

CTVS — Ceramic transient voltage suppressors

SMD multilayer varistors (MLVs), surge protection series

Series/Type:

Date: July 2014

© EPCOS AG 2014. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Surge protection series

SMD

EPCOS type designation system for surge protection series

СТ	1206	K	30	E2	G	K2
Construction: CT ≜ Single chip with nickel barrier termination (AgNiSn) CN ≜ Single chip with silver-platin temination (AgPt)						
Case sizes: 0805 1206 1210 1812 2220 $ \begin{tabular}{ll} \hline \textbf{Tolerance of the var} \\ K \triangleq \pm 10\%, standard \\ S \triangleq Special tolerance \\ \hline \end{tabular} $	-					
Maximum RMS oper 30 ≙ 30 V	rating voltage (V _{RMS}):					
Features: E2 ≜ Increased energ TELE ≜ Specified for A ≜ Special tolerance	10/700 µs pulses, acc	to telecom si	tandards			
Taping mode: $G\triangleq 180\text{-mm reel, }7"$ $G2\triangleq 330\text{-mm reel, }1$	3"					
Termination: K2 ≙ Code for AgPt to	ermination (CN types of	only)				

Surge protection series

SMD

Description

The surge protection series comprises a range of multilayer varistors for protection against severe transient overvoltage and high surge currents, such as 8/20 µs pulses with peak currents up to 6000 A and 10/700 µs pulses up to 45 A.

Features

- High energy absorption capability
- High surge load capability acc. to IEC 61000-4-5
- Reliable ESD protection up to 30 kV acc. to IEC 61000-4-2, level 4
- High surge voltage capability up to 2 kV for 10/700 µs acc. to IEC 61000-4-5 (types with V_{RMS max} ≤ 60 V)
- Bidirectional protection
- Low leakage current
- Long-term ESD stability
- RoHS-compatible, lead-free
- PSpice simulation modesl available

Applications

- Industrial applications
- Building safety and security applications
- Power supplies
- Control and measurement equipment
- Hard disk drives

Design

- Multilayer technology
- Flammability rating better than UL 94 V-0
- Termination (see "Soldering directions"):
 - CT types with nickel barrier terminations (AgNiSn), recommended for lead-free soldering, and compatible with tin/lead solder
 - CN types with silver-platin termination (AgPt) for reflow and wave soldering with solder on tin/lead basis or lead-free with a silver containing solder

V/I characteristics and derating curves

V/I and derating curves are attached to the data sheet. The curves are sorted by V_{RMS} and then by case size, which is included in the type designation.

Single chip

Internal circuit

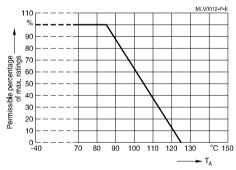
MLV0006-H

Available case sizes:

EIA	Metric
0805	2012
1206	3216
1210	3225
1812	4532
2220	5750

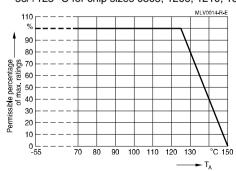
Surge protection series

SMD


General technical data

Maximum RMS operating voltage		$V_{RMS,max}$	30 115	٧
Maximum DC operating voltage		$V_{DC,max}$	38 150	V
Maximum surge current	(8/20 μs)	I _{surge,max}	40 6000	Α
Maximum surge current	(10/700 µs)	I _{surge,max}	45	Α
Maximum clamping voltage		$V_{clamp,max}$	77 360	V
Operating temperature	(8/20 µs surge ratings)	T _{op}	-55/+125	°C
Operating temperature	(10/700 µs surge ratings)	T _{op}	-40/+85	°C
Storage temperature	(8/20 µs surge ratings)	LCT/UCT	-55/+150	°C
Storage temperature	(10/700 µs surge ratings)	LCT/UCT	-40/+125	°C
Response time		t _{resp}	< 0.5	ns

Temperature derating


Climatic category:

-40/+85 °C for chip size 1812 (dedicated telecom types: CT1812S60AG2; CT1812K75TELEG2, CT1812S95 AG2, CT1812K115TELEG2)

Climatic category:

-55/+125 °C for chip sizes 0805, 1206, 1210, 1812, and 2220

Surge protection series

SMD

Electrical specifications and ordering codes Maximum ratings ($T_{\text{op,max}}$)

