16-bit Proprietary Microcontroller смоз

F²MC-16LX MB90895 Series

MB90F897/F897S/MB90V495G

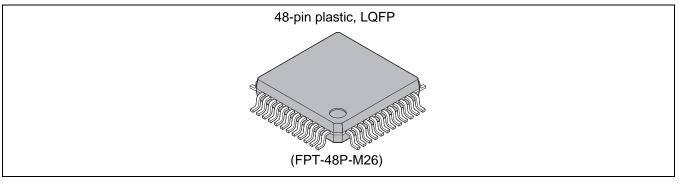
DESCRIPTION

MB90895 series devices are 16-bit micro general-purpose controllers designed for applications which need highspeed real-time processing. The devices of this series are high-performance 16-bit CPU micro controllers employing of the dual operation flash memory and CAN controller on LQFP-48 small package.

The system, inheriting the architecture of F²MC* family, employs additional instruction ready for high-level languages, expanded addressing mode, enhanced multiply-divide instructions, and enriched bit-processing instructions. Furthermore, employment of 32-bit accumulator achieves processing of long-word data (32 bits).

The peripheral resources of MB90895 series include the following:

8/10-bit A/D converter, UART0/UART1 (SCI), 8/16-bit PPG timer, 16-bit input-output timer (16-bit free-run timer, input capture 0, 1, 2, 3 (ICU)), and CAN controller.


*: "F²MC", an abbreviation for FUJITSU Flexible Microcontroller, is a registered trademark of FUJITSU Ltd.

■ FEATURES

Models that support +125°C

- Clock
 - Built-in PLL clock frequency multiplication circuit
 - Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 4 times of oscillation clock (for 4-MHz oscillation clock, 4 MHz to 16 MHz).
 - Operation by sub-clock (8.192 kHz) is allowed. (MB90F897)
 - Minimum execution time of instruction: 62.5 ns (when operating with 4-MHz oscillation clock, and 4-time multiplied PLL clock).
- 16 Mbyte CPU memory space
 - 24-bit internal addressing

PACKAGE

(Continued)

• Instruction system best suited to controller

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

• Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions

Increased processing speed

4-byte instruction queue

• Powerful interrupt function with 8 levels and 34 factors

- Automatic data transfer function independent of CPU
 - Expanded intelligent I/O service function (EI² OS): Maximum of 16 channels

• Low power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock, sub clock, time-base timer and clock timer only)
- Clock mode (a mode that operates sub clock and clock timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode
- Process
 - CMOS technology
- I/O port
 - General-purpose input/output port (CMOS output) :

MB90F897 : 34 ports (including 4 high-current output ports)

MB90F897S : 36 ports (including 4 high-current output ports)

• Timer

- Time-base timer, clock timer, watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit x 4 channels, or 16-bit x 2 channels
- 16-bit reload timer: 2 channels
- 16-bit input/output timer
 - 16-bit free run timer: 1 channel
 - 16-bit input capture: (ICU): 4 channels

Interrupt request is issued upon latching a count value of 16-bit free run timer by detection of an edge on pin input.

• CAN controller: 1 channel

- Compliant with Ver 2.0A and Ver 2.0B CAN specifications
- 8 built-in message buffers
- Transmission rate of 10 Kbps to 1 Mbps (by 16 MHz machine clock)
- · CAN wake-up

• UART0 (SCI), UART1(SCI): 2 channel

- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available.

• DTP/External interrupt: 4 channels, CAN wake-up: 1channel

- Module for activation of expanded intelligent I/O service (EI²OS), and generation of external interrupt.
- Delay interrupt generator module
 - Generates interrupt request for task switching.
- 8/10-bit A/D converter: 8 channels
 - Resolution is selectable between 8-bit and 10-bit.
 - Activation by external trigger input is allowed.
 - Conversion time: 6.125 μ s (at 16-MHz machine clock, including sampling time)

Program patch function

• Address matching detection for 2 address pointers.

■ PRODUCT LINEUP

	Part Number	110005007/0		
Parameter		MB90F897/S	MB90V495G	
Classification		Flash ROM	Evaluation product	
ROM capacity		64 Kbytes		
RAM capacity		2 Kbytes	6 Kbytes	
Process		СМ	OS	
Package		LQFP-48 (0.50 mm width)	PGA256	
Operating power su	upply voltage	3.5 V to 5.5 V	4.5 V to 5.5 V	
Special power supp	bly for emulator*1		None	
CPU functions		Number of basic instructions Instruction bit length Instruction length Data bit length Minimum instruction execution time :	: 351 instructions : 8 bits and 16 bits : 1 byte to 7 bytes : 1 bit, 8 bits, 16 bits 62.5 ns (at 16-MHz machine clock)	
		Interrupt processing time : 1.5 μ s at n	ninimum (at 16-MHz machine clock)	
Low power consum (standby) mode	ption	Sleep mode/Clock mode/Time-base t Stop mode/CPU intermittent	imer mode/	
I/O port		General-purpose input/output ports (CMOS output) : 34 ports (36 ports*2) including 4 high-current output ports (P14 to P17)		
Time-base timer		18-bit free-run counter Interrupt cycle : 1.024 ms, 4.096 ms, 16.834 ms, 131.072 ms (with oscillation clock frequency at 4 MHz)		
Watchdog timer		Reset generation cycle: 3.58 ms, 14.33 ms, 57.23 ms, 458.75 ms (with oscillation clock frequency at 4 MHz)		
16 hit input/output	16-bit free-run timer	Number of channels: 1 Interrupt upon occurrence of overflow		
16-bit input/output timer	Input capture	Number of channels: 4 Retaining free-run timer value set by pin input (rising edge, falling edge, and both edges)		
16-bit reload timer		Number of channels: 2 16-bit reload timer operation Count clock cycle: 0.25 μs, 0.5 μs, 2.0 μs (at 16-MHz machine clock frequency) External event count is allowed.		
Clock timer		15-bit free-run counter Interrupt cycle: 31.25 ms, 62.5 ms, 12 ms, 250 ms, 500 ms, 1.0 s, 2.0 s (with 8.192 kHz sub clock)		
8/16-bit PPG timer		Number of channels: 2 (four 8-bit channels are available also.) PPG operation is allowed with four 8-bit channels or one 16-bit channel. Outputting pulse wave of arbitrary cycle or arbitrary duty is allowed. Count clock: 62.5 ns to 1 μ s (with 16 MHz machine clock)		
Delay interrupt gen	erator module	Interrupt generator module for task sy	witching. Used for real-time OS.	
DTP/External interr	upt	Number of inputs: 4 Activated by rising edge, falling edge, External interrupt or expanded intellig		

(Continued)

Part Number Parameter	MB90F897/S	MB90V495G
8/10-bit A/D converter	Sequential conversion of two or more s a maximum of 8 channels is allowed.) Single conversion mode : Selected Sequential conversion mode: Selected Halt conversion mode : Convers	machine clock, including sampling time) uccessive channels is allowed. (Setting channel is converted only once. channel is converted repetitively. ion of selected channel is stopped and d alternately.
UARTO (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 Kbps Clock-asynchronous transfer: 1,202 bp Communication is allowed by bi-direction master/slave type connection.	•
UART1 (SCI)	Number of channels: 1 Clock-synchronous transfer: 62.5 Kbps Clock-asynchronous transfer: 9,615 bp Communication is allowed by bi-direction master/slave type connection.	
CAN	Compliant with Ver 2.0A and Ver 2.0B 8 built-in message buffers. Transmission rate of 10 Kbps to 1 Mbp CAN wake-up	

*1 : Settings of DIP switch S2 for using emulation pod MB2145-507. For details, see MB2145-507 Hardware Manual (2.7 Power Pin solely for Emulator).

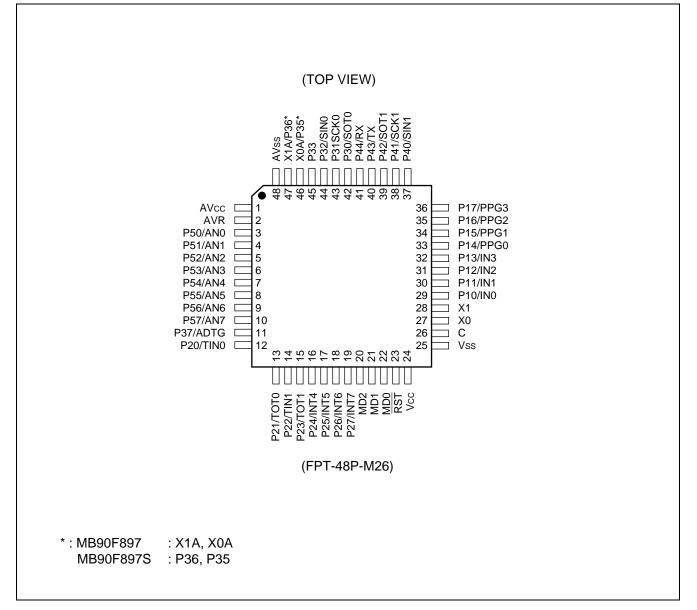
*2 : MB90F897S

PACKAGES AND PRODUCT MODELS

Package	MB90F897/S		
FPT-48P-M26	0		

 \bigcirc : Yes, \times : No

Note : Refer to " PACKAGE DIMENSION" for details of the package.


PRODUCT COMPARISON

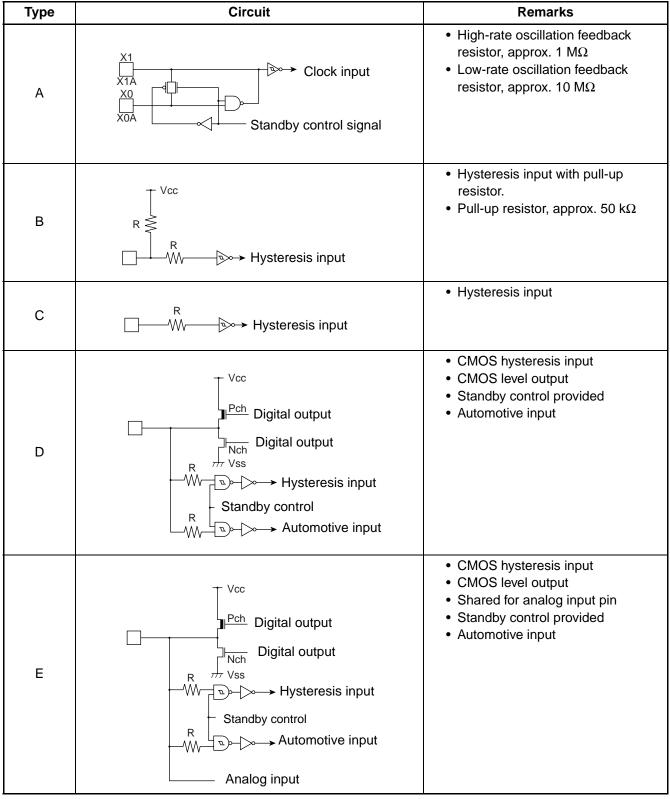
Memory space

When testing with test product for evaluation, check the differences between the product and a product to be used actually. Pay attention to the following points:

- The MB90V495G has no built-in ROM. However, a special-purpose development tool allows the operations as those of one with built-in ROM. ROM capacity depends on settings on a development tool.
- On MB90V495G, an image from FF4000H to FFFFFH is viewed on 00 bank and an image of FE0000H to FF3FFFH is viewed only on FE bank and FF bank. (Modified on settings of a development tool.)
- On MB90F897/S, an image from FF4000^H to FFFFFF^H is viewed on 00 bank and an image of FF0000^H to FF3FFF^H is viewed only on FF bank.

PIN ASSIGNMENT

■ PIN DESCRIPTION


Pin No.	Pin name	Circuit type	Function	
1	AVcc		Vcc power input pin for A/D converter.	
2	AVR	_	Power (Vref+) input pin for A/D converter. Use as input for Vcc or lower.	
	P50 to P57		General-purpose input/output ports.	
3 to 10	3 to 10 AN0 to AN7		Functions as analog input pin for A/D converter. Valid when analog input setting is "enabled."	
	P37		General-purpose input/output ports.	
11	ADTG	D	Function as an external trigger input pin for A/D converter. Use the pin by setting as input port.	
	P20		General-purpose input/output ports.	
12	TIN0	D	Function as an event input pin for reload timer 0. Use the pin by setting as input port.	
	P21	21 General-purpose input/output ports.		
13	ΤΟΤ0	D	Function as an event output pin for reload timer 0. Valid only when output setting is "enabled."	
	P22		General-purpose input/output ports.	
14	14 TIN1		Function as an event input pin for reload timer 1. Use the pin by setting as input port.	
P23			General-purpose input/output ports.	
15	TOT1	D	Function as an event output pin for reload timer 1. Valid only when output setting is "enabled."	
16 to 19	P24 to P27	D	General-purpose input/output ports.	
101019	INT4 to INT7	D	Functions as external interrupt input pin. Use the pin by setting as input port.	
20	MD2	F	Input pin for specifying operation mode. Connect directly to Vss.	
21	MD1	С	Input pin for specifying operation mode. Connect directly to Vcc.	
22	MD0	С	Input pin for specifying operation mode. Connect directly to Vcc.	
23	RST	В	External reset input pin.	
24	Vcc	_	Power source (5 V) input pin.	
25	Vss	_	Power source (0 V) input pin.	
26	С	_	Capacitor pin for stabilizing power source. Connect a ceramic capacitor of approximately 0.1 $\mu\text{F}.$	
27	X0	А	Pin for high-rate oscillation.	
28	X1	А	Pin for high-rate oscillation.	
	P10 to P13		General-purpose input/output ports.	
29 to 32	IN0 to IN3	D	Functions as trigger input pins of input capture channels 0 to 3. Use the pins by setting as input ports.	

(Continued)

Pin No.	Pin name	Circuit type	Function
	P14 to P17		General-purpose input/output ports. High-current output ports.
33 to 36 PPG0 to PPG3		G	Functions as output pin of PPG timers 01 and 23. Valid when output setting is "enabled."
27	P40		
37	37 SIN1		Serial data input pin for UART1. Use the pin by setting as input port.
	P41 G		General-purpose input/output port.
38	SCK1	D	Serial clock input pin for UART1. Valid only when serial clock input/output setting on UART1 is "enabled."
	P42		General-purpose input/output port.
39	SOT1	D	Serial data input pin for UART1. Valid only when serial data input/output setting on UART1 is "enabled."
	P43		General-purpose input/output port.
40	ТХ	D	Transmission output pin for CAN. Valid only when output setting is "enabled."
	P44		General-purpose input/output port.
41 RX		D	Transmission output pin for CAN. Valid only when output setting is "enabled."
	P30		General-purpose input/output port.
42	SOT0	D	Serial data output pin for UART0. Valid only when serial data output setting on UART0 is "enabled."
	P31		General-purpose input/output port.
43	SCK0	D	Serial clock input pin for UART0. Valid only when serial clock input/output setting on UART0 is "enabled."
	P32		General-purpose input/output port.
44	SIN0	Н	Serial data input pin for UART0. Valid only when output setting is "enabled."
45	P33	D	General-purpose input/output port.
46	X0A*	А	Pin for low-rate oscillation.
40	P35*	~	General-purpose input/output port.
47	X1A*	А	Pin for low-rate oscillation.
47	P36*	~	General-purpose input/output port.
48	AVss	_	Vss power source input pin for A/D converter.

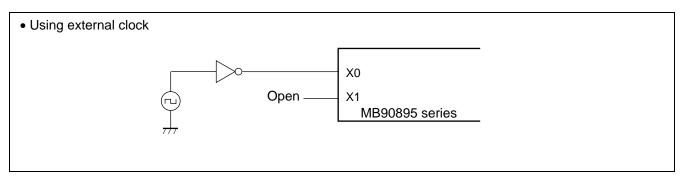
* : MB90F897 : X1A, X0A MB90F897S : P36, P35

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
F	$R \neq V_{SS}^{R}$	 Hysteresis input with pull-down resistor Pull-down resistor, approx. 50 kΩ FLASH product is not provided with pull-down resistor.
G	Vcc Pch High-current output High-current output Nch Vss Hysteresis input Standby control R Vss Automotive input	 CMOS hysteresis input CMOS level output (high-current output) Standby control provided Automotive input
Н	Vcc Pch Digital output Digital output R Vss	 CMOS hysteresis input CMOS level output Standby control provided CMOS input Automotive input

HANDLING DEVICES

• Do Not Exceed Maximum Rating (preventing "latch up")


- On a CMOS IC, latch-up may occur when applying a voltage higher than Vcc or a voltage lower than Vss to input or output pin, which has no middle or high withstand voltage. Latch-up may also occur when a voltage exceeding maximum rating is applied across Vcc and Vss.
- Latch-up causes drastic increase of power current, which may lead to destruction of elements by heat. Extreme caution must be taken not to exceed maximum rating.
- When turning on and off analog power source, take extra care not to apply an analog power voltages (AVcc and AVR) and analog input voltage that are higher than digital power voltage (Vcc).

