Memory FRAM

1 M Bit (64 K $\times 16$)

MB85R1002A

■ DESCRIPTIONS

The MB85R1002A is an FRAM (Ferroelectric Random Access Memory) chip consisting of 65,536 words \times 16 bits of nonvolatile memory cells fabricated using ferroelectric process and silicon gate CMOS process technologies.
The MB85R1002A is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MB85R1002A can be used for 10^{10} read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. The MB85R1002A uses a pseudo-SRAM interface that is compatible with conventional asynchronous SRAM.

- FEATURES

- Bit configuration : 65,536 words $\times 16$ bits
- Read/write endurance : 10^{10} times
- Operating power supply voltage : 3.0 V to 3.6 V
- Operating temperature range
$:-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Data retention
: 10 years $\left(+55^{\circ} \mathrm{C}\right)$
- $\overline{\mathrm{LB}}$ and $\overline{\mathrm{UB}}$ data byte control
- Package
: 48-pin plastic TSOP (1)

MB85R1002A

PIN ASSIGNMENTS

(TOP VIEW)

(FPT-48P-M48)

PIN DESCRIPTIONS

Pin Number	Pin Name	Functional Description
1 to 8,18 to 25	A 0 to A 15	Address Input pins
29 to 36,38 to 45	$\mathrm{I} / \mathrm{O} 1$ to I/O16	Data Input/Output pins
26	$\overline{\mathrm{CE}} 1$	Chip Enable 1 Input pin
12	CE 2	Chip Enable 2 Input pin
11	$\overline{\mathrm{WE}}$	Write Enable Input pin
28	$\overline{\mathrm{OE}}$	Output Enable Input pin
14,15	$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$	Data Byte Control Input pins
16,37	VDD	Supply Voltage pins Connect all two pins to the power supply.
$13,27,46$	VSS	Ground pins Connect all three pins to ground.
$9,10,17,47,48$	NC	No Connect pins

BLOCK DIAGRAM

MB85R1002A

■ FUNCTIONAL TRUTH TABLE

Mode	CE1	CE2	$\overline{W E}$	$\overline{O E}$	$\overline{\text { LB }}$	$\overline{\text { UB }}$	I／01 to I／08	I／09 to／／016	Supply Current
Standby Precharge	H	X	X	X	X	X	Hi－Z	Hi－Z	Standby （Iss）
	X	L	X	X	X	X			
	X	X	H	H	X	X			
	X	X	X	X	H	H			
Read	z	H	H	L	L	L	Data Output	Data Output	Operation （Icc）
					L	H	Data Output	Hi－Z	
					H	L	Hi－Z	Data Output	
	L	¢	H	L	L	L	Data Output	Data Output	
					L	H	Data Output	Hi－Z	
					H	L	Hi－Z	Data Output	
$\begin{gathered} \text { Read } \\ \text { (Pseudo-SRAM, } \\ \hline \mathrm{OE} \text { control } \end{gathered}$	L	H	H	飞	L	L	Data Output	Data Output	
					L	H	Data Output	Hi－Z	
					H	L	Hi－Z	Data Output	
Write	飞	H	L	H	L	L	Data Input	Data Input	
					L	H	Data Input	Hi－Z	
					H	L	Hi－Z	Data Input	
	L	\checkmark	L	H	L	L	Data Input	Data Input	
					L	H	Data Input	Hi－Z	
					H	L	Hi－Z	Data Input	
Write （Pseudo－SRAM， WE control＊2）	L	H	を	H	L	L	Data Input	Data Input	
					L	H	Data Input	Hi－Z	
					H	L	Hi－Z	Data Input	

Note： $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}$ can be either V_{IL} or $\mathrm{V}_{\mathrm{IH}}, \mathrm{Hi}-\mathrm{Z}=$ High Impedance
$₹$ ：Latch address and latch data at falling edge，$\sqrt{ }$ ：Latch address and latch data at rising edge
＊1：$\overline{\mathrm{OE}}$ control of the Pseudo－SRAM means the valid address at the falling edge of $\overline{\mathrm{OE}}$ to read．
＊2 ：$\overline{\mathrm{WE}}$ control of the Pseudo－SRAM means the valid address and data at the falling edge of $\overline{\mathrm{WE}}$ to write．

ABSOLUTE MAXIMUM RATINGS

Parameter		Symbol	Rating	
Power Supply Voltage* *		Min		
Input Pin Voltage* *	$\mathrm{~V}_{\mathrm{cc}}$	-0.5	V	V
Output Pin Voltage*	V_{IN}	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5(\leq 4.0)$	V
Operating Temperature	$\mathrm{V}_{\text {out }}$	-0.5	$\mathrm{~V}_{\mathrm{cc}}+0.5(\leq 4.0)$	V
Storage Temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$

* : All voltages are referenced to VSS $=0 \mathrm{~V}$.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
Power Supply Voltage *	$\mathrm{~V}_{\mathrm{cc}}$	3.0	3.3	3.6	V
High Level Input Voltage*	V_{H}	$\mathrm{V}_{\mathrm{cc}} \times 0.8$	-	$\mathrm{V}_{\mathrm{cc}}+0.5$ (≤ 4.0)	V
Low Level Input Voltage*	V_{IL}	-0.5	-	+0.6	V
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