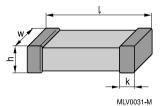
Туре	Ordering code	$V_{RMS,max}$	$V_{\text{DC,max}}$	I _{surge,max}	I _{surge,max}	W _{max}	P _{diss,max}		
		.,	.,	' '	(10/700 µs)	` ,	(2 ms)		
		V	٧	Α	Α	mJ	mW		
High surge protection t	High surge protection types, 8/20 μ s surge rating, $T_{op,max} = +125$ °C								
CN2220K30E2GK2	B72542V6300K062	30	38	6000	-	15000	20		
CN2220K50E2GK2	B72542V6500K062	50	65	4500	-	15000	20		
Surge protection types	, 8/20 μs surge rating,	$T_{op,max} =$	+125 °(3					
CT0805K30G	B72510T0300K062	30	38	80	-	300	5		
CT1206K30G	B72520T0300K062	30	38	200	-	1100	8		
CT1210K30G	B72530T0300K062	30	38	300	-	2000	10		
CT1812K30G	B72580T0300K062	30	38	800	-	4200	15		
CT2220K30G	B72540T0300K062	30	38	1200	-	12000	20		
CT0805K35G	B72510T0350K062	35	45	80	-	300	5		
CT1206K35G	B72520T0350K062	35	45	100	-	400	8		
CT1210K35G	B72530T0350K062	35	45	250	-	2000	10		
CT1812K35G	B72580T0350K062	35	45	500	-	4000	15		
CT1206K40G	B72520T0400K062	40	56	100	-	500	8		
CT1210K40G	B72530T0400K062	40	56	250	-	2300	10		
CT1812K40G	B72580T0400K062	40	56	500	-	4800	15		
CT2220K40G	B72540T0400K062	40	56	1000	-	9000	20		
CT1206K50G	B72520T0500K062	50	65	100	-	600	8		
CT1210K50G	B72530T0500K062	50	65	200	-	1600	10		
CT1812K50G	B72580T0500K062	50	65	400	-	4500	15		
CT2220K50G	B72540T0500K062	50	65	800	-	5600	20		
CT1206K60G	B72520T0600K062	60	85	100	-	700	8		
CT1210K60G	B72530T0600K062	60	85	200	-	2000	10		
CT1812K60G	B72580T0600K062	60	85	400	-	5800	15		
CT2220K60G	B72540T0600K062	60	85	800	-	6800	20		
CT1812K130G2	B72580T0131K072	130	170	250	-	3500	15		
Telecom types, 10/700) μs surge rating, T _{op,ma}	$_{ax} = +85^{\circ}$	°C						
CT1812S60AG2	B72580T0600S172	60	85	400	45	2200	15		
CT1812K75TELEG2	B72580T6750K072	75	100	400	45	2500	15		
CT1812S95AG2	B72580T0950S172	95	125	250	45	2800	15		
CT1812K115TELEG2	B72580T6111K072	115	150	250	45	3200	15		

Surge protection series

SMD

Characteristics (T_A = 25 °C)

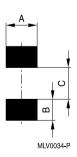
Туре	V _v	ΔV_V	$V_{\text{clamp,max}}$	I _{clamp}	C _{typ} 1)
	(1 mA)			(8/20 µs)	(1 MHz, 1 V)
	V	%	V	Α	pF
High surge protection types, 8/2	0 μs surge ra	ating, T _{op,max}	= +125 °C		
CN2220K30E2GK2	47	±10	77	10	10000
CN2220K50E2GK2	82	±10	135	10	3000
Surge protection types, 8/20 µs	surge rating,	$T_{op,max} = +12$	25 °C		
CT0805K30G	47	±10	77	1	200
CT1206K30G	47	±10	77	1	500
CT1210K30G	47	±10	77	2.5	1000
CT1812K30G	47	±10	77	5	2000
CT2220K30G	47	±10	77	10	4000
CT0805K35G	56	±10	95	1	150
CT1206K35G	56	±10	90	1	200
CT1210K35G	56	±10	90	2.5	600
CT1812K35G	56	±10	90	5	1200
CT1206K40G	68	±10	110	1	250
CT1210K40G	68	±10	110	2.5	500
CT1812K40G	68	±10	110	5	1000
CT2220K40G	68	±10	110	10	2000
CT1206K50G	82	±10	135	1	120
CT1210K50G	82	±10	135	2.5	250
CT1812K50G	82	±10	135	5	500
CT2220K50G	82	±10	135	10	1000
CT1206K60G	100	±10	165	1	100
CT1210K60G	100	±10	165	2.5	200
CT1812K60G	100	±10	165	5	400
CT2220K60G	100	±10	165	10	800
CT1812K130G2	205	±10	340	5	200
Telecom types, 10/700 µs surge	rating, T _{op,m}	_{ax} = +85 °C			
CT1812S60AG2	100	+19/-1	200	45	400
CT1812K75TELEG2	120	±10	250	45	320
CT1812S95AG2	165	±10	270	45	250
CT1812K115TELEG2	180	±10	360	45	200


¹⁾ Measurement frequency: f = 1 MHz for C < 100 pF, f = 1 kHz for C \geq 100 pF

Surge protection series

SMD

Dimensional drawing



Dimensions in mm

Case size	I	w	h	k
EIA / mm				
0201 / 0603	0.6 ±0.03	0.30 ±0.03	0.33 max.	0.15 ±0.05
0402 / 1005	1.0 ±0.15	0.50 ±0.10	0.6 max.	0.10 0.30
0603 / 1608	1.6 ±0.15	0.80 ±0.10	0.9 max.	0.10 0.40
0805 / 2012	2.0 ±0.20	1.25 ±0.15	1.4 max.	0.13 0.75
1206 / 3216	3.2 ±0.30	1.60 ±0.20	1.7 max.	0.25 0.75
1210 / 3225	3.2 ±0.30	2.50 ±0.25	1.7 max.	0.25 0.75
1812 / 4532	4.5 ±0.40	3.20 ±0.30	2.5 max.	0.25 1.00
2220 / 5750	5.7 ±0.40	5.00 ±0.40	2.5 max. ¹⁾	0.25 1.00