• Handling Unused Pins

Leaving unused input pins open may cause permanent destruction by malfunction or latch-up. Apply pull-up
or pull-down process to the unused pins using resistors of 2 kΩ or higher. Leave unused input pins open under
output status, or process as input pins if they are under input status.

• Using External Clock

• When using an external clock, drive only X0 pin and leave X1 pin open. An example of using an external clock is shown below.

Notes When Using No Sub Clock on MB90F897

• If an oscillator is not connected to X0A and X1A pin, apply pull-down resistor to X0A pin and leave X1A pin open.

About Power Supply Pins

- If two or more Vcc and Vss exist, the pins that should be at the same potential are connected to each other inside the device. For reducing unwanted emissions and preventing malfunction of strobe signals caused by increase of ground level, however, be sure to connect the Vcc and Vss pins to the power source and the ground externally.
- Pay attention to connect a power supply to Vcc and Vss of MB90895 series device in a lowest-possible impedance.
- Near pins of MB90895 series device, connecting a bypass capacitor is recommended at 0.1 μF across Vcc and Vss.

Crystal Oscillator Circuit

- Noises around X0 and X1 pins cause malfunctions on a MB90895 series device. Design a print circuit so that X0 and X1 pins, an crystal oscillator (or a ceramic oscillator), and bypass capacitor to the ground become as close as possible to each other. Furthermore, avoid wires to X0 and X1 pins crossing each other as much as possible.
- Print circuit designing that surrounds X0 and X1 pins with grounding wires, which ensures stable operation, is strongly recommended.

• Caution on Operations during PLL Clock Mode

• If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

• Sequence of Turning on Power of A/D Converter and Applying Analog Input

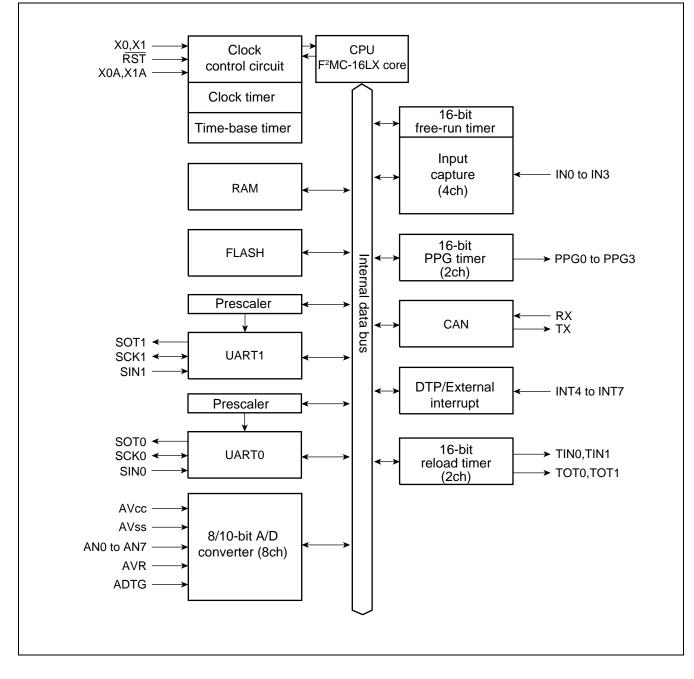
- Be sure to turn on digital power (Vcc) before applying signals to the A/D converter and applying analog input signals (AN0 to AN7 pins).
- Be sure to turn off the power of A/D converter and analog input before turning off the digital power source.
- Be sure not to apply AVR exceeding AVcc when turning on and off. (No problems occur if analog and digital power is turned on and off simultaneously.)

• Handling Pins When A/D Converter is Not Used

• If the A/D converter is not used, connect the pins under the following conditions: "AVcc=AVR=Vcc," and "AVss=Vss"

• Note on Turning on Power

 For preventing malfunctions on built-in step-down circuit, maintain a minimum of 50 μs of voltage rising time (between 0.2 V and 2.7 V) when turning on the power.

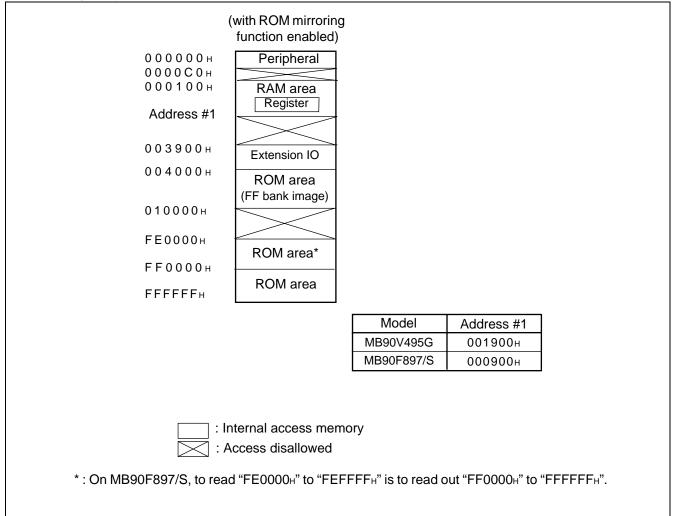

• Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified V_{cc} supply voltage operating range. Therefore, the V_{cc} supply voltage should be stabilized.
 For reference, the supply voltage should be controlled so that V_{cc} ripple variations (peak-to-peak values) at commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard V_{cc} supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

• Support for +125°C

• Users considering application exceeding T_A = +105°C are advised to contact their FUJITSU representatives beforehand for reliability limitations for reliability limitations.

■ BLOCK DIAGRAM


MEMORY MAP

MB90895 series allows specifying a memory access mode "single chip mode."

1. Memory allocation of MB90895

MB90895 series model has 24-bit wide internal address bus and up to 24-bit bus of external address bus. A maximum of 16 Mbyte memory space of external access memory is accessible.

2. Memory map

Note : When internal ROM is operating, F²MC-16LX allows viewing ROM data image on FF bank at upper-level of 00 bank. This function is called "mirroring ROM," which allows effective use of C compiler small model. F²MC-16LX assigns the same low order 16-bit address to FF bank and 00 bank, which allows referencing table in ROM without specifying "far" using pointer.

For example, when accessing to "00C000H", ROM data at "FFC000H" is accessed actually. However, because ROM area of FF bank exceeds 48 Kbytes, viewing all areas is not possible on 00 bank image. Because ROM data of "FF4000H" to "FFFFFFH" is viewed on "004000H" to "00FFFFH" image, store a ROM data table in area "FF4000H" to "FFFFFFH."

I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value			
00000н		(Reserv	ved area) *					
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB			
00002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB			
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB			
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXAB			
00005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXAB			
000006н to 000010н		(Reserved area) *						
000011н	DDR1	Port 1 direction data register	R/W	Port 1	0000000в			
000012н	DDR2	Port 2 direction data register	R/W	Port 2	0000000в			
000013н	DDR3	Port 3 direction data register	R/W	Port 3	000Х0000в			
000014н	DDR4	Port 4 direction data register	R/W	Port 4	ХХХ00000в			
000015н	DDR5	Port 5 direction data register	R/W	Port 5	0000000в			
000016н to 00001Ан		(Resen	ved area) *					
00001Bн	ADER	Analog input permission register	R/W	8/10-bit A/D converter	11111111в			
00001Cн to 00001Fн		(Reserv	ved area) *					
000020н	SMR0	Serial mode register 0	R/W		0000000в			
000021н	SCR0	Serial control register 0	R/W, W	_	00000100в			
000022н	SIDR0/ SODR0	Serial input data register 0/ Serial output data register 0	R, W		XXXXXXXXB			
000023н	SSR0	Serial status register 0	R, R/W	- UARTO	00001X00 _B			
000024н	CDCR0	Communication prescaler control register 0	R/W		0XXX1111в			
000025н	SES0	Serial edge selection register 0	R/W	1	XXXXXXX0B			
000026н	SMR1	Serial mode register 1	R/W		0000000в			
000027н	SCR1	Serial control register 1	R/W, W	1	00000100в			
000028н	SIDR1/ SODR1	Serial input data register 1/ Serial output data register 1	R, W	UART1	XXXXXXXXB			
	SSR1	Serial status data register 1	R, R/W	1	00001000в			
000029н	(Reserved area) *							
000029н 00002Ан		(Reserv	ved area) *					

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
00002Cн to 00002Fн		(Reserv	ed area) *		
000030н	ENIR	DTP/External interrupt permission register	R/W		0000000в
000031н	EIRR	DTP/External interrupt permission register	R/W	DTP/External interrupt	XXXXXXXX
000032н			R/W		0000000в
000033н	ELVR	Detection level setting register	R/W		0000000в
000034н	4000		R/W		0000000в
000035н	ADCS	A/D control status register	R/W, W	8/10-bit	0000000в
000036н			W, R	A/D converter	XXXXXXXX
000037н	ADCR	A/D data register	R	1	00101XXX _в
000038н to 00003Ен		(Reserv	ed area) *		
00003Fн	PSCCR	PLL/Subclock control register	R/W, W	Clock	XXXX0000 _B
000040н	PPGC0	PPG0 operation mode control register	R/W, W		0X000XX1в
000041н	PPGC1	PPG1 operation mode control register	R/W, W	8/16-bit PPG timer 0/1	0Х00001в
000042н	PPG01	PPG0/1 count clock selection register	R/W	-	000000XXв
000043н		(Reserv	ed area) *		
	PPGC2	PPG2 operation mode control register	R/W, W		0X000XX1в
000044н				8/16-bit PPG timer 2/3	
	PPGC3	PPG3 operation mode control register	R/W, W		0Х00001в
000044н 000045н 000046н	PPGC3 PPG23	-	R/W, W R/W		0X000001в 000000XXв

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
000050н		Input conture data register 0	Р		XXXXXXXXB
000051н	IPCP0	Input capture data register 0	R		XXXXXXXXB
000052н	IPCP1	Input conture data register 1	Р		XXXXXXXXB
000053н	IPCP1	Input capture data register 1	R		XXXXXXXXB
000054н	ICS01	Input conture control status register	R/W	16-bit input/output	0000000в
000055н	ICS23	Input capture control status register	r////	timer	0000000в
000056н	TCDT	Timor counter data register	R/W	_	0000000в
000057н		Timer counter data register	r/ VV		0000000в
000058н	TCCS	Timer counter control status register	R/W		0000000в
000059н		(Reserve	ed area) *		
00005Ан		lanut conture data register 2	Р		XXXXXXXXB
00005Вн	IPCP2	Input capture data register 2	R	16-bit input/output	XXXXXXXXB
00005Сн		lanut conture data register 2	Р	timer	XXXXXXXXB
00005Dн	IPCP3	Input capture data register 3	R		XXXXXXXXB
00005Eн to 000065н		(Reserve	ed area) *		
000066н	TMCSR0	MCSP0 F	R/W	16-bit reload timer 0	0000000в
000067н	TNICSRU	Timer control status register	R/W		XXXX0000b
000068н	TMCSR1		R/W	- 16-bit reload timer 1 -	0000000в
000069н	TNICSKI		R/W		XXXX0000b
00006Ан to 00006Ен		(Reserve	ed area) *		
00006Fн	ROMM	ROM mirroring function selection register	W	ROM mirroring function selection module	XXXXXXX1B
00006Fн 000070н to 00007Fн	ROMM	register	W ed area) *	function selection	XXXXXXX1B
000070н to	ROMM	register		function selection	XXXXXX1в 0000000в
000070н to 00007Fн		register (Reserve Message buffer enabling register	ed area) *	function selection module	
000070н to 00007Fн 000080н		register (Reserve Message buffer enabling register	ed area) * R/W	function selection module	
000070н to 00007Fн 000080н 000081н	BVALR	register (Reserve Message buffer enabling register (Reserve Send request register	ed area) * R/W ed area) *	function selection module	0000000в
000070н to 00007Fн 000080н 000081н 000082н	BVALR	register (Reserve Message buffer enabling register (Reserve Send request register	ed area) * R/W ed area) * R/W	function selection module	0000000в
000070н to 00007Fн 000080н 000081н 000082н 000083н	BVALR	register (Reserve Message buffer enabling register (Reserve Send request register (Reserve Send cancel register	ed area) * R/W ed area) * R/W ed area) *	function selection module CAN controller CAN controller	0000000в 0000000в

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value			
000087н		(Reserv	ed area) *	· · · · · · · · ·				
000088н	RCR	Receive completion register	R/W	CAN controller	0000000в			
000089н		(Reserved area) *						
00008Ан	RRTRR	Receive RTR register	R/W	CAN controller	0000000в			
00008BH		(Reserved area) *						
00008Сн	ROVRR	Receive overrun register	R/W	CAN controller	0000000в			
00008DH		(Reserv	ed area) *					
00008Ен	RIER	Receive completion interrupt permission register	R/W	CAN controller	0000000в			
00008Fн to 00009Dн		(Reserved area) *						
00009Ен	PACSR	Address detection control register	R/W	Address matching detection function	0000000в			
00009 F н	DIRR	Delay interrupt request generation/ release register	R/W	Delay interrupt generation module	XXXXXXX0B			
0000А0н	LPMCR	Lower power consumption mode control register	W,R/W	Lower power consumption mode	00011000в			
0000A1н	CKSCR	Clock selection register	R,R/W	Clock	11111100в			
0000А2н	PILR	Port input level selection register	R/W	I/O	000000Хв			
0000АЗн to 0000А7н		(Reserv	ed area) *					
0000А8н	WDTC	Watchdog timer control register	R,W	Watchdog timer	XXXXX111 _B			
0000А9н	TBTC	Time-base timer control register	R/W,W	Time-base timer	1ХХ00100в			
0000ААн	WTC	Clock timer control register	R,R/W	Clock timer	1Х001000в			
0000ABн to 0000ADн		(Reserv	ed area) *	I				
0000АЕн	FMCS	Flash memory control status register	R,W,R/W	512K-bit flash memory	000Х0000в			
0000AFH		(Reserv	ed area) *					

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
0000В0н	ICR00	Interrupt control register 00			00000111в
0000 B1 н	ICR01	Interrupt control register 01			00000111в
0000В2н	ICR02	Interrupt control register 02			00000111в
0000ВЗн	ICR03	Interrupt control register 03			00000111в
0000В4н	ICR04	Interrupt control register 04			00000111в
0000В5н	ICR05	Interrupt control register 05			00000111в
0000В6н	ICR06	Interrupt control register 06			00000111в
0000 B7 н	ICR07	Interrupt control register 07			00000111в
0000В8н	ICR08	Interrupt control register 08	R/W	Interrupt controller	00000111в
0000В9н	ICR09	Interrupt control register 09			00000111в
0000ВАн	ICR10	Interrupt control register 10			00000111в
0000BBн	ICR11	Interrupt control register 11			00000111в
0000ВСн	ICR12	Interrupt control register 12			00000111в
0000BDн	ICR13	Interrupt control register 13			00000111в
0000BEн	ICR14	Interrupt control register 14			00000111в
0000BFн	ICR15	Interrupt control register 15			00000111в
0000С0н					
to 0000FF⊦		(Reserve	d area) *		
001FF0⊦		Detection address setting register 0 (low-order)			XXXXXXXX
001FF1н	PADR0	Detection address setting register 0 (middle-order)	R/W		XXXXXXXX
001FF2н		Detection address setting register 0 (high-order)		Address matching	XXXXXXXX
001FF3⊦		Detection address setting register 1 (low-order)		detection function	XXXXXXXX
001FF4⊦	PADR1	Detection address setting register 1 (middle-order)	R/W		XXXXXXXXB
001FF5н		Detection address setting register 1 (high-order)			XXXXXXXX
003900н	TMR0/	16-bit timer register 0/16-bit reload	R,W	16-bit reload timer 0	XXXXXXXXB
003901н	TMRLR0	register	13,88		XXXXXXXX
003902н	TMR1/	16-bit timer register 1/16-bit reload	R,W	16-bit reload timer 1	XXXXXXXXB
003903н	TMRLR1	register	Γ, ۷۷		XXXXXXXX
003904н to 003909н		(Reserve	d area) *	·	