* : All voltages are referenced to VSS $=0 \mathrm{~V}$.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

MB85R1002A

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics
(within recommended operating conditions)

Parameter	Symbol	Condition	Value			Unit	
			Min	Typ	Max		
Input Leakage Current	\|lı		$\mathrm{V}_{\text {In }}=0 \mathrm{~V}$ to Vcc	-	-	10	$\mu \mathrm{A}$
Output Leakage Current	\|ILO		$\begin{aligned} & \text { Vout }=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{cc}}, \\ & \overline{\mathrm{CE}} 1=\mathrm{V}_{\mathrm{H}} \text { or } \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}} \end{aligned}$	-	-	10	$\mu \mathrm{A}$
Operating Power Supply Current	Icc	$\begin{aligned} & \overline{\mathrm{CE}} 1=0.2 \mathrm{~V}, \mathrm{CE} 2= \\ & \mathrm{V} \mathrm{cc}-0.2 \mathrm{~V}, \\ & \text { lout }=0 \mathrm{~mA}^{\star 1} \end{aligned}$	-	10	15	mA	
Standby Current	Isb	$\overline{\mathrm{CE}} 1 \geq \mathrm{Vcc}-0.2 \mathrm{~V}$	-	10	50	$\mu \mathrm{A}$	
		CE2 $\leq 0.2 \mathrm{~V}^{*}$					
		$\begin{aligned} & \overline{\mathrm{OE}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}, \overline{\mathrm{WE}} \geq \\ & \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}^{* 2} \end{aligned}$					
		$\begin{aligned} & \overline{\mathrm{LB}} \geq \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}, \overline{\mathrm{UB}} \geq \\ & \mathrm{V}_{\mathrm{cc}}-0.2 \mathrm{~V}^{* 2} \end{aligned}$					
High Level Output Voltage	Vor	$\mathrm{I} \mathrm{O}=-1.0 \mathrm{~mA}$	Vcc $\times 0.8$	-	-	V	
Low Level Output Voltage	Vol	$\mathrm{loL}=2.0 \mathrm{~mA}$	-	-	0.4	V	

*1 : During the measurement of Icc , the Address, Data In were taken to only change once per active cycle. lout : output current
*2 : All pins other than setting pins should be input at the CMOS level voltages such as $\mathrm{H} \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \mathrm{~L} \leq 0.2 \mathrm{~V}$.

2. AC Characteristics

- AC Test Conditions

Supply Voltage	$: 3.0 \mathrm{~V}$ to 3.6 V
Operating Temperature	$:-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Input Voltage Amplitude	$: 0.3 \mathrm{~V}$ to 2.7 V
Input Rising Time	$: 5 \mathrm{~ns}$
Input Falling Time	$: 5 \mathrm{~ns}$
Input Evaluation Level	$: 2.0 \mathrm{~V} / 0.8 \mathrm{~V}$
Output Evaluation Level	$: 2.0 \mathrm{~V} / 0.8 \mathrm{~V}$
Output Impedance	$: 50 \mathrm{pF}$

(1) Read Cycle
(within recommended operating conditions)

Parameter	Symbol	Value		Unit
		Min	Max	
Read Cycle time	tra	150	-	ns
$\overline{\mathrm{CE}} 1$ Active Time	tcai	120	-	ns
CE2 Active Time	tca2	120	-	ns
$\overline{\text { OE Active Time }}$	trp	120	-	ns
$\overline{\overline{L B}}, \overline{\mathrm{UB}}$ Active Time	tBp	120	-	ns
Precharge Time	tpc	20	-	ns
Address Setup Time	tas	0	-	ns
Address Hold Time	taH	50	-	ns
$\overline{\text { OE Setup Time }}$	tes	0	-	ns
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Setup Time	tBs	5	-	ns
Output Data Hold time	tor	0	-	ns
Output Set Time	tız	30	-	ns
CE1 Access Time	tcE1	-	100	ns
CE2 Access Time	tcE2	-	100	ns
$\overline{O E}$ Access Time	toe	-	100	ns
Output Floating Time	torz	-	20	ns

MB85R1002A

(2) Write Cycle
(within recommended operating conditions)

Parameter	Symbol	Value		Unit
		Min	Max	
Write Cycle Time	twc	150	-	ns
CE1 Active Time	tca1	120	-	ns
CE2 Active Time	tca2	120	-	ns
$\overline{\mathrm{LB}}, \overline{\mathrm{UB}}$ Active Time	tBP	120	-	ns
Precharge Time	tpc	20	-	ns
Address Setup Time	$\mathrm{tas}_{\text {A }}$	0	-	ns
Address Hold Time	$\mathrm{t}_{\text {AH }}$	50	-	ns
$\overline{\overline{L B}}, \overline{\mathrm{UB}}$ Setup Time	tBS	5	-	ns
Write Pulse Width	twp	120	-	ns
Data Setup Time	tos	0	-	ns
Data Hold Time	toh	50	-	ns
Write Setup Time	tws	0	-	ns