¹⁾ h_{max} = 3.0 mm for type CN2220K30E2GK2 and CN2220K50E2GK2

Recommended solder pad layout

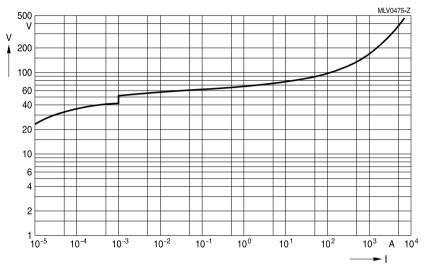
Dimensions in mm

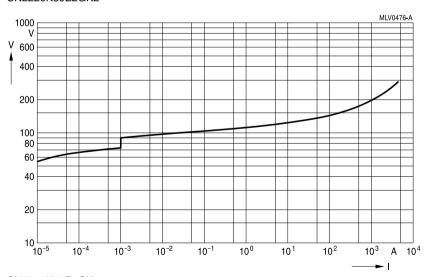
Case size	Α	В	С
EIA / mm			
0201 / 0603	0.30	0.25	0.30
0402 / 1005	0.60	0.60	0.50
0603 / 1608	1.00	1.00	1.00
0805 / 2012	1.40	1.20	1.00
1206 / 3216	1.80	1.20	2.10
1210 / 3225	2.80	1.20	2.10
1812 / 4532	3.60	1.50	3.00
2220 / 5750	5.50	1.50	4.20

Surge protection series

SMD

Delivery mode

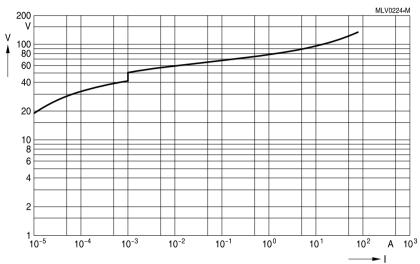

EIA case size	Taping	Reel size	Packing unit	Туре	Ordering code		
		mm	pcs.				
Single chip							
0805	Blister	180	3000	CT0805K30G	B72510T0300K062		
0805	Blister	180	3000	CT0805K35G	B72510T0350K062		
1206	Blister	180	2000	CT1206K30G	B72520T0300K062		
1206	Blister	180	2000	CT1206K35G	B72520T0350K062		
1206	Blister	180	2000	CT1206K40G	B72520T0400K062		
1206	Blister	180	2000	CT1206K50G	B72520T0500K062		
1206	Blister	180	2000	CT1206K60G	B72520T0600K062		
1210	Blister	180	2000	CT1210K30G	B72530T0300K062		
1210	Blister	180	2000	CT1210K35G	B72530T0350K062		
1210	Blister	180	2000	CT1210K40G	B72530T0400K062		
1210	Blister	180	2000	CT1210K50G	B72530T0500K062		
1210	Blister	180	2000	CT1210K60G	B72530T0600K062		
1812	Blister	180	1000	CT1812K30G	B72580T0300K062		
1812	Blister	180	1000	CT1812K35G	B72580T0350K062		
1812	Blister	180	1000	CT1812K40G	B72580T0400K062		
1812	Blister	180	1000	CT1812K50G	B72580T0500K062		
1812	Blister	180	1000	CT1812K60G	B72580T0600K062		
1812	Blister	180	3000	CT1812K130G2	B72580T0131K072		
1812	Blister	330	3000	CT1812K115TELEG2	B72580T6111K072		
1812	Blister	330	3000	CT1812S95AG2	B72580T0950S172		
1812	Blister	330	4000	CT1812K75TELEG2	B72580T6750K072		
1812	Blister	330	4000	CT1812S60AG2	B72580T0600S172		
2220	Blister	180	600	CN2220K30E2GK2	B72542V6300K062		
2220	Blister	180	600	CN2220K50E2GK2	B72542V6500K062		
2220	Blister	180	1000	CT2220K30G	B72540T0300K062		
2220	Blister	180	1000	CT2220K40G	B72540T0400K062		
2220	Blister	180	1000	CT2220K50G	B72540T0500K062		
2220	Blister	180	1000	CT2220K60G	B72540T0600K062		