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
00390Ан	FWR0	FLASH programing control register 0	R/W		0000000в
00390Вн	FWR1	FLASH programing control register 1	R/W	Dual operation	0000000в
00390Сн	SSR0	Sector conversion set register	R/W		00XXXXX0 _B
00390Dн					
to 00390Fн		(Reserved	d area) *		
003910н	PRLL0	PPG0 reload register L	R/W		XXXXXXXXB
003911 н	PRLH0	PPG0 reload register H	R/W		XXXXXXXXB
003912н	PRLL1	PPG1 reload register L	R/W	_ _ 8/16-bit PPG timer _	XXXXXXXXB
003913н	PRLH1	PPG1 reload register H	R/W		XXXXXXXXB
003914 н	PRLL2	PPG2 reload register L	R/W		XXXXXXXX
003915 н	PRLH2	PPG2 reload register H	R/W		XXXXXXXX
003916н	PRLL3	PPG3 reload register L	R/W		XXXXXXXX
003917 н	PRLH3	PPG3 reload register H	R/W		XXXXXXXXB
003918н	T TREITO		10,11		700000000
to		(Reserved	d area) *		
00392F н		,	,		
003930н					
to		(Reserved	d area) *		
003BFFн					
003C00н to		RAM (General-p		Δ Ν <i>Λ</i>)	
003C0Fн					
003C10н					XXXXXXXXB
to	IDR0	ID register 0	R/W		to
003C13н				_	XXXXXXXXB
003C14н	IDR1	ID register 1	R/W		XXXXXXXXB
to 003С17н	IDICI		17/ 17		to XXXXXXXB
003C18н				-	XXXXXXXXB
to	IDR2	ID register 2	R/W		to
003C1Bн					XXXXXXXXB
003С1Сн					XXXXXXXXB
to 003C1Fн	IDR3	ID register 3	R/W	CAN controller	to XXXXXXXB
003C1Fн 003C20н					XXXXXXXXB
to	IDR4	ID register 4	R/W		to
003С23н					XXXXXXXXB
003С24н					XXXXXXXXB
to	IDR5	ID register 5	R/W		to
003C27н 003C28н					XXXXXXXXB XXXXXXXXB
to	IDR6	ID register 6	R/W		to
003С2Вн	-				XXXXXXXX
					(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value
003C2Cн to 003C2Fн	IDR7	ID register 7	R/W		XXXXXXXXB to XXXXXXXB
003C30н 003C31н	DLCR0	DLC register 0	R/W	-	XXXXXXXXB XXXXXXXXB
003C32н 003C33н	DLCR1	DLC register 1	R/W		XXXXXXXXB XXXXXXXB
003C34н 003C35н	DLCR2	DLC register 2	R/W		XXXXXXXXB XXXXXXXB
003C36н 003C37н	DLCR3	DLC register 3	R/W		XXXXXXXXB XXXXXXXXB
003C38н 003C39н	DLCR4	DLC register 4	R/W		XXXXXXXXB XXXXXXXXB
003СЗАн 003СЗВн	DLCR5	DLC register 5	R/W		XXXXXXXXB XXXXXXXXB
003C3Cн 003C3Dн	DLCR6	DLC register 6	R/W		XXXXXXXXB XXXXXXXXB
003C3Eн 003C3Fн	DLCR7	DLC register 7	R/W		XXXXXXXXB XXXXXXXXB
003C40н to 003C47н	DTR0	Data register 0	R/W	CAN controller	XXXXXXXXB to XXXXXXXXB
003C48н to 003C4Fн	DTR1	Data register 1	R/W		XXXXXXXXB to XXXXXXXXB
003C50н to 003C57н	DTR2	Data register 2	R/W		XXXXXXXXB to XXXXXXXXB
003C58н to 003C5Fн	DTR3	Data register 3	R/W		XXXXXXXXB to XXXXXXXXB
003C60н to 003C67н	DTR4	Data register 4	R/W		XXXXXXXXB to XXXXXXXXB
003C68н to 003C6Fн	DTR5	Data register 5	R/W		XXXXXXXXB to XXXXXXXXB
003C70н to 003C77н	DTR6	Data register 6	R/W		XXXXXXXXB to XXXXXXXXB
003C78н to 003C7Fн	DTR7	Data register 7	R/W		XXXXXXXXB to XXXXXXXXB

(Co	

Address	Register abbreviation	Register	Read/ Write	Resource	Initial value						
003C80н to 003CFFн		(Reserve	ed area) *								
003D00н 003D01н	CSR	Control status register	R/W, R	CAN controller	0XXXX001в 00XXX000в						
003D02н	LEIR	Last event display register	R/W		000XX000b						
003D03н		(Reserve	ed area) *								
003D04н 003D05н	RTEC	Send/receive error counter	R	CAN controller	0000000в 0000000в						
003D06н 003D07н	BTR	Bit timing register	R/W		11111111в Х1111111в						
003D08н	IDER	IDE register	R/W		XXXXXXXX						
003D09н		(Reserved area) *									
003D0AH	TRTRR	Send RTR register	R/W		0000000в						
003D0Bн		(Reserved area) *									
003D0Cн	RFWTR	Remote frame receive wait register	R/W	CAN controller	XXXXXXXXB						
003D0Dн		(Reserve	ed area) *								
003D0Eн	TIER	Send completion interrupt permission register	R/W	CAN controller	0000000в						
003D0Fн		(Reserve	ed area) *		- 1						
003D10н 003D11н	AMSR	Acceptance mask selection register	R/W	CAN controller	XXXXXXXXB XXXXXXXXB						
003D12н 003D13н		(Reserve	ed area) *								
003D14н to 003D17н	AMR0	Acceptance mask register 0	R/W	- CAN controller	XXXXXXXXB to XXXXXXXXB						
003D18н to 003D1Bн	AMR1	Acceptance mask register 1	R/W		XXXXXXXXB to XXXXXXXXB						
003D1Cн to 003DFFн		(Reserve	ed area) *								
003E00н to 003EFFн		(Reserved area) *									
003FF0н to 003FFFн		(Reserve	ed area) *								

Initial values :

0 : Initial value of this bit is "0."

1 : Initial value of this bit is "1."

X : Initial value of this bit is undefined.

*: "Reserved area" should not be written anything. Result of reading from "Reserved area" is undefined.

■ INTERRUPT SOURCES, INTERRUPT VECTORS, AND INTERRUPT CONTROL REGISTERS

	El ² OS	Ir	nterrup	ot vector	Interrupt c	ontrol register	Dui o uite et?
Interrupt source	readiness	Nun	nber	Address	ICR	Address	Priority*3
Reset	×	#08	08н	FFFFDC H			High
INT 9 instruction	×	#09	09н	FFFFD8⊦			↑
Exceptional treatment	×	#10	0Ан	FFFFD4н			
CAN controller reception completed (RX)	×	#11	0Вн	FFFFD0H			
CAN controller transmission completed (TX) / Node status transition (NS)	×	#12	0Сн	FFFFCCH	ICR00	0000B0н*1	
Reserved	×	#13	0Dн	FFFFC8н		0000004	-
Reserved	×	#14	0Ен	FFFFC4н	ICR01	0000B1н	
CAN wakeup	Δ	#15	0Fн	FFFFC0н	10000	000000 *1	
Time-base timer	×	#16	10н	FFFFBC H	ICR02	0000B2н*1	
16-bit reload timer 0	Δ	#17	11н	FFFFB8 _H	10000	000000 *1	-
8/10-bit A/D converter	Δ	#18	12н	FFFFB4⊦	ICR03	0000B3н*1	
16-bit free-run timer overflow	Δ	#19	13н	FFFFB0⊦		0000004 *1	-
Reserved	×	#20	14н	FFFFAC H	ICR04	0000B4н*1	
Reserved	×	#21	15н	FFFFA8⊦		0000B5н*2	-
PPG timer ch0, ch1 underflow	×	#22	16 н	FFFFA4⊦	ICR05		
Input capture 0-input	Δ	#23	17 н	FFFFA0H		0000Re*1	
External interrupt (INT4/INT5)	Δ	#24	18 н	FFFF9C⊦	ICR06	0000B6н*1	
Input capture 1-input	Δ	#25	19 н	FFFF98⊦	ICR07	0000B7н*1	
PPG timer ch2, ch3 underflow	×	#26	1Ан	FFFF94⊦	ICR07	0000B7H°'	
External interrupt (INT6/INT7)	Δ	#27	1В н	FFFF90H	ICR08	0000 00 *1	-
Clock timer	Δ	#28	1Cн	FFFF8C _H	ICRUO	0000B8н*1	
Reserved	×	#29	1Dн	FFFF88⊦			
Input capture 2-input Input capture 3-input	×	#30	1Ен	FFFF84⊦	ICR09	0000B9н*1	
Reserved	×	#31	1Fн	FFFF80⊦		000000 4 *1	-
Reserved	×	#32	20н	FFFF7C _H	ICR10	0000BAн*1	
Reserved	×	#33	21н	FFFF78⊦			1
Reserved	×	#34	22н	FFFF74 _H	ICR11	0000BBн*1	
Reserved	×	#35	23н	FFFF70н		0000000 *1	↓
16-bit reload timer 1	0	#36	24н	FFFF6CH	ICR12	0000BCH*1	Low

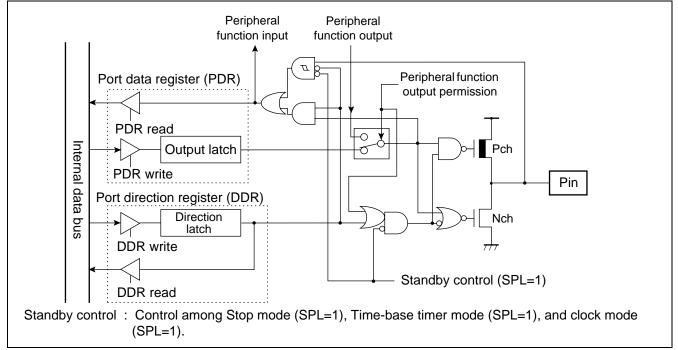
Interrupt source	El ² OS	Ir	terrup	t vector	Interrupt c	ontrol register	Priority*3
interrupt source	readiness	Nun	nber	Address	ICR	Address	Priority *
UART1 reception completed	0	#37	25н	FFFF68⊦	ICR13	0000BD _H *1	High
UART1 transmission completed	Δ	#38	26н	FFFF64⊦		UUUUBDH Y	\uparrow
UART0 reception completed	O	#39	27н	FFFF60H	ICR14	0000BE _H *1	
UART0 transmission completed	Δ	#40	28 н	FFFF5CH	ICK14	UUUUBEH ·	
Flash memory	×	#41	29н	FFFF58H			
Delay interrupt generation module	×	#42	2Ан	FFFF54 _H	ICR15	0000BFн*1	↓ Low

- \bigcirc : Available
- \times : Unavailable
- © : Available El²OS function is provided.
- $\Delta\,$: Available when a cause of interrupt sharing a same ICR is not used.
- *1 : Peripheral functions sharing an ICR register have the same interrupt level.
 - If peripheral functions share an ICR register, only one function is available when using expanded intelligent I/O service.
 - If peripheral functions share an ICR register, a function using expanded intelligent I/O service does not allow interrupt by another function.
- *2 : Only 16-bit reload timer is ready for EI²OS. Because PPG is not ready for EI²OS, disable PPG interrupt when using EI²OS with 16-bit reload timer.
- *3 : Priority when two or more interrupts of a same level occur simultaneously.

PERIPHERAL RESOURCES

1. I/O Ports

The I/O ports are used as general-purpose input/output ports (parallel I/O ports). The MB90895 series model is provided with 5 ports (34 inputs). The ports function as input/output pins for peripheral functions also.

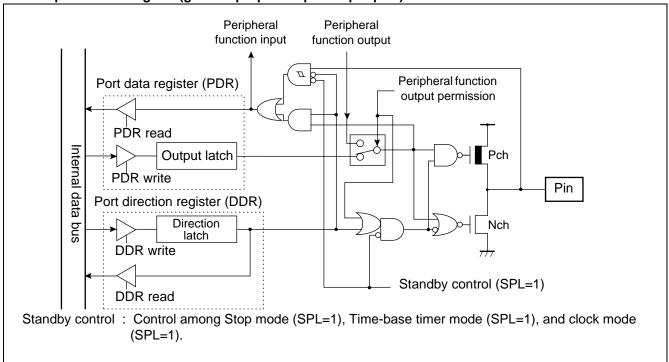

• I/O port functions

An I/O port, using port data resister (PDR), outputs the output data to I/O pin and input a signal input to I/O port. The port direction register (DDR) specifies direction of input/output of I/O pins on a bit-by-bit basis.

The following summarizes functions of the ports and sharing peripheral functions :

- Port 1 : General-purpose input/output port, used also for PPG timer output and input capture inputs.
- Port 2 : General-purpose input/output port, used also for reload timer input/output and external interrupt input.
- Port 3 : General-purpose input/output port, used also for A/D converter activation trigger pin.
- Port 4 : General-purpose input/output port, used also for UART input/output and CAN controller send/receive pin.
- Port 5 : General-purpose input/output port, used also analog input pin.

• Port 1 pins block diagram (single-chip mode)

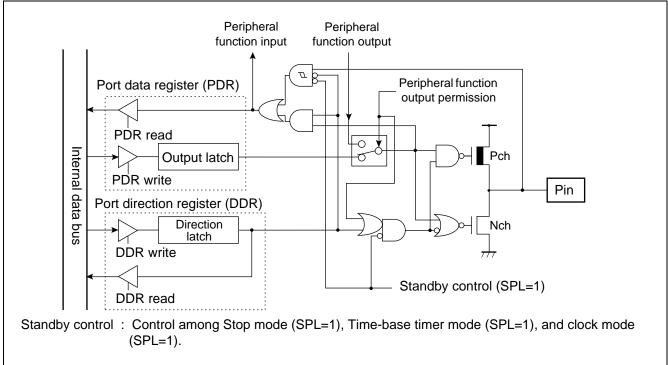


• Port 1 registers (single-chip mode)

- Port 1 registers include port 1 data register (PDR1) and port 1 direction register (DDR1).
- The bits configuring the register correspond to port 1 pins on a one-to-one basis.

Port name		Bits of register and corresponding pins									
Port 1	PDR1, DDR1	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0		
	Corresponding pins	P17	P16	P15	P14	P13	P12	P11	P10		

Relation between port 1 registers and pins


• Port 2 pins block diagram (general-purpose input/output port)

• Port 2 registers

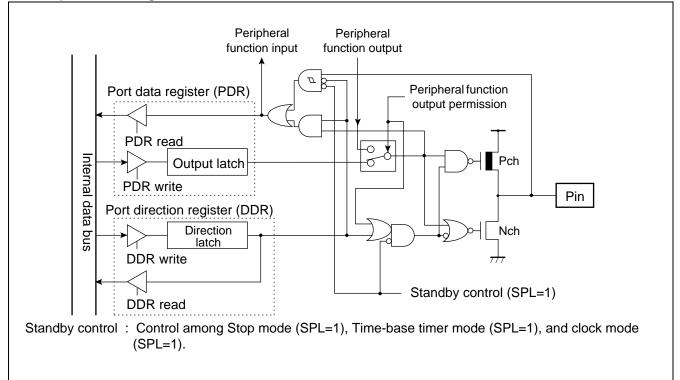
- Port 2 registers include port 2 data register (PDR2) and port 2 direction register (DDR2).
- The bits configuring the register correspond to port 2 pins on a one-to-one basis.

