

FEATURES

- Low-profile: 6 mm . 236 inch
(Tape height: max. 6.5 mm .256 inch)
- Tape and reel package is available as standard packing style
- Surge withstand between contacts and coil: 2,500 V
- Breakdown voltage between contacts and coil: 1,500 V
- Capacity: 2 A
- High sensitivity:

2 Form C; 140 mW power consumption (Single side stable type)

SPECIFICATIONS

Contact			
Arrangement			2 Form C
Initial contact resistance, max. (By voltage drop 6 V DC 1 A)			$75 \mathrm{~m} \Omega$
Contact material			Au-clad AgNi type
Rating	Nominal switching capacity (resistive load)		$\begin{gathered} 2 \mathrm{~A} 30 \mathrm{~V} \mathrm{DC}, \\ 0.5 \mathrm{~A} 125 \mathrm{~V} \text { AC } \end{gathered}$
	Max. switching power (resistive load)		$60 \mathrm{~W}, 62.5 \mathrm{VA}$
	Max. switching voltage		220 V DC, 125 V AC
	Max. switching current		2 A
	Min. switching capacity (Reference value) ${ }^{\# 1}$		$10 \mu \mathrm{~A} 10 \mathrm{mV}$ DC
Nominal operating power	Single side stable		140 mW (1.5 to 12 V DC) 200 mW (24 V DC) 300 mW (48 V DC)
	1 coil latching		$\begin{gathered} 70 \mathrm{~mW} \text { (1.5 to } 12 \mathrm{~V} \text { DC) } \\ 100 \mathrm{~mW}(24 \mathrm{~V} \text { DC) } \\ \hline \end{gathered}$
	2 coil latching		140 mW (1.5 to 12 V DC) 200 mW (24 V DC)
Expected life (min. operations)	Mechanical	at 180 cpm)	10^{8}
	Electrical (at 20 cpm)	2 A 30 V DC resistive	10^{5}
		$\begin{aligned} & \hline 1 \text { A } 30 \text { V DC } \\ & \text { resistive } \end{aligned}$	2×10^{5}
		0.5 A 125 V AC resistive	10^{5}

Note:

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. (SX relays are available for low level load switching [10V DC, 10mA max. level])

Remarks

* Specifications will vary with foreign standards certification ratings
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section.
*2 By resistive method, nominal voltage applied to the coil; contact carrying current: 2 A.
${ }^{* 3}$ Nominal voltage applied to the coil, excluding contact bounce time.
${ }^{* 4}$ Nominal voltage applied to the coil, excluding contact bounce time without diode
${ }^{* 5}$ Half-wave pulse of sine wave: 6 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{* 6}$ Half-wave pulse of sine wave: 6 ms
${ }^{* 7}$ Detection time: $10 \mu \mathrm{~s}$
${ }^{* 8}$ Refer to 6 . Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (p. 19, Relay Technical Information).

Characteristics

Initial insulation resistance*1			Min. 1,000 M
Initial breakdown voltage	Between open contacts		1,000 Vrms for 1 min. (Detection current: 10 mA)
	Between contact sets		1,500 Vrms for 1 min. (Detection current: 10 mA)
	Betwe coil	contact and	1,500 Vrms for 1 min . (Detection current: 10 mA)
Initial surge voltage	Betwe contac (10×1	n open $\mu \mathrm{s}$)	1,500 V (FCC Part 68)
	Betwe coil (2	n contacts and $10 \mu \mathrm{~s}$)	2,500 V (Telcordia)
Temperature rise*2 (at $20^{\circ} \mathrm{C}$)			Max. $50^{\circ} \mathrm{C}$
Operate time [Set time] ${ }^{* 3}$ (at $20^{\circ} \mathrm{C}$)			Max. 4 ms [Max. 4 ms]
Release time [Reset time]*4 (at $20^{\circ} \mathrm{C}$)			Max. 4 ms [Max. 4 ms]
Shock resistance		Functional*5	Min. $750 \mathrm{~m} / \mathrm{s}^{2}\{75 \mathrm{G}\}$
		Destructive*6	Min. 1,000 m/s ${ }^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*7	$200 \mathrm{~m} / \mathrm{s}^{2}\{20 \mathrm{G}\}, 10$ to 55 Hz at double amplitude of 3.3 mm
		Destructive	294 m/s² \{30G\}, 10 to 55 Hz at double amplitude of 5 mm
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}^{\star 3} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \\ & \hline \end{aligned}$
		Humidity	5 to 85\% R.H.
Unit weight			Approx. $2 \mathrm{~g} \mathrm{}$.