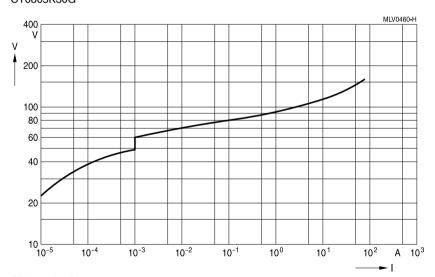

Surge protection series

SMD

V/I characteristics for high surge protection types

CN2220K30E2GK2

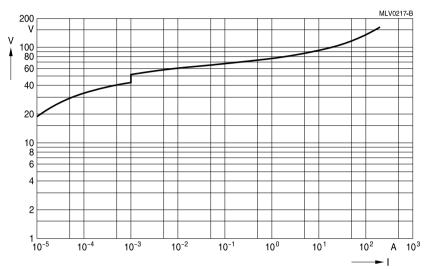

CN2220K50E2GK2

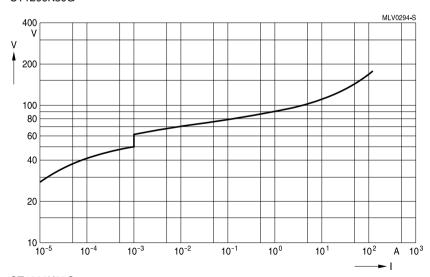

Surge protection series

SMD

V/I characteristics for surge protection types

CT0805K30G

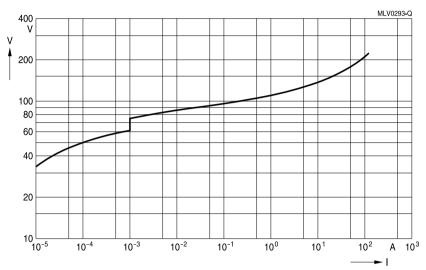

CT0805K35G

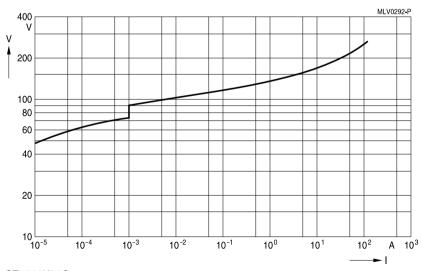

Surge protection series

SMD

V/I characteristics for surge protection types

CT1206K30G

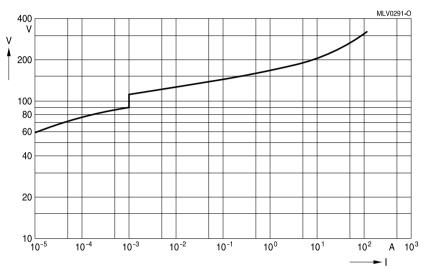

CT1206K35G

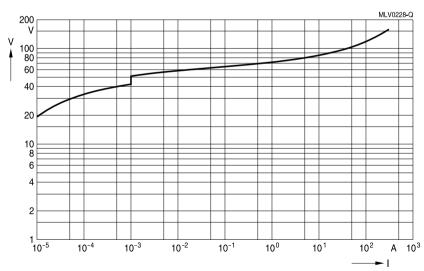

Surge protection series

SMD

V/I characteristics for surge protection types

CT1206K40G

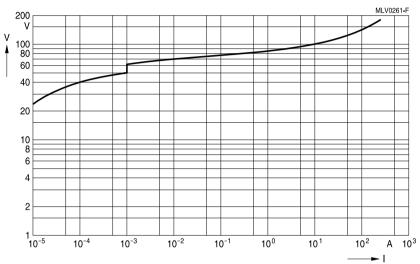

CT1206K50G

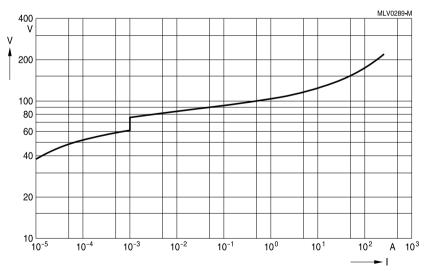

Surge protection series

SMD

V/I characteristics for surge protection types

CT1206K60G

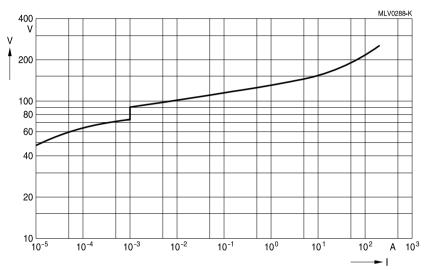

CT1210K30G

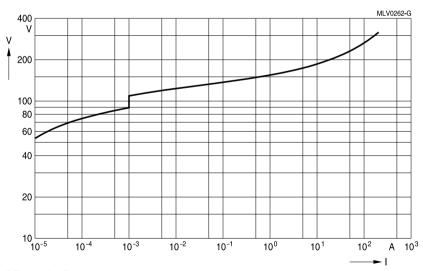

Surge protection series

SMD

V/I characteristics for surge protection types

CT1210K35G

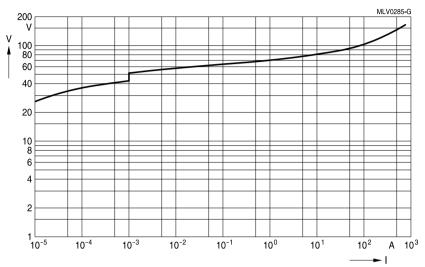

CT1210K40G

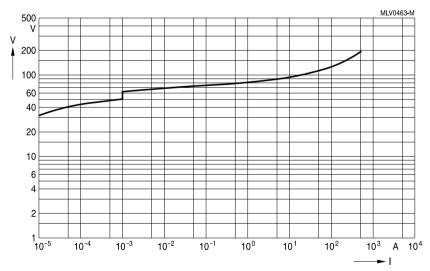

Surge protection series

SMD

V/I characteristics for surge protection types

CT1210K50G

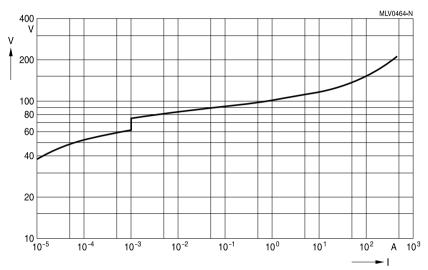

CT1210K60G

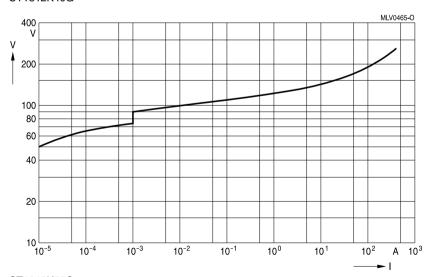

Surge protection series

SMD