Relation between port 2 registers and pins

Port name	Bits of register and corresponding pins								
Port 2	PDR2,DDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
FUILZ	Corresponding pins	P27	P26	P25	P24	P23	P22	P21	P20

• Port 3 pins block diagram (general-purpose input/output port)

• Port 3 registers

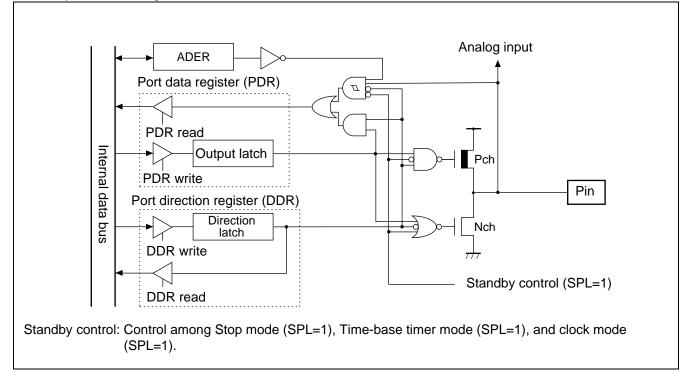

- Port 3 registers include port 3 data register (PDR3) and port 3 direction register (DDR3).
- The bits configuring the register correspond to port 3 pins on a one-to-one basis.

Relation between port 3 registers and pins

Port name		Bits of register and corresponding pins								
Port 3	PDR3, DDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
	Corresponding pins	P37	P36*	P35*		P33	P32	P31	P30	

* : P35 and P36 do not exist on MB90F897.

• Port 4 pins block diagram


• Port 4 registers

- Port 4 registers include port 4 data register (PDR4) and port 4 direction register (DDR4).
- The bits configuring the register correspond to port 4 pins on a one-to-one basis.

Relation between port 4 registers and pins

Port name	Bits of register and corresponding pins								
Port 4	PDR4, DDR4	_		_	bit4	bit3	bit2	bit1	bit0
	Corresponding pins				P44	P43	P42	P41	P40

• Port 5 pins block diagram

• Port 5 registers

- Port 5 registers include port 5 data register (PDR5), port 5 direction register (DDR5), and analog input permission register (ADER).
- Analog input permission register (ADER) allows or disallows input of analog signal to the analog input pin.
- The bits configuring the register correspond to port 5 pins on a one-to-one basis.

Port name	Bits of register and corresponding pins									
	PDR5, DDR5	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Port 5	ADER	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	
	Corresponding pins	P57	P56	P55	P54	P53	P52	P51	P50	

Relation between port 5 registers and pins

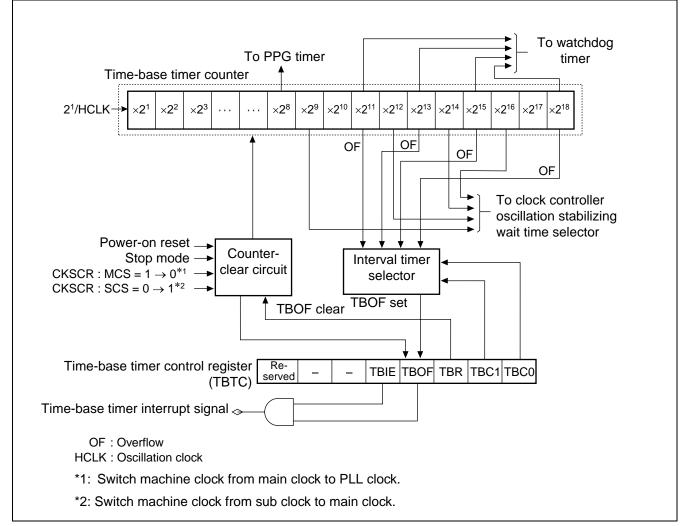
2. Time-Base Timer

The time-base time is an 18-bit free-run counter (time-base timer counter) that counts up in synchronization with the main clock (dividing main oscillation clock by 2).

- Four choices of interval time are selectable, and generation of interrupt request is allowed for each interval time.
- Provides operation clock signal to oscillation stabilizing wait timer and peripheral functions.

Interval timer function

- When the counter of time-base timer reaches an interval time specified by interval time selection bit (TBTC:TBC1, TBC0), an overflow (carrying-over) occurs (TBTC: TBOF=1) and interrupt request is generated.
- If an interrupt by overflow is permitted (TBTC: TBIE=1), an interrupt is generated when overflow occurs (TBTC: TBOF=1).
- The following four interval time settings are selectable :


Count clock	Interval time
	2 ¹² /HCLK (Approx. 1.0 ms)
	2 ¹⁴ /HCLK (Approx. 4.1 ms)
2/HCLK (0.5 μs)	216/HCLK (Approx. 16.4 ms)
	2 ¹⁹ /HCLK (Approx. 131.1 ms)

Interval time of time-base timer

HCLK: Oscillation clock

Values in parentheses "()" are those under operation of 4-MHz oscillation clock.

• Time-base timer block diagram

Note : Actual interrupt request number of time-base timer is as follows:

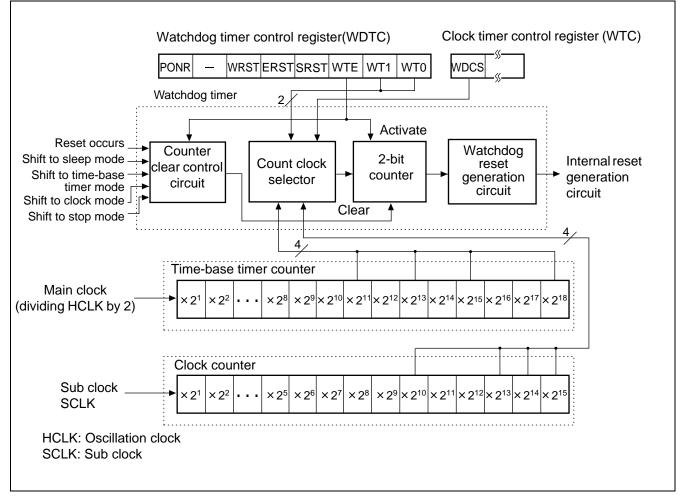
Interrupt request number: #16 (10H)

3. Watchdog Timer

The watchdog timer is a 2-bit counter that uses time-base timer or clock timer as count clock. If the counter is not cleared within an interval time, CPU is reset.

•Watchdog timer functions

- The watchdog timer is a timer counter that prevents runaway of a program. Once a watchdog timer is activated, the counter of watchdog timer must always be cleared within a specified time of interval. If specified interval time elapses without clearing the counter of a watchdog timer, CPU resetting occurs. This is the function of a watchdog timer.
- The interval time of a watchdog timer is determined by a clock cycle, which is input as a count clock. Watchdog resetting occurs between a minimum time and a maximum time specified.
- The output target of a clock source is specified by the watchdog clock selection bit (WTC: WDCS) in the clock timer control register.
- Interval time of a watchdog timer is specified by the time-base timer output selection bit/clock timer output selection bit (WDTC: WT1, WT0) in the watchdog timer control register.


Min	Max	Clock cycle	Min	Max	Clock cycle
Approx. 3.58 ms	Approx. 4.61 ms	2 ¹⁴ ±2 ¹¹ /HCLK	Approx. 0.457 s	Approx. 0.576 s	2 ¹² ±2 ⁹ /SCLK
Approx. 14.33 ms	Approx. 18.3 ms	2 ¹⁶ ±2 ¹³ /HCLK	Approx. 3.584 s	Approx. 4.608 s	2 ¹⁵ ±2 ¹² /SCLK
Approx. 57.23 ms	Approx. 73.73 ms	2 ¹⁸ ±2 ¹⁵ /HCLK	Approx. 7.168 s	Approx. 9.216 s	2 ¹⁶ ±2 ¹³ /SCLK
Approx. 458.75 ms	Approx. 589.82 ms	2 ²¹ ±2 ¹⁸ /HCLK	Approx. 14.336 s	Approx. 18.432 s	2 ¹⁷ ±2 ¹⁴ /SCLK

Interval timer of watchdog timer

HCLK: Oscillation clock (4 MHz) , CSCLK: Sub clock (8.192 kHz)

- Notes: If the time-base timer is cleared when watchdog timer count clock is used as time base timer output (carry-over signal), watchdog reset time may become longer.
 - When using the sub clock as machine clock, be sure to specify watchdog timer clock source selection bit (WDCS) in clock timer control register (WTC) at "0," selecting output of clock timer.

Watchdog timer block diagram

4. 16-bit Input/Output Timer

The 16-bit input/output timer is a compound module composed of 16-bit free-run timer, (1 unit) and input capture (2 units, 4 input pins). The timer, using the 16-bit free-run timer as a basis, enables measurement of clock cycle of an input signal and its pulse width.

Configuration of 16-bit input/output timer

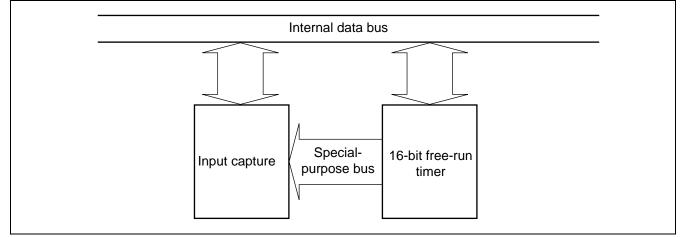
The 16-bit input/output timer is composed of the following modules:

- 16-bit free-run timer (1 unit)
- Input capture (2 units, 2 input pins per unit)

• Functions of 16-bit input/output timer

(1) Functions of 16-bit free-run timer

The 16-bit free-run timer is composed of 16-bit up counter, timer counter control status register, and prescaler. The 16-bit up counter increments in synchronization with dividing ratio of machine clock.

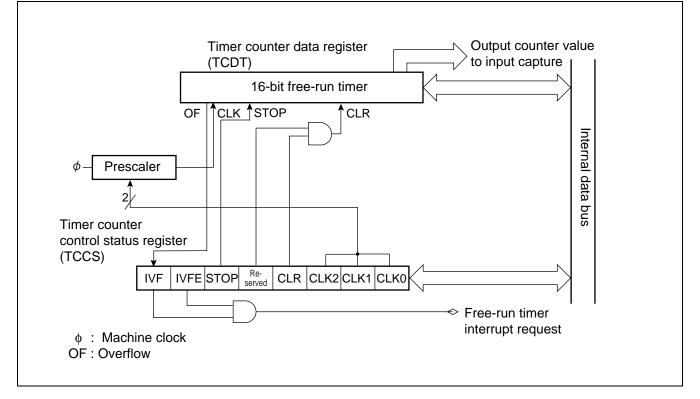

- Count clock is set among 8 types of machine clock dividing rates. Count clock : φ, φ/2, φ/4, φ/8, φ/16, φ/32, φ/64, φ/128
- Generation of interrupt is allowed by counter value overflow.
- Activation of expanded intelligent I/O service (EI²OS) is allowed by interrupt generation.
- Counter value of 16-bit free-run timer is cleared to "0000H" by either resetting or software-clearing with timer count clear bit (TCCS: CLR).
- Counter value of 16-bit free-run timer is output to input capture, which is available as base time for capture operation.

(2) Functions of input capture

The input capture, upon detecting an edge of a signal input to the input pin from external device, stores a counter value of 16-bit free-run timer at the time of detection into the input capture data register. The function includes the input capture data registers corresponding to four input pins, input capture control status register, and edge detection circuit.

- Rising edge, falling edge, and both edges are selectable for detection.
- Generating interrupt on CPU is allowed by detecting an edge of input signal.
- Expanded intelligent I/O service (EI²OS) is activated by interrupt generation.
- The four input capture input pins and input capture data registers allows monitoring of a maximum of four events.

• 16-bit input/output timer block diagram


• 16-bit free-run timer

Counter value of 16-bit free-run timer is used as reference time (base time) of input capture.

Input capture

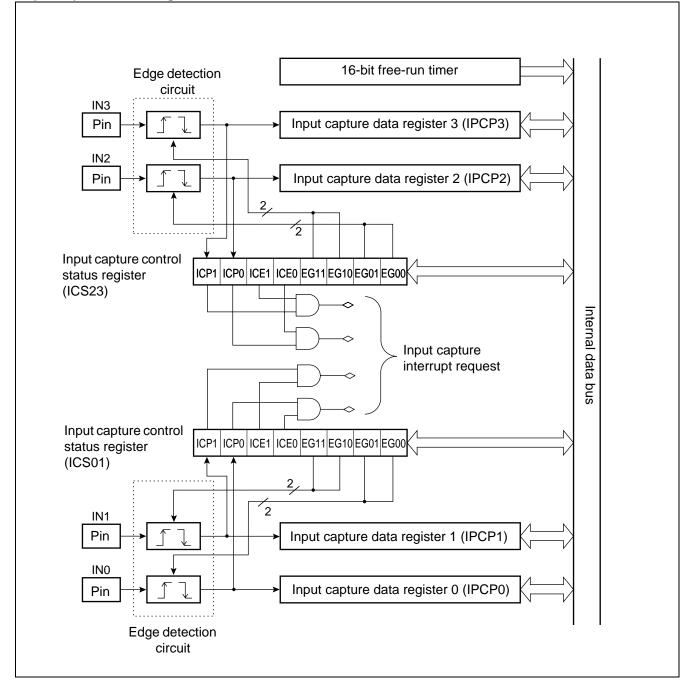
Input capture detects rising edge, falling edge or both edges and retains a counter value of 16-bit free-run timer. Detection of edge on input signal is allowed to generate interrupt.

• 16-bit free-run timer block diagram

• Detailed pin assignment on block diagram

The 16-bit input/output timer includes a 16-bit free-run timer. Interrupt request number of the 16-bit free-run timer is as follows:

Interrupt request number: #19 (13_H)


Prescaler

The prescaler divides a machine clock and provides a counter clock to the 16-bit up counter. Dividing ratio of the machine clock is specified by timer counter control status register (TCCS) among four values.

• Timer counter data register (TCDT)

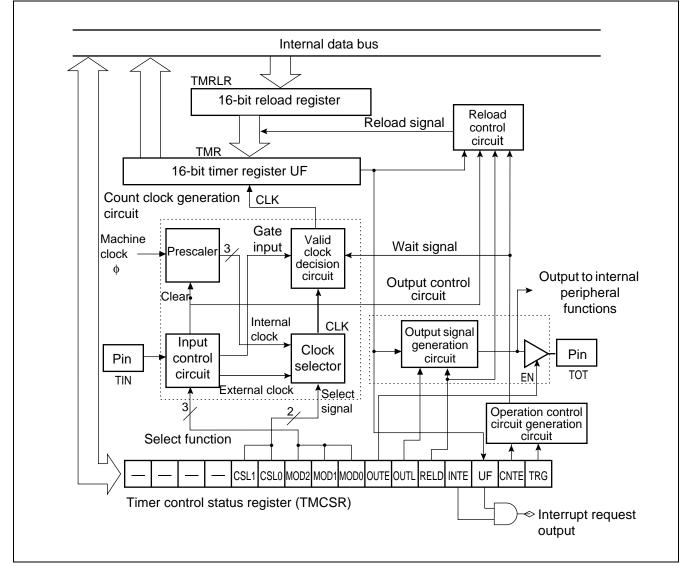
The timer counter data register is a 16-bit up counter. A current counter value of the 16-bit free-run timer is read. Writing a value during halt of the counter allows setting an arbitrary counter value.

•Input capture block diagram

5. 16-bit Reload Timer

The 16-bit reload timer has the following functions:

- Count clock is selectable among 3 internal clocks and external event clock.
- Activation trigger is selectable between software trigger and external trigger.
- Generation of CPU interrupt is allowed upon occurrence of underflow on 16-bit timer register. Available as an interval timer using the interrupt function.
- When underflow of 16-bit timer register (TMR) occurs, one of two reload modes is selectable between oneshot mode that halts counting operation of TMR, and reload mode that reloads 16-bit reload register value to TMR, continuing TMR counting operation.
- The 16-bit reload timer is ready for expanded intelligent I/O service (EI²OS).
- MB90895 series device has 2 channels of built-in 16-bit reload timer.


Count clock	Activation trigger	Operation upon underflow
Internal clock mode	Software trigger, external trigger	One-shot mode, reload mode
Event count mode	Software trigger	One-shot mode, reload mode

Operation mode of 16-bit reload timer

Internal clock mode

- The 16-bit reload timer is set to internal clock mode, by setting count clock selection bit (TMCSR: CSL1, CSL0) to "00_B", "01_B", "10_B".
- In the internal clock mode, the counter decrements in synchronization with the internal clock.
- Three types of count clock cycles are selectable by count clock selection bit (TMCSR: CSL1, CSL0) in timer control status register.
- Edge detection of software trigger or external trigger is specified as an activation trigger.

