTLY-V2 MC22005A6WK-BNMLW-V2 MC24005AA6W9-BNMLW-V2 MC42004A6WK-SPTLY-V2 MC11609A6W-SPTLY-V2 MCOT064048A1V-YM MCOT128064BY-BM MCCOG128064B12W-FPTLRGB MC11609A6W-SPR-V2 MC21605H6WK-BNMLW-V2 MCOT128064E1V-BM MCT070HDMI-B-RTP MDT5000C MCCOG42005A6W-BNMLWI