V/I characteristics for surge protection types

CT1812K30G

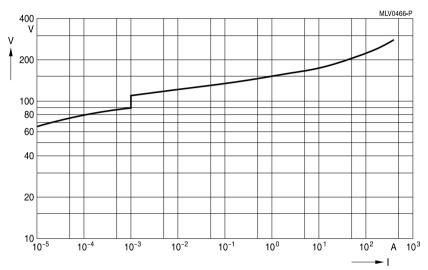

CT1812K35G

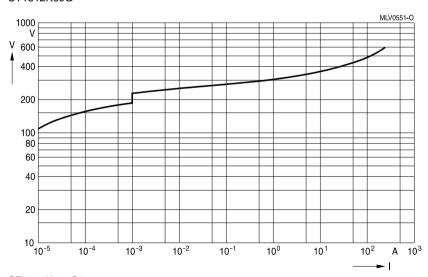

Surge protection series

SMD

V/I characteristics for surge protection types

CT1812K40G

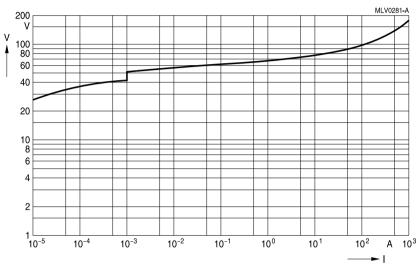

CT1812K50G

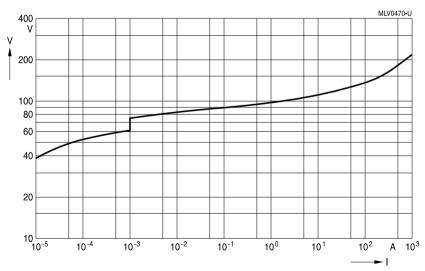

Surge protection series

SMD

V/I characteristics for surge protection types

CT1812K60G

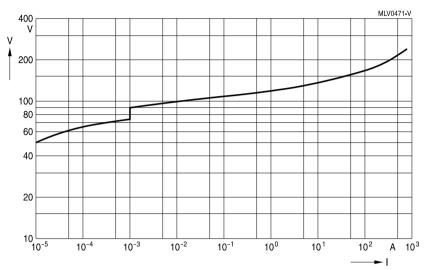

CT1812K130G2

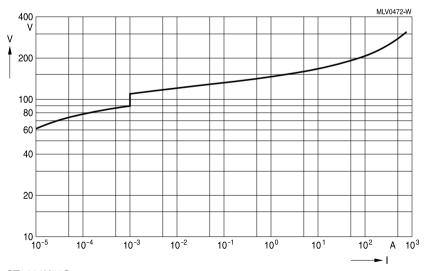

Surge protection series

SMD

V/I characteristics for surge protection types

CT2220K30G

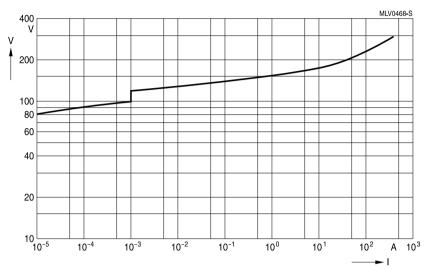

CT2220K40G

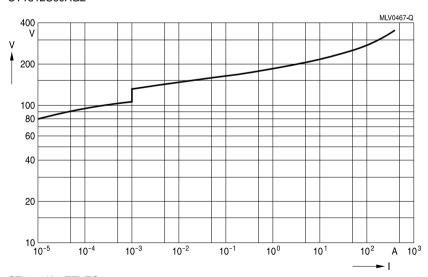

Surge protection series

SMD

V/I characteristics for surge protection types

CT2220K50G

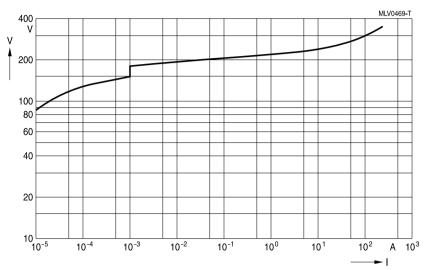

CT2220K60G

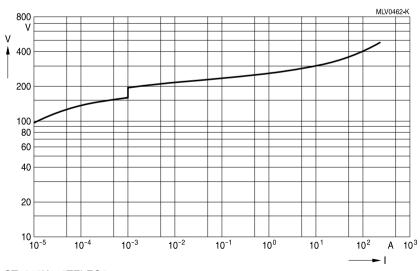

Surge protection series

SMD

V/I characteristics for telecom types

CT1812S60AG2


CT1812K75TELEG2

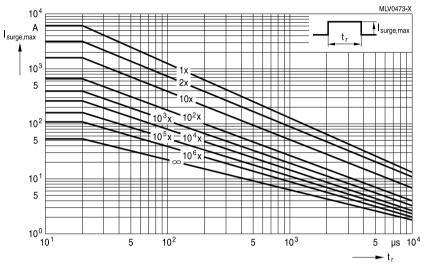

Surge protection series

SMD

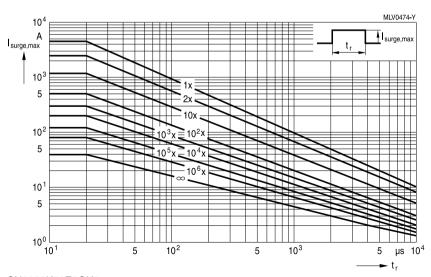
V/I characteristics for telecom types

CT1812S95AG2

CT1812K115TELEG2


Surge protection series

SMD

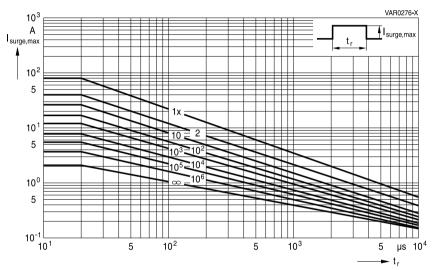

Derating curves for high surge protection types

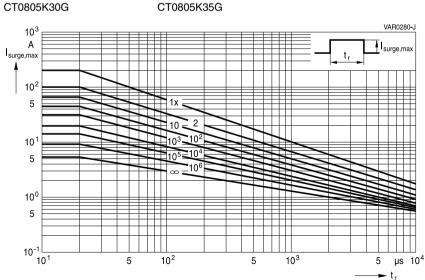
Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CN2220K30E2GK2