• 16-bit reload timer block diagram

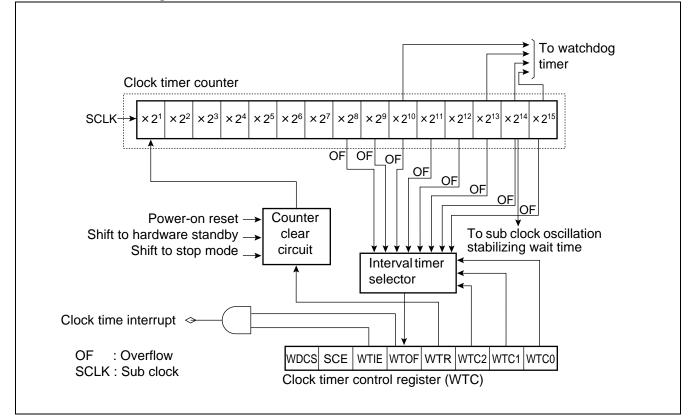
6. Clock Timer Outline

The clock timer is a 15-bit free-run counter that increments in synchronization with sub clock.

- Interval time is selectable among 8 choices, and generation of interrupt request is allowed for each interval.
- Provides operation clock to the subclock oscillation stabilizing wait timer and watchdog timer.
- Always uses subclock as a count clock regardless of settings of clock selection register (CKSCR).

• Interval timer function

- In the clock timer, a bit corresponding to the interval time overflows (carry-over) when an interval time, which is specified by interval time selection bit, is reached. Then overflow flag bit is set (WTC: WTOF=1).
- If an interrupt by overflow is permitted (WTC: WTIE=1), an interrupt request is generated upon setting an overflow flag bit.
- Interval time of clock timer is selectable among the following 8 choices :


• Interval time of clock timer

Sub clock cycle	Interval time
	28/SCLK (31.25 ms)
	2 ⁹ /SCLK (62.5 ms)
	2 ¹⁰ /SCLK (125 ms)
SCI K (122 up)	2 ¹¹ /SCLK (250 ms)
SCLK (122 μs)	2 ¹² /SCLK (500 ms)
	2 ¹³ /SCLK (1.0 s)
	2 ¹⁴ /SCLK (2.0 s)
	2 ¹⁵ /SCLK (4.0 s)

SCLK: Sub clock frequency

Values in parentheses "()" are calculation when operating with 8.192 kHz clock.

Clock timer block diagram

Actual interrupt request number of clock timer is as follows : Interrupt request number : #28 (1CH)

Clock timer counter

A 15-bit up counter that uses sub clock (SCLK) as a count clock.

• Counter clear circuit

A circuit that clears the clock timer counter.

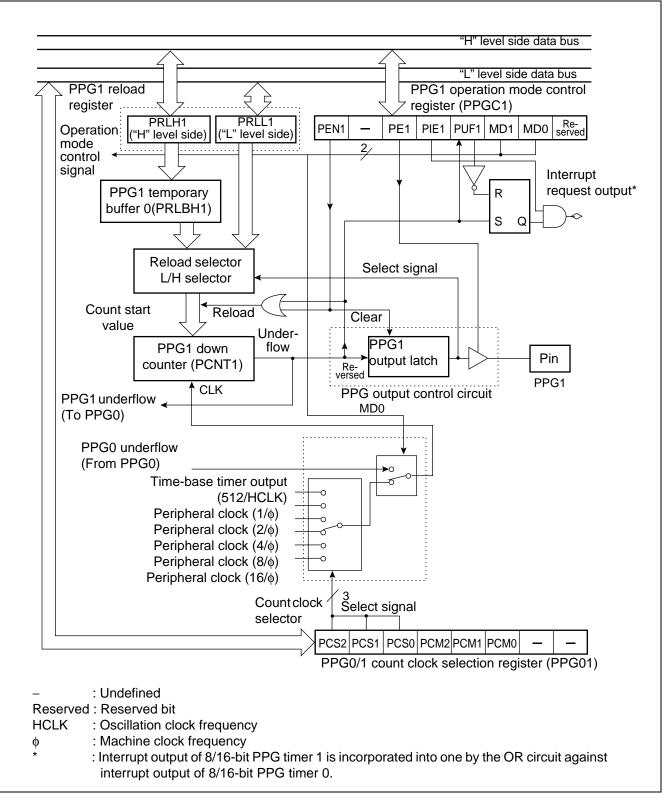
7. 8/16-bit PPG Timer Outline

The 8/16-bit PPG timer is a 2-channel reload timer module (PPG0 and PPG1) that allows outputting pulses of arbitrary cycle and duty cycle. Combination of the two channels allows selection among the following operations:

- 8-bit PPG output 2-channel independent operation mode
- 16-bit PPG output operation mode
- 8-bit and 8-bit PPG output operation mode

MB90895 series device has two 8/16-bit built-in PPG timers. This section describes functions of PPG0/1. PPG2/ 3 have the same functions as those of PPG0/1.

• Functions of 8/-16-bit PPG timer


The 8/16-bit PPG timer is composed of four 8-bit reload register (PRLH0/PRLL0, PRLH1/PRLL1) and two PPG down counters (PCNT0, PCNT1).

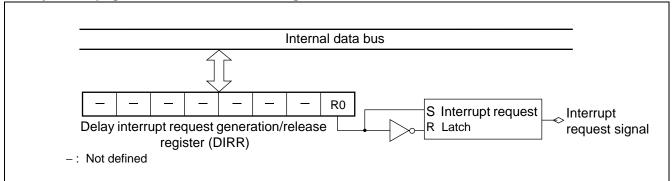
- Widths of "H" and "L" in output pulse are specifiable independently. Cycle and duty factor of output pulse is specifiable arbitrarily.
- Count clock is selectable among 6 internal clocks.
- The timer is usable as an interval timer, by generating interrupt requests for each interval.
- The time is usable as a D/A converter, with an external circuit.

• 8/16-bit PPG timer 0 block diagram

• 8/16-bit PPG timer 1 block diagram

8. Delay Interrupt Generation Module Outline

The delay interrupt generation module is a module that generates interrupts for switching tasks. Generation of a hardware interrupt request is performed by software.


• Delay interrupt generation module outline

Using the delay interrupt generation module, hardware interrupt request is generated and released by software.

Delay interrupt generation module outline

	Function and control
Cause of interrupt	Set "1" in R0 bit of delay interrupt request generation/release register (DIRR: R0=1), generating an interrupt request. Set "0" in R0 bit of delay interrupt request generation/release register (DIRR: R0=0), releasing an interrupt request.
Interrupt number	#42 (2Ан)
Interrupt control	No setting of permission register is provided.
Interrupt flag	Retained in DIRR: R0 bit
El ² OS	Not ready for expanded intelligent I/O service.

• Delay interrupt generation module block diagram

Interrupt request latch

A latch that retains settings on delay interrupt request generation/release register (generation or release of delay interrupt request).

• Delay interrupt request generation/release register (DIRR)

Generates or releases delay interrupt request.

• Interrupt number

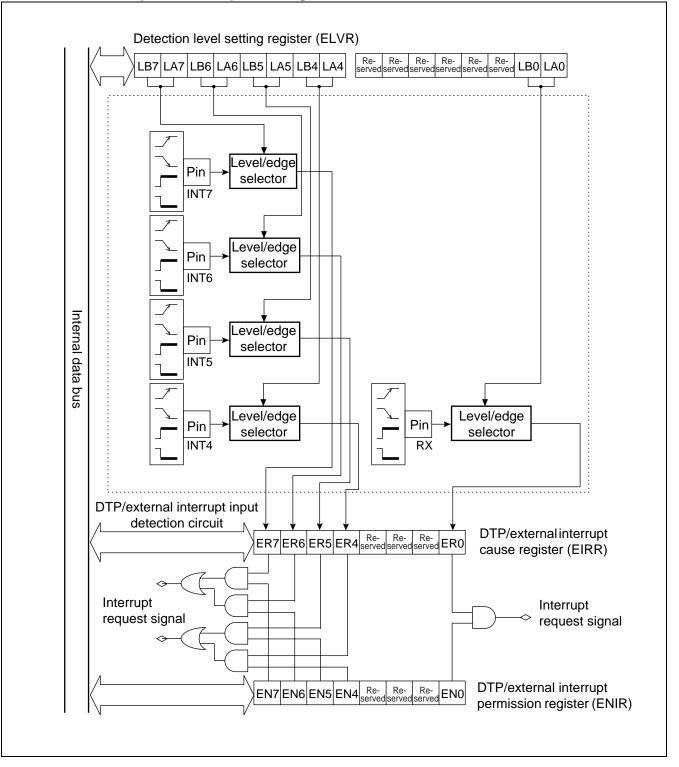
An interrupt number used in delay interrupt generation module is as follows: Interrupt number: #42 ($2A_H$)

9. DTP/External Interrupt and CAN Wakeup Outline

DTP/external interrupt transfers an interrupt request generated by an external peripheral device or a data transmission request to CPU, generating external interrupt request and activating expanded intelligent I/O service. Input RX of CAN controller is used as external interrupt input.

• DTP/external interrupt and CAN wakeup function

An interrupt request input from external peripheral device to external input pins (INT7 to INT4) and RX pin, just as interrupt request of peripheral device, generates an interrupt request. The interrupt request generates an external interrupt and activates expanded intelligent I/O service (EI²OS).


If the expanded intelligent I/O service (EI²OS) has been disabled by interrupt control register (ICR : ISE=0), external interrupt function is enabled and branches to interrupt processing.

If the El²OS has been enabled, (ICR : ISE=1), DTP function is enabled and automatic data transmission is performed by El²OS. After performing specified number of data transmission processes, the process branches to interrupt processing.

	External interrupt	DTP function				
Input pin	5 pins (RX, and INT4 to INT7)					
	Specify for each pin with detection level set	ting register (ELVR).				
Interrupt cause	Input of "H" level/"L" level/rising edge/falling edge.	Input of "H" level/ "L" level				
Interrupt number	#15 (0Fн) , #24 (18н) , #27 (1Вн)					
Interrupt control	Enabling or disabling output of interrupt req register (ENIR).	uest, using DTP/external interrupt permission				
Interrupt flag	Retaining interrupt cause with DTP/external	interrupt cause register (EIRR).				
Process selection	Disable El ² OS (ICR : ISE=0) Enable El ² OS (ICR : ISE=1)					
Process	Branch to external interrupt process	After automatic data transmission by EI ² OS for specified number of times, branch to interrupt process.				

DTP/external interrupt and CAN wakeup outline

• DTP/External interrupt/CAN wakeup block diagram

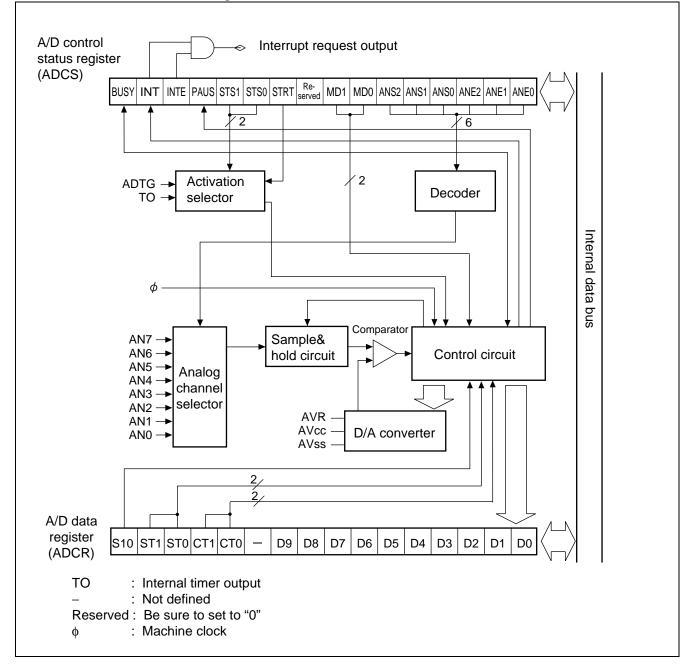
10. 8/10-bit A/D Converter

The 8/10-bit A/D converter converts an analog input voltage into 8-bit or 10/bit digital value, using the RC-type successive approximation conversion method.

- Input signal is selected among 8 channels of analog input pins.
- Activation trigger is selected among software trigger, internal timer output, and external trigger.

• Functions of 8/10-bit A/D converter

The 8/10-bit A/D converter converts an analog voltage (input voltage) input to analog input pin into an 8-bit or 10-bit digital value (A/D conversion).


The 8/10-bit A/D converter has the following functions:

- A/D conversion takes a minimum of 6.12 μs* for one channel, including sampling time. (A/D conversion)
- Sampling of one channel takes a minimum of 2.0 μ s*.
- RC-type successive approximation conversion method, with sample & hold circuit is used for conversion.
- Resolution of either 8 bits or 10 bits is specifiable.
- A maximum of 8 channels of analog input pins are allowed for use.
- Generation of interrupt request is allowed, by storing A/D conversion result in A/D data register.
- Activation of EI²OS is allowed upon occurrence of an interrupt request. With use of EI²OS, data loss is avoided even if A/D conversion is performed successively.
- An activation trigger is selectable among software trigger, internal timer output, and external trigger (fall edge).
- *: When operating with 16-MHz machine clock

Conversion mode	Description
Singular conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function stops.
Sequential conversion mode	The A/D conversion is performed form a start channel to an end channel sequentially. Upon completion of A/D conversion on an end channel, A/D conversion function re- sumes from the start channel.
Pausing conversion mode	The A/D conversion is performed by pausing at each channel. Upon completion of A/D conversion on an end channel, A/D conversion and pause functions resume from the start channel.

8/10-bit A/D converter conversion mode

• 8/10-bit A/D converter block diagram

11. UART0/UART1 Outline

UART0/UART1 are general-purpose serial data communication interface for synchronous and asynchronous communication using external devices.

- Provided with bi-directional communication function for both clock-synchronous and clock-asynchronous modes.
- Provided with master/slave communication function (multi-processor mode). (Only master side is available.)
- Interrupt request is generated upon completion of reception, completion of transmission and detection of reception error.
- Ready for expanded intelligent service, EI²OS.

UART functions

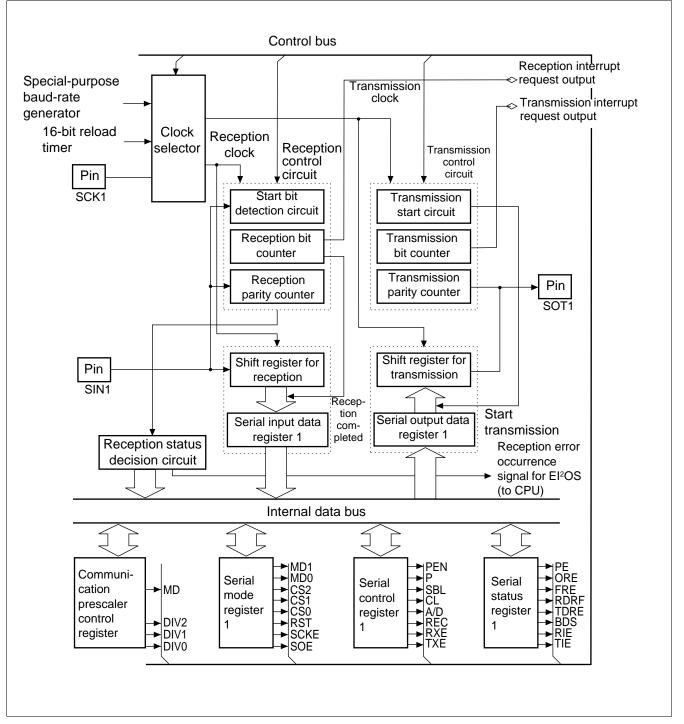
	Description
Data buffer	Full-duplex double buffer
Transmission mode	Clock synchronous (No start/stop bit, no parity bit) Clock asynchronous (start-stop synchronous)
Baud rate	Built-in special-purpose baud-rate generator. Setting is selectable among 8 values. Input of external values is allowed. Use of clock from external timer (16-bit reload timer 0) is allowed.
Data length	7 bits (only asynchronous normal mode) 8 bits
Signaling system	Non Return to Zero (NRZ) system
Reception error detection	Framing error Overrun error Parity error (not detectable in operation mode 1 (multi-processor mode))
Interrupt request	Receive interrupt (reception completed, reception error detected) Transmission interrupt (transmission completed) Ready for expanded intelligent I/O service (EI ² OS) in both transmis- sion and reception
Master/slave communication function (asynchronous, multi-processor mode)	Communication between 1 (master) and n (slaves) are available (usable as master only).