3. Pin Capacitance

Parameter	Symbol	Condition	Value			Unit
			Min	Typ	Max	
Input Capacitance	C_{IN}	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}$ out $^{2}=0 \mathrm{~V}$,	-	-	10	pF
Output Capacitance	$\mathrm{C}_{\text {OUT }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	10	pF

■ TIMING DIAGRAMS

1. Read Cycle Timing ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2$ Control)

2. Read Cycle Timing ($\overline{\mathrm{OE}}$ Control)

MB85R1002A

3. Write Cycle Timing ($\overline{C E} 1, \mathrm{CE} 2$ Control)

4. Write Cycle Timing ($\overline{\mathrm{WE}}$ Control)

POWER ON/OFF SEQUENCE

*: CE1 (Max) < Vcc +0.5 V
Notes: • Use either of $\overline{C E} 1$ or CE2, or both for disable control of the device.

- Because turning the power on from an intermediate level may cause malfunctions, when the power is turned on, Vcc is required to be started from 0 V .
- If the device does not operate within the specified conditions of read cycle, write cycle, power on/off sequence, memory data can not be guaranteed.
- When turning the power on or off, it is recommended that CE2 is connected to ground to prevent unexpected writing.
(within recommended operating conditions)

Parameter	Symbol	Value			Unit
		Min	Typ	Max	
$\overline{\text { CE1 LEVEL hold time for Power OFF }}$	tpd	85	-	-	ns
$\overline{\text { CE1 LEVEL hold time for Power ON }}$	tpu	85	-	-	ns
Power supply rising time	tr	0.05	-	200	ms

NOTES ON USE

After the IR reflow completed, it is not guaranteed to hold the data written prior to the IR reflow.

MB85R1002A

ORDERING INFOMATION

Part number	Package
MB85R1002ANC-GE1	48-pin plastic TSOP(1)
(FPT-48P-M48)	

PACKAGE DIMENSIONS

48-pin plastic TSOP	Lead pitch	0.50 mm
	Package width \times package length	$12.00 \mathrm{~mm} \times 12.40 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method	Plastic mold
	Mounting height	1.20 mm MAX
	Weight	0.36 g
(FPT-48P-M48)		

Please check the latest package dimension at the following URL.
http://edevice.fujitsu.com/package/en-search/

MB85R1002A

MEMO

MEMO

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome,
Kohoku-ku Yokohama Kanagawa 222-0033, Japan
Tel: +81-45-415-5858
http://jp.fujitsu.com/fsl/en/
For further information please contact:

North and South America
FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany
Tel: +49-6103-690-0 Fax: +49-6103-690-122
http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea
Tel: +82-2-3484-7100 Fax: +82-2-3484-7111
http://kr.fujitsu.com/fsk/

Asia Pacific
FUJITSU SEMICONDUCTOR ASIA PTE. LTD.
151 Lorong Chuan,
\#05-08 New Tech Park 556741 Singapore
Tel : +65-6281-0770 Fax : +65-6281-0220
http://sg.fujitsu.com/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD.
Rm. 3102, Bund Center, No. 222 Yan An Road (E), Shanghai 200002, China
Tel : +86-21-6146-3688 Fax : +86-21-6335-1605
http://cn.fujitsu.com/fss/
FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD.
10/F., World Commerce Centre, 11 Canton Road,
Tsimshatsui, Kowloon, Hong Kong
Tel : +852-2377-0226 Fax : +852-2376-3269
http://cn.fujitsu.com/fsp/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.
Customers are advised to consult with sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.
FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.
Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for F-RAM category:
Click to view products by Fujitsu manufacturer:

Other Similar products are found below :
CY15B128Q-SXA FM22LD16-55-BG FM24C64B-GTR FM25V02-DG CY15B104Q-PZXI CY15B128Q-SXE CG8867AF CY15B256QSXE CY15B104QN-50SXI FM25640B-G FM25640B-GTR FM25V02A-DGQ FM28V100-TGTR FM24CL64B-DGTR CY15E064Q-SXE FM24V05-GTR CY15B064J-SXE CY15B104Q-LHXIT CY15B104Q-SXIT FM24V01A-GTR FM28V020-T28G FM25W256-GTR CY15B016Q-SXE CY15B064J-SXET FM16W08-SGTR FM18W08-SGTR FM24V02A-GTR FM24W256-GTR FM25V02A-DGTR FM28V020-SGTR CY15B102N-ZS60XA CY15B102N-ZS60XE CY15B102QN-50SXE CY15B102Q-SXE CY15B104QI-20LPXC CY15B104QI-20LPXCES CY15B104QSN-108LPXI CY15B104QSN-108SXI CY15B104Q-SXI CY15V104QI-20LPXC CY15B108QI20LPXC CY15B108QI-20LPXI CY15B108QN-20LPXC CY15B108QN-40SXI CY15B256J-SXA CY15V104QN-50SXI CY15V104QSN108LPXI CY15V104QSN-108SXI CY15B108QN-40LPXI CY15V108QI-20LPXI