CN2220K50E2GK2


Surge protection series


SMD

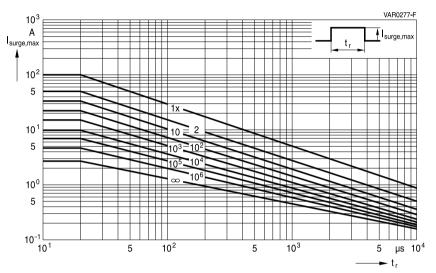
Derating curves for surge protection types

Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

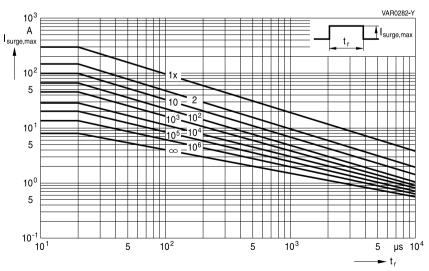
For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1206K30G

CT1210K35G ... K60G


Surge protection series

SMD

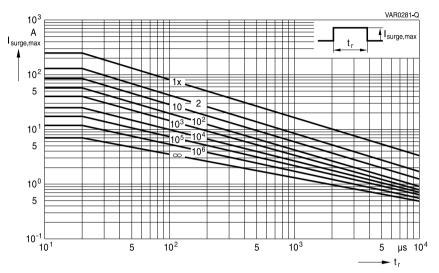

Derating curves for surge protection types

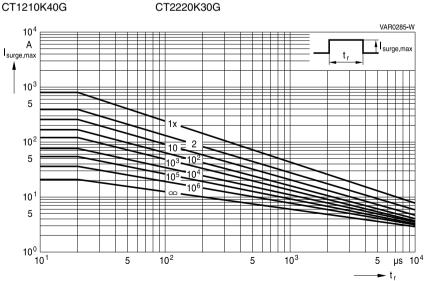
Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1206K35G ... K60G

CT1210K30G


Surge protection series

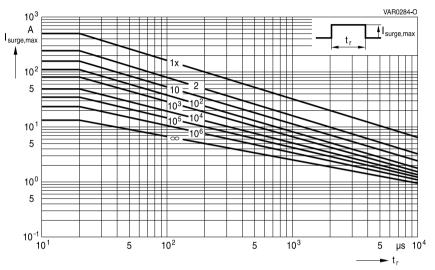

SMD

Derating curves for surge protection types

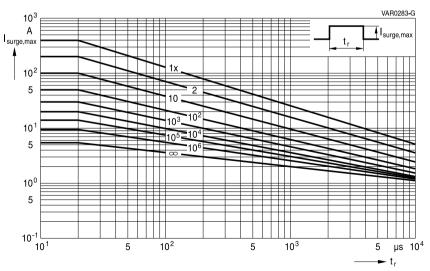
Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1812K30G


Surge protection series

SMD

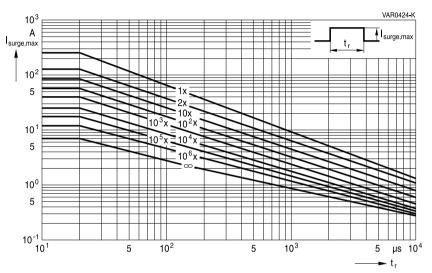

Derating curves for surge protection types

Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

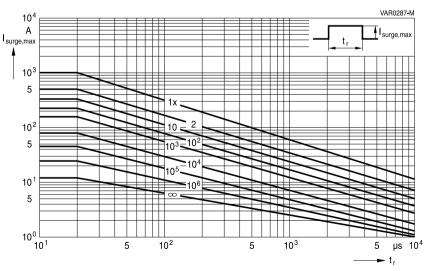
For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1812K35G ... K40G

CT1812K50G ... K60G


Surge protection series

SMD

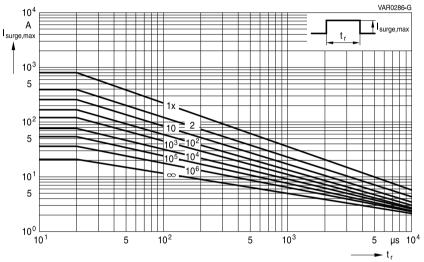

Derating curves for surge protection types

Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1812K130G2

CT2220K40G


Surge protection series

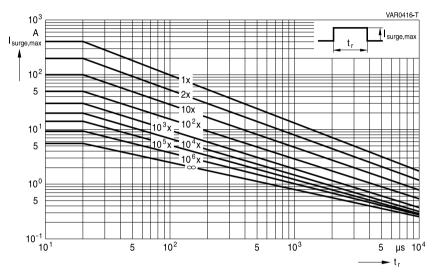
SMD

Derating curves for surge protection types

Maximum surge current $I_{surge,max} = f(t_r, pulse train)$

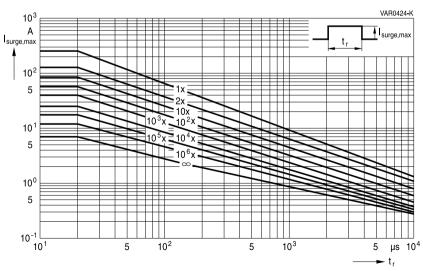
For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT2220K50G ... K60G


Surge protection series

SMD

Derating curves for telecom types


Maximum surge current I_{surge,max} = f (t_r, pulse train)