Note : Start/stop bit is not added upon clock-synchronous transmission. Data only is transmitted.

UART0/UART1 operation modes

	Operation mode	Data I	length	Synchronization	Stop bit length	
		With parity Without parity		Synchronization	otop bit length	
0	Asynchronous mode (normal mode)	7-bit or 8-bit		Asynchronous	1- bit or 2-bit *2	
1	Multi processor mode	8+1*1	—	Asynchronous		
2	Synchronous mode	8	—	Synchronous	No	

- : Disallowed


*2 : Only 1 bit is detected as a stop bit on data reception.

^{*1 : &}quot;+1" is an address/data selection bit used for communication control (bit 11 of SCR1 register: A/D).

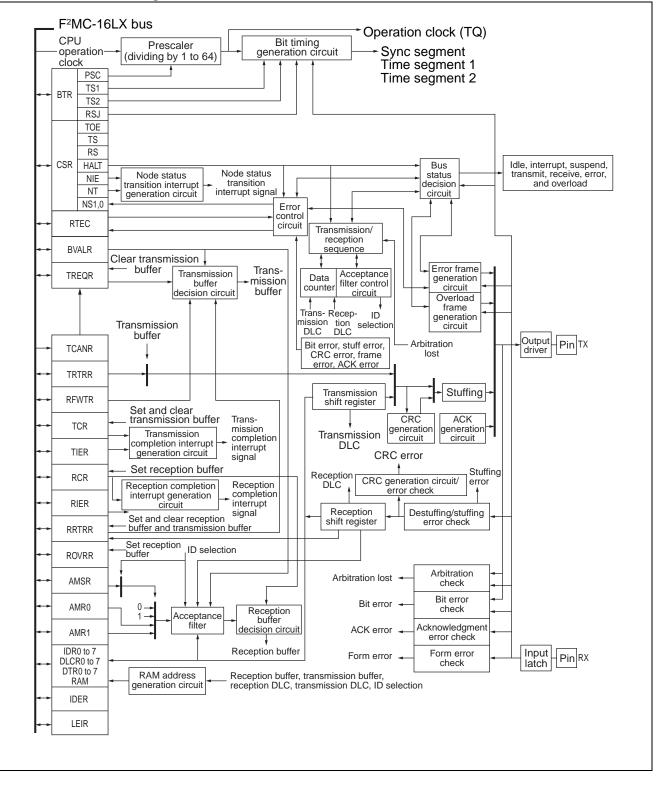
• UART0 block diagram

• UART1 block diagram

12. CAN Controller

The Controller Area Network (CAN) is a serial communication protocol compliant with CAN Ver 2.0A and Ver 2.0B. The protocol allows data transmission and reception in both standard frame format and expanded frame format.

• Features of CAN controller


- CAN controller format is compliant with CAN Ver 2.0A and Ver 2.0B.
- The protocol allows data transmission and reception in standard frame format and expanded frame format.
- Automatic transmission of data frame by remote frame reception is allowed.
- Baud rate ranges from 10 Kbps to 1 Mbps (with 16-MHz machine clock).

Data transmission baud rate

Machine clock	Baud rate (Max)
16 MHz	1 Mbps
12 MHz	1 Mbps
8 MHz	1 Mbps
4 MHz	500 Kbps
2 MHz	250 Kbps

- Provided with 8 transmission/reception message buffers.
- Transmission/reception is allowed at ID11bit in standard format, and at ID29bit in expanded frame format.
- Specifying 0 byte to 8 bytes is allowed in message data.
- Multi-level message buffer configuration is allowed.
- CAN controller has two built-in acceptance masks. Mask settings are independently allowed for the two acceptance masks on reception IDs.
- The two acceptance masks allow reception in standard frame format and expanded frame format.
- For types of masking, all-bit comparison, all-bit masking, and partial masking with acceptance mask register 0/1, are specifiable.

CAN controller block diagram

13. Address Matching Detection Function Outline

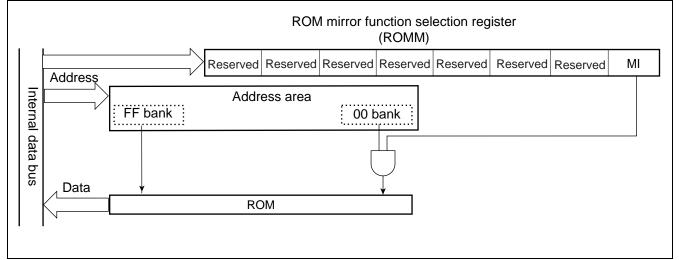
The address matching detection function checks if an address of an instruction to be processed next to a currentlyprocessed instruction is identical with an address specified in the detection address register. If the addresses match with each other, an instruction to be processed next in program is forcibly replaced with INT9 instruction, and process branches to the interrupt process program. Using INT9 interrupt, this function is available for correcting program by batch processing.

Address matching detection function outline

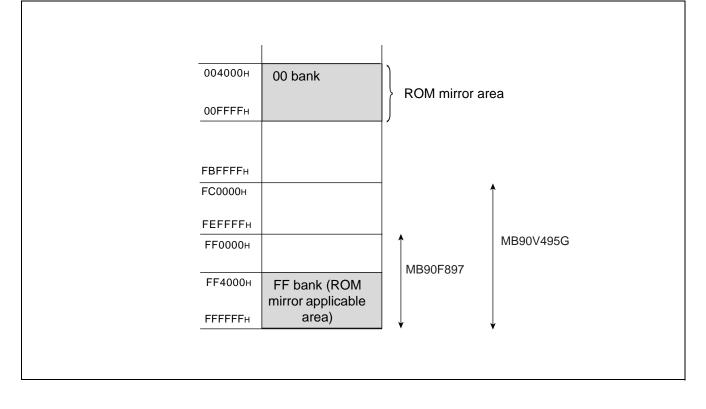
- An address of an instruction to be processed next to a currently-processed instruction of the program is always retained in an address latch via internal data bus. By the address matching detection function, the address value retained in the address latch is always compared with an address specified in detection address setting register. If the compared address values match with each other, an instruction to be processed next by CPU is forcibly replaced with INT9 instruction, and an interrupt process program is executed.
- Two detection address setting registers are provided (PADR0 and PADR1), and each register is provided with interrupt permission bit. Generation of interrupt, which is caused by address matching between the address retained in address latch and the address specified in address setting register, is permitted and prohibited on a register-by-register basis.

Address matching detection function block diagram Address latch Comparator PADR0 (24 bit) Internal data **INT9** instruction Detection address setting register 0 (generate INT9 interrupt) PADR1 (24 bit) Detection address setting register 1 sng 1 PACSR Reserved Reserved Reserved AD1E Reserved AD0E Reserved Address detection control register (PACSR) Reserved: Be sure to set to "0."

Address latch


Retains address value output to internal data bus.

- Address detection control register (PACSR) Specifies if interrupt is permitted or prohibited when addresses match with each other.
- Detection address setting (PADR0, PADR1) Specifies addresses to be compared with values in address latch.


14. ROM Mirror Function Selection Module Outline

The ROM mirror function selection module sets the data in ROM assigned to FF bank so that the data is read by access to 00 bank.

• ROM mirror function selection module block diagram

• FF bank access by ROM mirror function

15. 512 Kbit Flash Memory Outline

The following three methods are provided for data writing and deleting on flash memory:

- Parallel writer
- Serial special-purpose writer
- Writing/deleting by program execution

• 512 Kbit flash memory outline

The 512 K-bit flash memory is allocated on FF_H bank of CPU memory map. Using the function of flash memory interface circuit, the memory allows read access and program access from CPU.

The flash memory can be programmed and erased by the instructions from the CPU via the flash memory interface circuit, allowing program code and data to be reprogrammed efficiently even in the on-board state.

Data can be reprogrammed not only by program execution in existing RAM but by program execution in flash memory by dual operation. The different banks (the upper and lower banks) can be used to execute an erase/ program and a read concurrently.

• Features of 512 Kbit flash memory

- 64 K words x 8 bits/32 K words x 16 bits (4 K \times 4 + 16 K \times 2 + 4 K \times 4) sector configuration
- Two-bank configuration, enabling simultaneous execution of an erase/program and read.
- Automatic program algorithm (Embedded Algorithm[™] : Similar to MBM29LV200.)
- Built-in deletion pause/deletion resume function
- Detection of completed writing/deleting by data polling and toggle bits.
- Detection of completed writing/deleting by CPU interrupt.
- Deletion is allowed on a sector-by-sector basis (sectors are combined freely).
- Number of writing/deleting operations (minimum): 10,000 times
- Flash read cycle time (minimum) : Two machine cycles
- * : Embedded Algorithm[™] is a registered trademark of Advanced Micro Devices.
- Note : A function of reading manufacture code and device code is not provided. These codes are not accessible by command either.

• Flash memory writing/deleting

- A single bank of flash memory cannot be used to program/delete and read at the same time.
- Data can be programmed/deleted into and erased from flash memory by executing either the program residing in the flash memory or the one copied to RAM from the flash memory.

List of registers and reset values in flash memory

Flash memory control status register (FMCS)		7	6	5	4	3	2	1	0	
		0	0	0	х	0	0	0	0	
Flash memory write control status register (FMCS)	bit	7	6	5	4	3	2	1	0	
		0	0	0	0	0	0	0	0	
Flash memory write control status register (FMCS)	bit	15	14	13	12	11	10	9	8	
		0	0	0	0	0	0	0	0	
X : Undefined										

• Sector configuration

For access from CPU, SA0 to SA9 are allocated in FF bank register.

Sector configuration of 512 Kbit flash memory

Flash memory	CPU address	Writer address*	
	FF 0000н	70000н	/
SA0 (4 Kbytes)			٦
	FF0FFFH	70FFFн	
	FF1000H	71000н	
SA1 (4 Kbytes)			<u>+</u>
	FF1FFFH	71FFFH	
	FF2000H	72000н	
SA2 (4 Kbytes)			(_
	FF2FFFH	72FFFн	
0.4.0 (4.14)	FF3000H	73000н	
SA3 (4 Kbytes)			7
	FF3FFFH	73FFFH	\rightarrow
SA4 (16 Kbytes)	FF4000H	74000н	4
,	FF7FFFH	77FFFн	
	FF8000н	78000н	
SA5 (16 Kbytes)	11000011	1000011	
	FFBFFFH	7BFFFH	
	FFC000H	7С000н	
SA6 (4 Kbytes)			×
	FFCFFFH	7CFFFH	Bar
	FFD000H	7D000н	Upper Bank
SA7 (4 Kbytes)			Upr
	FFDFFFH	7DFFFH	
	FFE000H	7E000 н	-
SA8 (4 Kbytes)			
	FFEFFFH	7EFFFh	
	FFF000H	7F000H	
SA9 (4 Kbytes)			7
	FFFFFH	7FFFFH	\sim

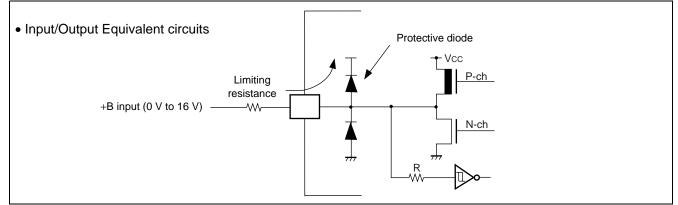
*: "Writer address" is an address equivalent to CPU address, which is used when data is written on flash memory, using parallel writer. When writing/ deleting data with general-purpose writer, the writer address is used for writing and deleting.

■ ELECTRIC CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Rat	ting	Unit	Remarks	
Farameter	Symbol	Min	Max	Unit	Rellidiks	
	Vcc	Vss - 0.3	Vss + 6.0	V		
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc*2	
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR*2	
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3	
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3	
Maximum clamp current	CLAMP	- 2.0	+ 2.0	mA	*7	
Total maximum clamp current	$\sum $ Iclamp	—	20	mA	*7	
"L" level maximum output current	OL1	—	15	mA	Normal output*4	
	OL2	—	40	mA	High-current output*4	
"L" level average output current	OLAV1		4	mA	Normal output*5	
	OLAV2	—	30	mA	High-current output*5	
"I" lovel movimum total output ourrent	\sum IOL1	—	125	mA	Normal output	
"L" level maximum total output current	\sum IOL2		160	mA	High-current output	
"I" lovel everege total output ourrent	\sum IOLAV1	—	40	mA	Normal output*6	
"L" level average total output current	\sum Iolav2	—	40	mA	High-current output*6	
"H" level maximum output current	Іон1	—	-15	mA	Normal output*4	
	Он2	—	-40	mA	High-current output*4	
"H" level average output current	OHAV1	—	-4	mA	Normal output*5	
	OHAV2	—	-30	mA	High-current output*5	
"L" lovel movimum total output ourrest	∑Iон₁	—	-125	mA	Normal output	
"H" level maximum total output current	∑Іон₂	—	-160	mA	High-current output	
"H" lovel average total output ourset	ΣΙΟΗΑV1	—	-40	mA	Normal output*6	
"H" level average total output current	\sum IOHAV2	—	-40	mA	High-current output*6	
Power consumption	PD	—	297	mW		
Operating temperature	TA	-40	+105	°C		
	IA	-40	+125	°C	*8	
Storage temperature	Tstg	-55	+150	°C		

*1 : The parameter is based on $V_{SS} = AV_{SS} = 0.0 V.$


*2 : AVcc and AVR should not exceed Vcc.

- *3 : VI and Vo should not exceed Vcc + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating.
- *4 : A peak value of an applicable one pin is specified as a maximum output current.
- *5 : An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)

(Continued)

(Continued)

- *6 : An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)
- *7 : Applicable to pins: P10 to P17, P20 to P27, P30 to P33, P35, P36, P37, P40 to P44, P50 to P57 Note: P35 and P36 are MB90F897S only.
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
 - Sample recommended circuits:

- *8 : Users considering application exceeding T_A = +105°C are advised to contact their FUJITSU representatives beforehand for reliability limitations.
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(V_{SS} = AV_{SS} = 0.0 \text{ V})$									
Parameter	Symbol		Value	Unit	Remarks				
Parameter	Symbol	Min	Тур	Max		Rellidiks			
		3.5	5.0	5.5	V	Under normal operation			
Power supply voltage	Vcc	3.0	_	5.5	V	Retain status of stop operation			
		4.0	_	5.5	V	Accuracy guarantee voltage of A/D converter			
Smoothing capacitor	Cs	0.1		1.0	μF	*1			
On exeting to man exeture	Та	-40	—	+105	°C				
Operating temperature	IA	-40	—	+125	°C	*2			

*1 : Use a ceramic capacitor, or a capacitor of similar frequency characteristics. On the Vcc pin, use a bypass capacitor that has a larger capacity than that of Cs. Refer to the following figure for connection of smoothing capacitor Cs.

