NPN Silicon RF Transistor

- For low current applications
- For oscillators up to 12 GHz
- Noise figure $F=1.25 \mathrm{~dB}$ at 1.8 GHz
outstanding $G_{\mathrm{ms}}=23 \mathrm{~dB}$ at 1.8 GHz
- SIEGET ${ }^{\circledR} 25 \mathrm{GHz}$ fT - Line

- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP405	ALs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	SOT343

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}		V
$T_{\mathrm{A}}>0^{\circ} \mathrm{C}$		4.5	
$T_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$		4.1	
Collector-emitter voltage	V_{CES}	15	
Collector-base voltage	V_{CBO}	15	
Emitter-base voltage	V_{EBO}	1.5	
Collector current	I_{C}	25	mA
Base current	I_{B}	1	
Total power dissipation ${ }^{1)}$	$P_{\text {tot }}$	75	mW
$T_{\mathrm{S}} \leq 108^{\circ} \mathrm{C}$	T_{J}		
Junction temperature	T_{A}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {Stg }}$	$-65 \ldots 150$	
Storage temperature	$-65 \ldots 150$		

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point 1)	$R_{\text {thJS }}$	≤ 555	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 4.5 | 5 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=15 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 1 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 60 | 95 | 130 | - |
| DC current gain | | | | | |
| $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}$, pulse measured | | | | | |

[^1]BFP405

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics (verified by random sampling)

Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=2 \mathrm{GHz}$	$f_{\text {T }}$	18	25	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.05	0.1	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{c e}$	-	0.24	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.29	-	
Noise figure $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$	F	-	1.25	-	dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{Sopt}}, \\ & Z_{\mathrm{L}}=Z_{\text {Lopt }}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	23	-	dB
Insertion power gain $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	14	18.5	-	
Third order intercept point at output ${ }^{2}$) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$I P_{3}$	-	15	-	dBm
1 dB Compression point at output $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	5	-	

${ }^{1} G_{\mathrm{ms}}=\left|S_{21} / S_{12}\right|$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

Simulation Data

For SPICE-model as well as for S-parameters including noise parameters refer to our internet website: www.infineon.com/rf.models. Please consult our website and download the latest version before actually starting your design.
The simulation data have been generated and verified up to 12 GHz using typical devices. The BFP405 nonlinear SPICE-model reflects the typical DC- and RF-device performance with high accuracy.

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\text {th } J S}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{c b}=f\left(V_{C B}\right)$ $f=1 \mathrm{MHz}$

Transition frequency $f_{\mathrm{T}}=f\left(I_{\mathrm{C}}\right)$
$f=2 \mathrm{GHz}$
$V_{C E}=$ parameter in V

Power gain $G_{m a}, G_{m s}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=3 V$
$f=$ parameter in GHz

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}},\left|S_{21}\right|^{2}=f(f)$
$V_{C E}=3 \mathrm{~V}, I_{C}=5 \mathrm{~mA}$

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$
$I_{C}=5 \mathrm{~mA}$
$f=$ parameter in GHz

Noise figure $F=f\left(I_{C}\right)$
$V_{\text {CE }}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{C E}=1 \mathrm{~V}, Z_{S}=Z_{\text {Sopt }}$

Noise figure $F=f\left(I_{C}\right)$
$V_{C E}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}$

Source impedance for min.
noise figure vs. frequency

$$
V_{\mathrm{CE}}=3 \mathrm{~V}, I_{\mathrm{C}}=2 \mathrm{~mA} / 5 \mathrm{~mA}
$$

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2009-11-05
Published by Infineon Technologies AG, 85579 Neubiberg, Germany
© Infineon Technologies AG 2009.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding cicuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for infineon manufacturer:
Other Similar products are found below :
TLE6209R BTS442E2E3062ABUMA1 EVALM113023645ATOBO1 EVALM11302TOBO1 FD1000R33HE3-K FD300R06KE3
FF1200R17KE3_B2 FF300R06KE3HOSA1 FF600R12ME4P FF600R17ME4_B11 FP25R12KT4_B11 FS150R12KE3G
FS600R07A2E3_B31 FZ1600R17HP4_B2 FZ1800R17KF4 FZ2400R17HE4_B9 FZ600R65KE3 DD261N22K DF1000R17IE4 BAS 40-04 E6327 BAS4007WH6327XTSA1 BAS 70-04 E6327 BAS 70-06 E6327 BAT15099E6327HTSA1 BAT 165 E6327 BAT 60A E6327 BAT 60B E6327 BC 817SU E6327 BC 817U E6327 BC 817UPN E6327 BC 846PN H6327 BC 846UPN E6327 BC 847PN H6327 BCM 856S H6327 BCP5416H6327XTSA1 BCP55H6327XTSA1 BCR 108 E6327 BCR 10PN H6327 BCR 133W H6327 BCR 141 E6327 BCR 141S H6327 BCR 141W H6327 BCR 162 E6327 BCR 183W H6327 BCR 185S H6327 BCR 192 E6327 BCR 198 E6327 BCR 35PN H6327 BCR 523U E6327 BCR 533 E6327

[^0]: ${ }^{1} T_{\mathrm{S}}$ is measured on the collector lead at the soldering point to the pcb

[^1]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