For explanation of the derating curves refer to "General technical information", chapter 2.7.1

CT1812S60AG2

CT1812K75TELEG2

CT1812S95AG2

CT1812K115TELEG2

Surge protection series

SMD

Symbols and terms

For ceramic transient voltage suppressors (CTVS)

Symbol	Term
C _{line,max}	Maximum capacitance per line
$C_{line,min}$	Minimum capacitance per line
$C_{line,typ}$	Typical capacitance per line
C_{max}	Maximum capacitance
C_{min}	Minimum capacitance
C_{nom}	Nominal capacitance
$\Delta \textbf{C}_{\text{nom}}$	Tolerance of nominal capacitance
C_{typ}	Typical capacitance
$f_{\text{cut-off,max}}$	Maximum cut-off frequency
$\mathbf{f}_{\text{cut-off,min}}$	Minimum cut-off frequency
$\mathbf{f}_{\text{cut-off,typ}}$	Typical cut-off frequency
$f_{\text{res},\text{typ}}$	Typical resonance frequency
1	Current
I _{clamp}	Clamping current
l _{leak}	Leakage current
I _{leak,max}	Maximum leakage current
$I_{leak,typ}$	Typical leakage current
I_{PP}	Peak pulse current
I _{surge,max}	Maximum surge current (also termed peak current)
LCT	Lower category temperature
L_{typ}	Typical inductance
$P_{diss,max}$	Maximum power dissipation
P_{PP}	Peak pulse power
R _{ins}	Insulation resistance
R_{min}	Minimum resistance
R_s	Resistance per line
$R_{\text{S,typ}}$	Typical resistance per line
T_A	Ambient temperature
T_op	Operating temperature
$T_{op,max}$	Maximum operating temperature
T _{stg}	Storage temperature

Surge protection series

SMD

Symbol	Term
t _r	Duration of equivalent rectangular wave
t_{resp}	Response time
t _{resp,max}	Maximum response time
UCT	Upper category temperature
٧	Voltage
$V_{BR,min}$	Minimum breakdown voltage
$V_{\text{clamp,max}}$	Maximum clamping voltage
$V_{\text{DC},\text{max}}$	Maximum DC operating voltage (also termed working voltage)
$V_{ESD,air}$	Air discharge ESD capability
$V_{ESD,contact}$	Contact discharge ESD capability
V_{jump}	Maximum jump-start voltage
$V_{RMS,max}$	Maximum AC operating voltage, root-mean-square value
V_{v}	Varistor voltage (also termed breakdown voltage)
V_{LD}	Maximum load dump voltage
V_{leak}	Measurement voltage for leakage current
$V_{\text{V,min}}$	Minimum varistor voltage
$V_{v,\text{max}}$	Maximum varistor voltage
ΔV_{V}	Tolerance of varistor voltage
W_{LD}	Maximum load dump energy
W_{max}	Maximum energy absorption (also termed transient energy)
α_{typ}	Typical insertion loss
$tan \ \delta$	Dissipation factor
е	Lead spacing
**	Maximum possible application conditions

All dimensions are given in mm.

The commas used in numerical values denote decimal points.

Surge protection series

SMD

For CeraDiodes

CeraDiode	Semiconductor diode	
C _{max}		Maximum capacitance
C_{typ}		Typical capacitance
I _{BR}	I_{R} , I_{T}	(Reverse) current @ breakdown voltage
I _{leak}	I _{RM}	(Reverse) leakage current
I _{PP}	I _P , I _{PP}	Current @ clamping voltage; peak pulse current
P_{PP}	P _{PP}	Peak pulse power
T_{op}		Operating temperature
T_{stg}		Storage temperature
V_{BR}	V_{BR}	(Reverse) breakdown voltage
$V_{BR,min}$		Minimum breakdown voltage
V_{clamp}	V _{cl,} V _C	Clamping voltage
$V_{clamp,max}$		Maximum clamping voltage
V _{DC}	$V_{RM}, V_{RWM}, V_{WM}, V_{DC}$	(Reverse) stand-off voltage, working voltage, operating voltage
$V_{DC,max}$		Maximum DC operating voltage
V _{ESD,air}		Air discharge ESD capability
V _{ESD,contact}		Contact discharge ESD capability
V _{leak}	$V_{\text{RM}}, V_{\text{RWM}}, V_{\text{WM}}, V_{\text{DC}}$	(Reverse) voltage @ leakage current
- *)	I _F	Current @ forward voltage
- *)	I _{RM} , I _{RM,max} @V _{RM}	(Reverse) current @ maximum reverse stand-off voltage, working voltage, operating voltage
- *)	V _F	Forward voltage

^{*)} Not applicable due to bidirectional characteristics of CeraDiodes.

Surge protection series

SMD

Cautions and warnings

General

Some parts of this publication contain statements about the suitability of our ceramic transient voltage suppressor (CTVS) components (multilayer varistors (MLVs)), CeraDiodes, ESD/EMI filters, leaded transient voltage/ RFI suppressors (SHCV types)) for certain areas of application, including recommendations about incorporation/design-in of these products into customer applications. The statements are based on our knowledge of typical requirements often made of our CTVS devices in the particular areas. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our CTVS components for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always incumbent on the customer to check and decide whether the CTVS devices with the properties described in the product specification are suitable for use in a particular customer application.

- Do not use EPCOS CTVS components for purposes not identified in our specifications, application notes and data books.
- Ensure the suitability of a CTVS in particular by testing it for reliability during design-in. Always evaluate a CTVS component under worst-case conditions.
- Pay special attention to the reliability of CTVS devices intended for use in safety-critical applications (e.g. medical equipment, automotive, spacecraft, nuclear power plant).