*2 : Users considering application exceeding $T_A = +105^{\circ}C$ are advised to contact their FUJITSU representatives beforehand for reliability limitations.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

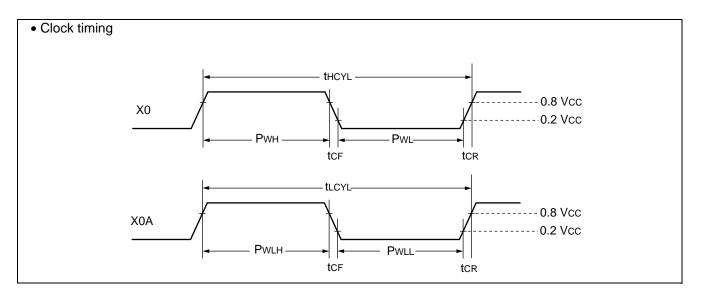
_	•		(Vcc = 5.0 \	/±10 %, Vs: 	s = AVss Value	$= 0.0 \text{ V}, \text{ T}_{\text{A}}$	∖ = -4(0 °C to +125 °C)	
Parame- ter	Sym bol	Pin name	Conditions	Min	Тур	Max	Unit	t Remarks	
	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc + 0.3	V	When selected CMOS hyster- esis	
"H" level input voltage	Viha	Automotive input pin	_	0.8 Vcc	_	Vcc + 0.3	V	When selected Automotive	
voltage	VIHC	CMOS input pin (P32, P40)	—	0.7 Vcc	_	Vcc + 0.3	V	When selected CMOS	
	Vінм	MD input pin	—	Vcc-0.3		Vcc + 0.3	V		
	Vils	CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	When selected CMOS hyster- esis	
"L" level input	Vila	Automotive input pin	—	Vss - 0.3	_	0.5 Vcc	V	When selected Automotive	
voltage	VILC	CMOS input pin (P32, P40)	_	Vss - 0.3	_	0.3 Vcc	V	When selected CMOS	
	VILM	MD input pin	—	V ss - 0.3	_	Vss + 0.3	V		
"H" level	Vон1	Pins other than P14 to P17	V _{CC} = 4.5 V, Іон = -4.0 mA	Vcc - 0.5	_	_	V		
output voltage	Vон2	P14 to P17	$V_{CC} = 4.5 V,$ IOH = -14.0 mA	Vcc - 0.5	_		V		
"L" level	Vol1	Pins other than P14 to P17	$V_{CC} = 4.5 V,$ $I_{OL} = 4.0 mA$	—	_	0.4	V		
output voltage	Vol2	P14 to P17	$ V_{CC} = 4.5 \text{ V}, \\ I_{OL} = 20.0 \text{ mA} $	—	_	0.4	V		
Input leak current	lı.	All input pins	Vcc = 5.5 V, Vss < Vı < Vcc	-5		+5	μA		
			$V_{CC} = 5.0 V$, Internally operating at 16 MHz, normal operation.	_	25	30	mA		
Power supply current*	Icc	Vcc	Vcc = 5.0 V, Internally operating at 16 MHz, writing on flash memory.	_	45	50	mA	MB90F897/S	
			Vcc = 5.0 V, Internally operating at 16 MHz, deleting on flash memory.	_	45	50	mA	MB90F897/S	

* : Test conditions of power supply current are based on a device using external clock.

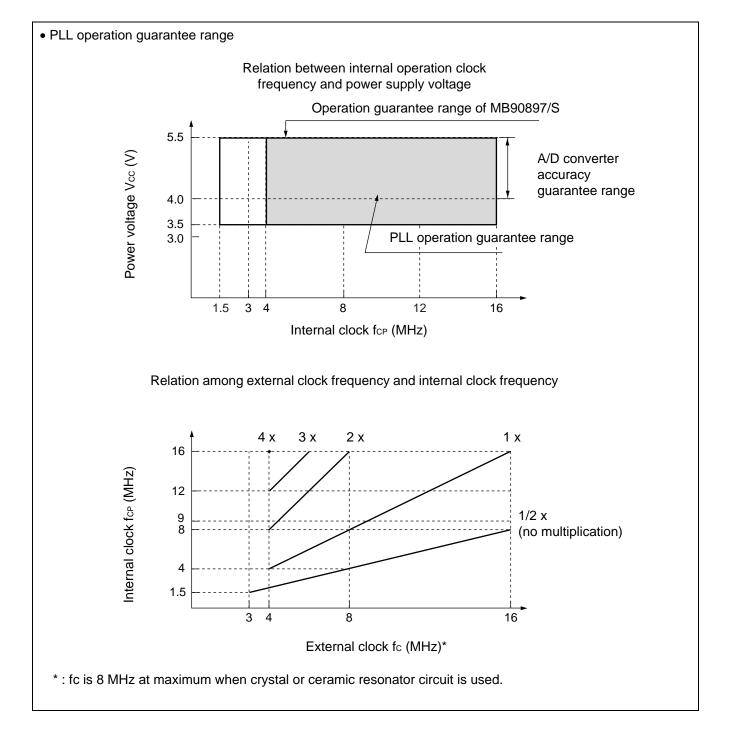
(Continued)

(Continued)

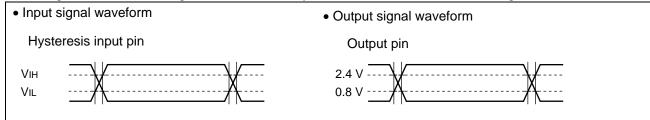
Parame-	Sym-	Din nama	Conditions		Rating		Unit	= -40 °C to +125 °C)
ter	bol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
	Iccs		Vcc = 5.0 V, Internally operating at 16 MHz, sleeping.	_	8	12	mA	
	Істѕ		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main clock mode, in time-base timer mode.	_	0.2	0.35	mA	
Power	Істяріі		Vcc = 5.0 V, Internally operating at 2 MHz, transition from main clock mode, in time-base timer mode.	_	3	5	mA	
supply current*	Iccl	Vcc	$V_{cc} = 5.0 V$, Internally operating at 8 kHz, subclock operation, $T_{A} = +25^{\circ}C$	_	40	100	μΑ	
	Iccls		$\label{eq:Vcc} \begin{array}{l} V_{cc} = 5.0 \text{ V},\\ \text{Internally operating at}\\ 8 \text{ kHz}, \text{ subclock},\\ \text{sleep mode},\\ T_{A} = +25^{\circ}\text{C} \end{array}$	Ι	10	50	μΑ	
	Ісст		$V_{CC} = 5.0 \text{ V},$ Internally operating at 8 kHz, clock mode, $T_{A} = +25^{\circ}\text{C}$	_	8	30	μA	
	Іссн		Stopping, $T_A = +25^{\circ}C$	_	5	25	μΑ	
Input capacity	Cin	Other than AVcc, AVss, AVR, C, Vcc, Vss		_	5	15	pF	
Pull-up resistor	Rup	RST		25	50	100	kΩ	
Pull-down resistor	RDOWN	MD2	_	25	50	100	kΩ	FLASH product is not provided with pull-down resistor.


(Vcc = 5.0 V±10 %, Vss = AVss = 0.0 V, T_A = -40 °C to +125 °C)

* : Test conditions of power supply current are based on a device using external clock.

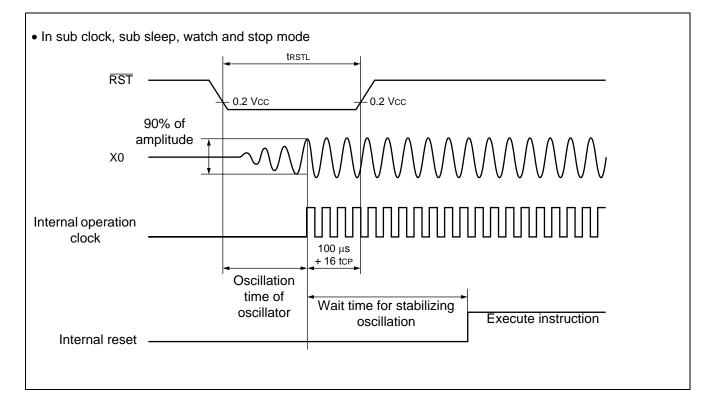

4. AC Characteristics

(1) Clock timing


	I	(Vcc:	= 5.0 V±	,	s = AVss	= 0.0	$V, T_A = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C})$	
Parameter	Symbol	Pin name		Value		Unit	Remarks	
i di dificici	Cymbol		Min	Тур	Max	onic		
			3	—	8	MHz	When crystal or ceramic resonator is used	
			3	—	16	MHz	External clock	
	fc	X0, X1	4	—	16	MHz	PLL multipled by 1	
Clock frequency			4	—	8	MHz	PLL multipled by 2	
			4	—	5.33	MHz	PLL multipled by 3	
		-	4	—	4	MHz	PLL multipled by 4	
	fc∟	X0A, X1A	_	32.768	_	kHz	MB90F897 only	
Clock cycle time	t HCYL	X0, X1	125	—	333	ns		
	t LCYL	X0A, X1A	—	30.5	_	μs	MB90F897 only	
Input clock pulse width	Pwh, Pwl	X0	10			ns	Set duty factor at 30% to 70% as a guideline.	
	Pwlh,Pwll	X0A	_	15.2		μs	MB90F897 only	
Input clock rise time and fall time	tcr, tcr	X0	_	_	5	ns	When external clock is used	
Internal operation alook	fср	_	1.5	—	16	MHz	When main clock is used	
Internal operation clock frequency	flcp	—	_	8.192	_	kHz	When sub clock is used, MB90F897 only	
Internal operation clock availa	t CP	—	62.5	—	666	ns	When main clock is used	
Internal operation clock cycle time	t LCP	_		122.1		μs	When sub clock is used, MB90F897 only	

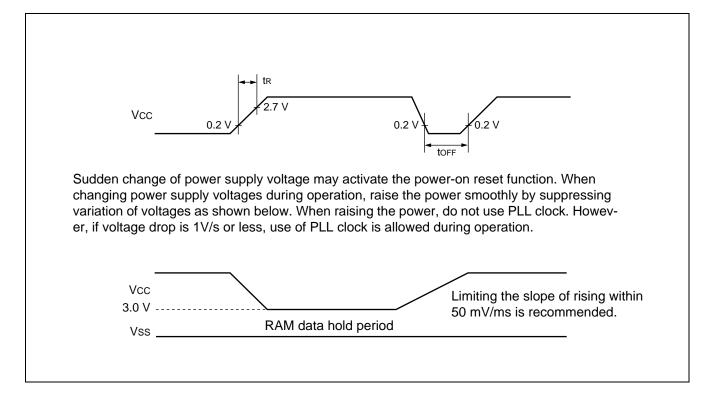
(Vcc = 5.0 V±10 %, Vss = AVss = 0.0 V, T_A = -40 °C to +125 °C)

Rating values of alternating current is defined by the measurement reference voltage values shown below:


(2) Reset input timing

			(Vcc = 5.0 V±10 %, V	∕ss = AVss	= 0.0 V, T	$T_A = -40 \text{ °C to } +125 \text{ °C})$
Parameter	Symbol	Pin	Value		Unit	Remarks
Falameter	Symbol	name	Min	Max	Onit	Remarks
			16 tcp*3		ns	Normal operation
Reset input time	t rstl	RST	Oscillation time of oscillator*1 + 100 μs + 16 tcp*3	_		In sub clock*2, sub sleep*2, watch*2 and stop mode
			100		μs	In timebase timer

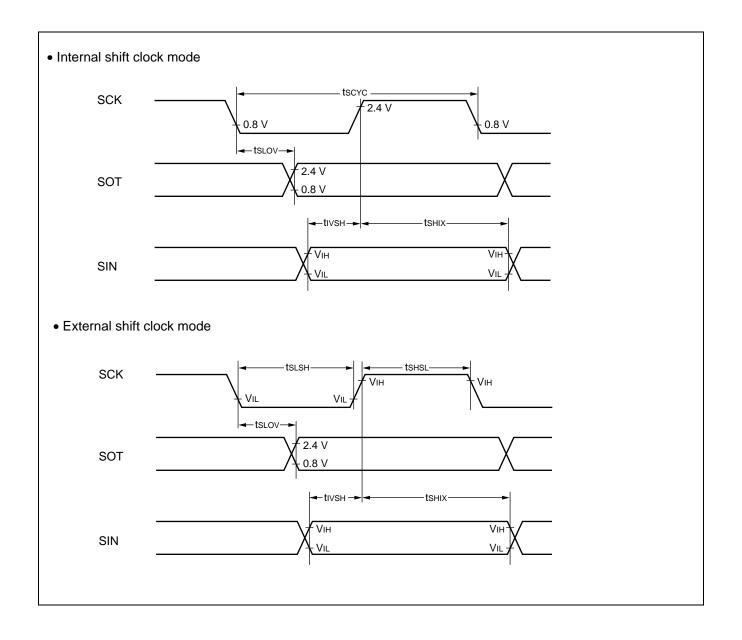
*1 : Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR/ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.


*2 : Except for MB90F387S and MB90387S.

*3 : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

(3) Power-on reset

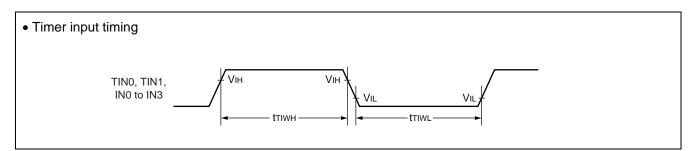
				(Vss =	= AVss = (0.0 V, T≜	∴ = −40 °C to +125 °C)
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Falameter	Symbol	Fininanie	Conditions	Min	Max	Unit	Remarks
Power supply rise time	tR	Vcc		0.05	30	ms	
Power supply shutdown time	toff	Vcc		1		ms	Repeated operation


(4) UART0/UART1 timing

		(`	√cc = 4.5 V to 5.5 V, V	'ss = 0.0 '	√, T _A = -4	40 °C 1	o +125 °C)
Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
Farameter	Symbol		Conditions	Min	Max	Unit	Nellia KS
Serial clock cycle time	tscyc	SCK0/SCK1		8 tcp*		ns	
$SCK \downarrow ightarrow SOT$ delay time	tslov	SCK0/SCK1, SOT0/SOT1	Internal shift clock	-80	+80	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCK0/SCK1, SIN0/SIN1	mode output pin is : $C_L = 80 \text{ pF+1TTL}$	100		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SCK0/SCK1, SIN0/SIN1		60	_	ns	
Serial clock "H" pulse width	t shsl	SCK0/SCK1		4 tcp*		ns	
Serial clock "L" pulse width	t s∟sн	SCK0/SCK1	-	4 tcp*		ns	
$SCK \downarrow ightarrow SOT$ delay time	tslov	SCK0/SCK1, SOT0/SOT1	External shift clock mode output pin is :		150	ns	
Valid SIN $ ightarrow$ SCK \uparrow	tıvsн	SCK0/SCK1, SIN0/SIN1	$C_{L} = 80 \text{ pF+1TTL}$	60		ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsнıx	SCK0/SCK1, SIN0/SIN1		60		ns	

* : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

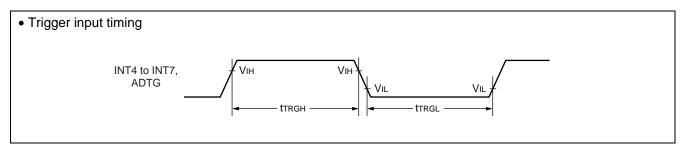
Notes: • AC rating in CLK synchronous mode.


 \bullet CL is a load capacitance value on pins for testing.

(5) Timer input timing

			(Vcc = 4.5 V tc	o 5.5 V, Vss =	0.0 V, $T_{A} = -$	40 °C	to +125 °C)
Parameter	Symbol			Symbol Bin name Conditions Value		Unit	Remarks
Falameter	Symbol	i in name	Conditions	Min	Мах	Omt	itema ka
Input pulse width	tтіwн	TIN0, TIN1		4 tce *		nc	
	t⊤ıw∟	IN0 to IN3		4 I CP		ns	

* : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).