Design notes

- Always connect a CTVS in parallel with the electronic circuit to be protected.
- Consider maximum rated power dissipation if a CTVS has insufficient time to cool down between a number of pulses occurring within a specified isolated time period. Ensure that electrical characteristics do not degrade.
- Consider derating at higher operating temperatures. Choose the highest voltage class compatible with derating at higher temperatures.
- Surge currents beyond specified values will puncture a CTVS. In extreme cases a CTVS will burst.
- If steep surge current edges are to be expected, make sure your design is as low-inductance as possible.
- In some cases the malfunctioning of passive electronic components or failure before the end of their service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In applications requiring a very high level of operational safety and especially when the malfunction or failure of a passive electronic component could endanger human life or health (e.g. in accident prevention, life-saving systems, or automotive battery line applications such as clamp 30), ensure by suitable design of the application or other measures (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of such a malfunction or failure. Only use CTVS components from the automotive series in safety-relevant applications.

Surge protection series

SMD

Specified values only apply to CTVS components that have not been subject to prior electrical, mechanical or thermal damage. The use of CTVS devices in line-to-ground applications is therefore not advisable, and it is only allowed together with safety countermeasures like thermal fuses.

Storage

- Only store CTVS in their original packaging. Do not open the package before storage.
- Storage conditions in original packaging: temperature −25 to +45°C, relative humidity ≤75% annual average, maximum 95%, dew precipitation is inadmissible.
- Do not store CTVS devices where they are exposed to heat or direct sunlight. Otherwise the packaging material may be deformed or CTVS may stick together, causing problems during mounting.
- Avoid contamination of the CTVS surface during storage, handling and processing.
- Avoid storing CTVS devices in harmful environments where they are exposed to corrosive gases for example (SO_v, CI).
- Use CTVS as soon as possible after opening factory seals such as polyvinyl-sealed packages.
- Solder CTVS components after shipment from EPCOS within the time specified:
 - CTVS with Ni barrier termination, 12 months
 - CTVS with AgPt termination, 6 months
 - SHCV, 24 months

Handling

- Do not drop CTVS components and allow them to be chipped.
- Do not touch CTVS with your bare hands gloves are recommended.
- Avoid contamination of the CTVS surface during handling.
- Washing processes may damage the product due to the possible static or cyclic mechanical loads (e.g. ultrasonic cleaning). They may cause cracks to develop on the product and its parts, which might lead to reduced reliability or lifetime.

Mounting

- When CTVS devices are encapsulated with sealing material or overmolded with plastic material, electrical characteristics might be degraded and the life time reduced.
- Make sure an electrode is not scratched before, during or after the mounting process.
- Make sure contacts and housings used for assembly with CTVS components are clean before mounting.
- The surface temperature of an operating CTVS can be higher. Ensure that adjacent components are placed at a sufficient distance from a CTVS to allow proper cooling.
- Avoid contamination of the CTVS surface during processing.

Surge protection series

SMD

Soldering

- Complete removal of flux is recommended to avoid surface contamination that can result in an instable and/or high leakage current.
- Use resin-type or non-activated flux.
- Bear in mind that insufficient preheating may cause ceramic cracks.
- Rapid cooling by dipping in solvent is not recommended, otherwise a component may crack.

Operation

- Use CTVS only within the specified operating temperature range.
- Use CTVS only within specified voltage and current ranges.
- Environmental conditions must not harm a CTVS. Only use them in normal atmospheric conditions. Reducing the atmosphere (e.g. hydrogen or nitrogen atmosphere) is prohibited.
- Prevent a CTVS from contacting liquids and solvents. Make sure that no water enters a CTVS (e.g. through plug terminals).
- Avoid dewing and condensation.
- EPCOS CTVS components are mainly designed for encased applications. Under all circumstances avoid exposure to:
 - direct sunlight
 - rain or condensation
 - steam, saline spray
 - corrosive gases
 - atmosphere with reduced oxygen content
- EPCOS CTVS devices are not suitable for switching applications or voltage stabilization where static power dissipation is required.

This listing does not claim to be complete, but merely reflects the experience of EPCOS AG.

Display of ordering codes for EPCOS products

The ordering code for one and the same EPCOS product can be represented differently in data sheets, data books, other publications, on the EPCOS website, or in order-related documents such as shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes

Important notes

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPlas, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for epcos manufacturer:

Other Similar products are found below:

B82432X001 B82731H2501A30 B25673A4302A080 B32529C0104K000 B43501B3337M7 B44066R6012E230 B57235S0100M
B57236S0200M B57236S0259M B57237S0100M B57237S0109M B57237S0229M B57237S0259M B57237S0330M B72520T0250K062
B82422A1102K100 B82422A1333K100 B82422A1472K100 B82721A2202N001 B84142A50R B84143B600S20 B84144A0120R000
B84144A90R120 B84243A8008W B88069X0270S102 BR6000-R6 B25631A1506K200 B32656S0105K561 B32656T684K
B32686A7104K B32913A5154M B41550E7229Q000 B43252A5476M B57236S0509M B57237S0150M B57237S0479M B57237S0509M
B59955C0120A070 B59995C0120A070 B64290A0045X038 B72240B321K1 B72530T0400K062 B72530T250K62 B82422A1473K100
B84144A50R B323332I6755J080 B32673P6474K000 B43504B2108M000 B43508A9827M B57999V5999J099