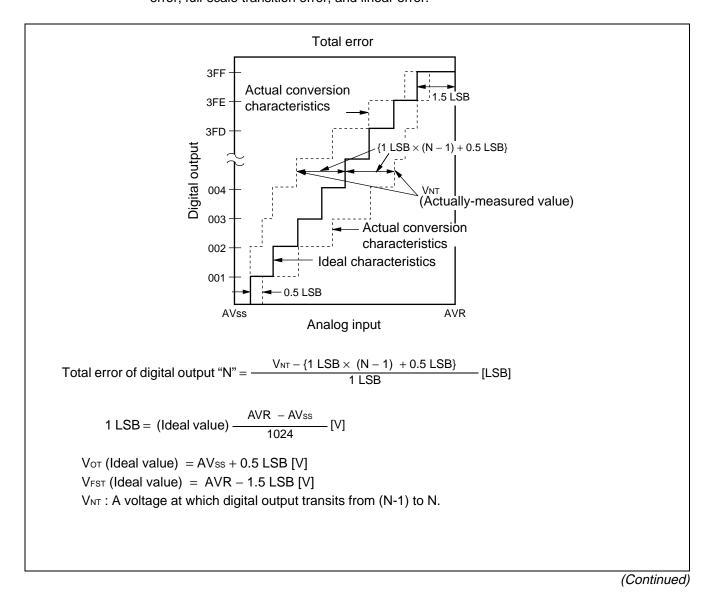
(6) Trigger input timing

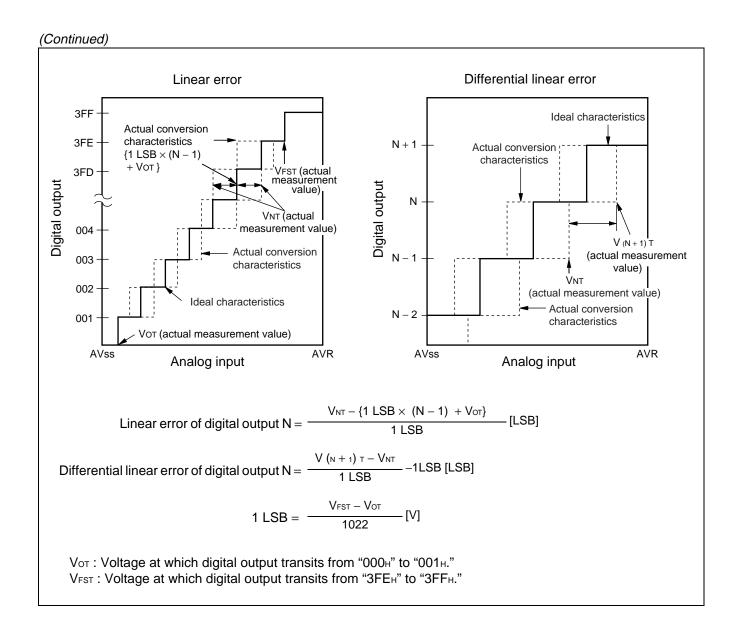
 $(V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +125 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	name Conditions		Value		Remarks
Farameter	Symbol	Finname	Conditions	Min	Max	Unit	Kellia Ka
Input pulse width	t trgh t trgl	INT4 to INT7, ADTG		3 tcp *		ns	

* : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

5. A/D converter

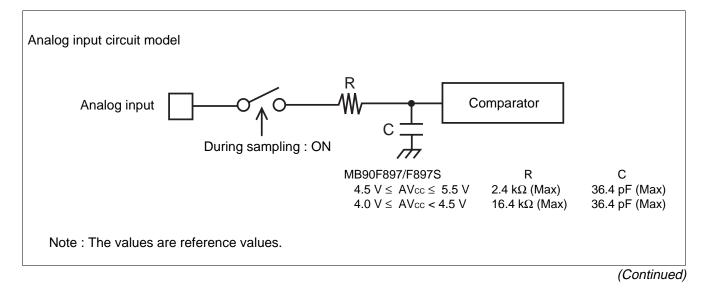

Deversation	Cumela a l	Pin	Conditions	Va	lue	11:-:*	Demortes	
Parameter	Symbol	name	Conditions	Min	Мах	Unit	Remarks	
Resolution					10	bit		
Total error					± 3.0	LSB		
Nonlinear error	—	_			± 2.5	LSB		
Differential linear error	—				± 1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	1 LSB = AVR/1024	
Full-scale transition voltage	Vfst	AN0 to AN7	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	- 1 LSB = AVR/1024	
Compare time			66 tcp *1			ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
Compare time			88 tcp *1	_	_	ns	With 16 MHz machine clock $4.5 \text{ V} > AV_{CC} \ge 4.0 \text{ V}$	
Someling time			32 tcp *1	_		ns	With 16 MHz machine clock $5.5 \text{ V} \ge AV_{CC} \ge 4.5 \text{ V}$	
Sampling time		_	128 tcp *1			ns	With 16 MHz machine clock 4.5 V > AVcc ≥ 4.0 V	
Analog port input current	Iain	AN0 to AN7			10	μΑ		
Analog input voltage	VAIN	AN0 to AN7	AVss		AVR	V		
Reference voltage		AVR	AVss + 2.7		AVcc	V		
Power supply current	la	AVcc		3.5	7.5	mA		
Fower supply culterit	Іан	AVcc			5	μA	*2	
Reference voltage	IR	AVR		165	250	μΑ		
supplying current	IRH	AVR			5	μΑ	*2	
Variation among channels		AN0 to AN7	_		4	LSB		


*1 : Refer to "(1) Clock timing" ratings for tcp (internal operation clock cycle time).

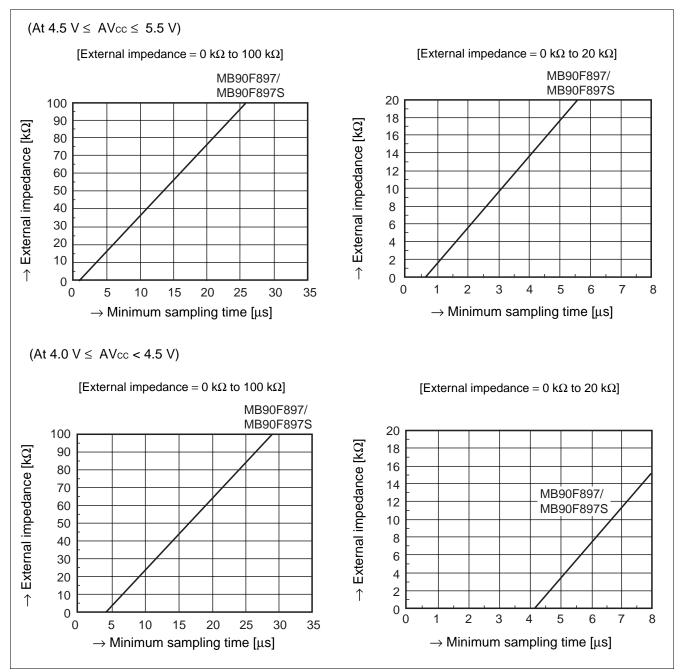
*2 : If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc=AVcc=AVR=5.0 V).

6. Definition of A/D Converter Terms

Resolution	: Analog variation that is recognized by an A/D converter.
Linear error	: Deviation between a line across zero-transition line ("00 0000 0000" $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("11 1111 1110" $\leftarrow \rightarrow$ "11 1111 1111") and actual conversion characteristics.
Differential linear error	: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
Total error	: Difference between an actual value and an ideal value. A total error includes zero transition error, full-scale transition error, and linear error.



7. Notes on A/D Converter Section


<About the external impedance of the analog input and its sampling time>

• A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision.

(Continued)

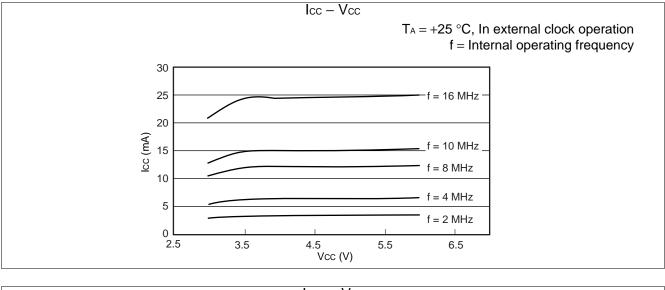
• To satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value.

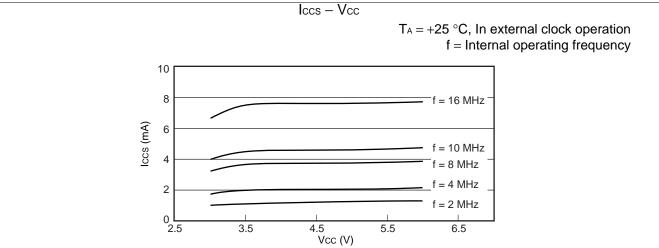
The relationship between the external impedance and minimum sampling time

• If the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

<About errors>

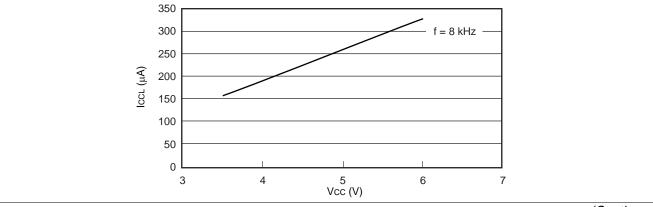
• As AVR – AVss become smaller, values of relative errors grow larger.

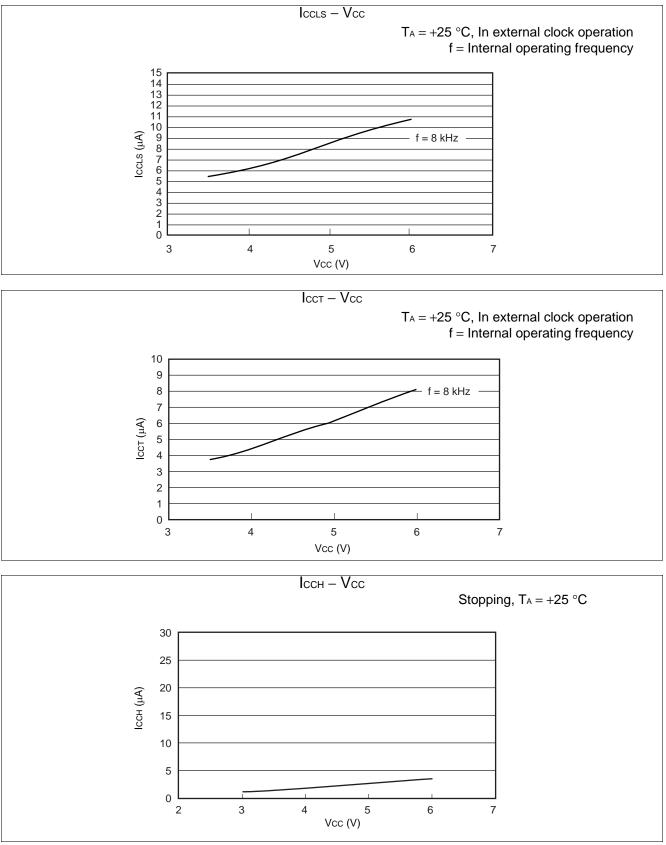

Parameter	Conditions		Value		Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Unit	Reindiks
Sector erase time (4 KB sector)			0.2	0.5	S	Excludes 00 _H programming prior to erasure
Sector erase time (16 KB sector)	T _A = + 25 °C,		0.5	7.5	S	Excludes 00 _H programming prior to erasure
Chip erase time	Vcc = 5.0 V		2.6		S	Excludes 00 _H programming prior to erasure
Word (16 bit width) programming time			16	3,600	μs	Except for the over head time of the system
Program/Erase cycle	—	10,000	_		cycle	
Flash Data Retention Time	Average T _A = + 85 °C	20			Years	*

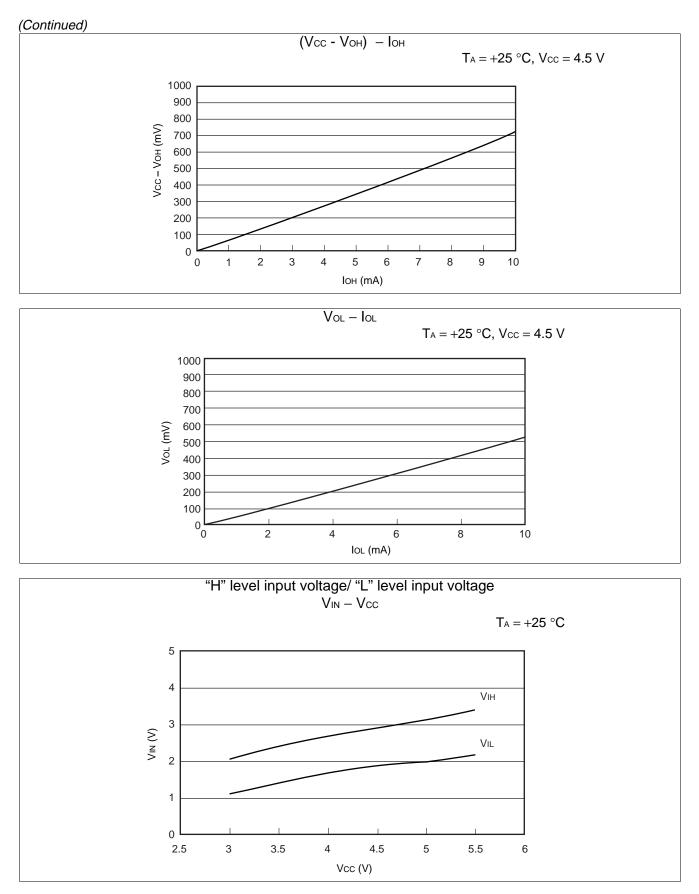

8. Flash Memory Program/Erase Characteristics

* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

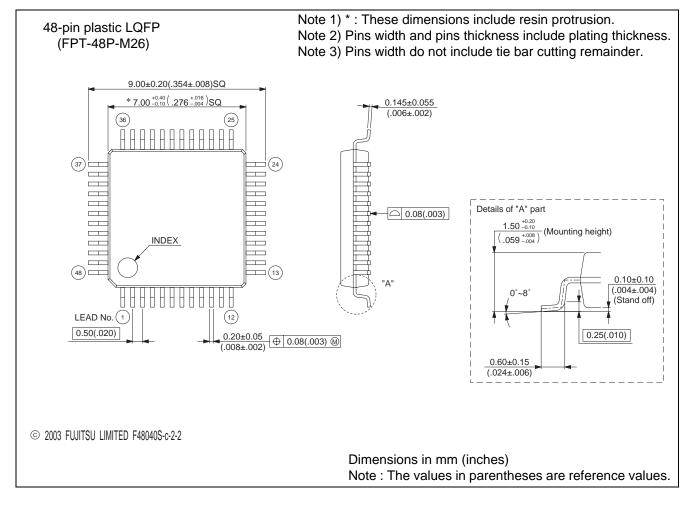
■ EXAMPLE CHARACTERISTICS


• MB90F897




 $T_A = +25 \text{ °C}$, In external clock operation f = Internal operating frequency

(Continued)


(Continued)

ORDERING INFORMATION

Part number	Package	Remarks
MB90F897PMT MB90F897SPMT	48-pin plastic LQFP (FPT-48P-M26)	

PACKAGE DIMENTION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0408 © 2004 FUJITSU LIMITED Printed in Japan

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for 16-bit Microcontrollers - MCU category:

Click to view products by Fujitsu manufacturer:

Other Similar products are found below :

MB90F036APMC-GSE1 MB90F342CASPMC-GSE1 MB90F345CESPMC-GE1 MB90F349CAPFR-GSE1 MB90F428GCPFR-GSE1 MB90F462APFM-GE1 MB90F462APMC-G-SNE1 MB90F497GPF-GE1 MB90F546GSPFR-GE1 MB90F947APFR-GS-SPE1 MB96F346RSBPMC-GS-N2E2 MB96F683RBPMC-GSAE1 R5F104ACASP#V0 R5F11BGEAFB#30 S912ZVFP64F1VLL R4F24268NVRFQV R5F11B7EANA#U0 R5F21172DSP#U0 M30622F8PGP#U3C MB90092PF-G-BNDE1 MB90F335APMC1-G-SPE1 MB90F342CASPFR-GS-N2E1 MB90F345CAPFR-GSE1 MB90F543GPF-GE1 MB90F546GSPF-GE1 MB90F568PMCR-GE1 MB90F594APFR-GE1 MB90F882ASPMC-GE1 MB96F346RSAPQCR-GS-N2E2 MB96F387RSBPMC-GSE2 MB96F387RSBPMC-GS-N2E2 MB96F395RSAPMC-GSE2 MB96F623RBPMC1-GSE1 MB96F635RBPMC-GSE1 MB96F646RBPMC-GSE1 XE167F96F66LACFXUMA1 MB96F696RBPMC-GSAE1 MB96F635RBPMC-GSAE1 MB96F018RBPMC-GSE1 MB90F962SPMCR-GE1 MB90F867ASPFR-GE1 MB90F543GPF-G-FLE1 MB90F345CESPF-GE1 M30290FCHP#U3A HD64F3672FPV R5F104AEASP#V0 R5F100BCANA#U0 R5F100BFANA#U0 R5F100ACASP#V0 R5F117BCGFP#30