TQ SMD

ORDERING INFORMATION

Contact arrangement	Surface-mount availability	Operating function	Coil voltage (DC)	Packing style
2: 2 Form C	SA: Standard surface-mount terminal type SL: High connection reliability surface-mount terminal type SS: Space saving surfacemount terminal type	Nil: Single side stable L: 1 coil latching L2: 2 coil latching	$\begin{aligned} & 1.5,3,4.5,5,6 \\ & 9,12,24,48^{\star} V \end{aligned}$	Nil: Tube packing Z: Tape and reel packing (picked from the 6/7/8/9/10-pin side)

*48 V coil type: Single side stable only
Notes: 1. Tape and reel (picked from $1 / 2 / 3 / 4 / 5-$ pin side) is also available by request. Part No. suffix "- X " is needed when ordering. (ex.) TQ2SA-3V-X 2. Tape and reel packing symbol "-Z" or "-X" are not marked on the relay.

TYPES

1. Single side stable

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (max.)	Drop-out voltage, V DC (min.)	Nominal operating current, $\mathrm{mA}(\pm 10 \%)$	Coil resistance, Ω ($\pm 10 \%$)	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-1.5 V	1.5	1.13	0.15	93.8	16	140	2.2
TQ2SO-3 V	3	2.25	0.3	46.7	64.3	140	4.5
TQ2SO-4.5 V	4.5	3.38	0.45	31	145	140	6.7
TQ2SO-5 V	5	3.75	0.5	28.1	178	140	7.5
TQ2SO-6 V	6	4.5	0.6	23.3	257	140	9
TQ2SO-9 V	9	6.75	0.9	15.5	579	140	13.5
TQ2SO-12 V	12	9	1.2	11.7	1,028	140	18
TQ2SO-24 V	24	18	2.4	8.3	2,880	200	36
TQ2SO-48 V	48	36	4.8	6.3	7,680	300	57.6

2. 1 coil latching

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)	Reset voltage, V DC (max.)	Nominal operating current, $\text { mA (} \pm 10 \%)$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-L-1.5 V	1.5	1.13	1.13	46.9	32	70	2.2
TQ2SO-L-3 V	3	2.25	2.25	23.3	128.6	70	4.5
TQ2SO-L-4.5 V	4.5	3.38	3.38	15.6	289.3	70	6.7
TQ2SO-L-5 V	5	3.75	3.75	14	357	70	7.5
TQ2SO-L-6 V	6	4.5	4.5	11.7	514	70	9
TQ2SO-L-9 V	9	6.75	6.75	7.8	1,157	70	13.5
TQ2SO-L-12 V	12	9	9	5.8	2,057	70	18
TQ2SO-L-24 V	24	18	18	4.2	5,760	100	36

3. 2 coil latching

Part No.	Nominal voltage, V DC	Set voltage, V DC (max.)	Reset voltage, V DC (max.)	Nominal operating current, $\text { mA (} \pm 10 \%)$	Coil resistance, $\Omega(\pm 10 \%)$	Nominal operating power, mW	Max. allowable voltage, V DC
TQ2SO-L2-1.5 V	1.5	1.13	1.13	93.8	16	140	2.2
TQ2SO-L2-3 V	3	2.25	2.25	46.7	64.3	140	4.5
TQ2SO-L2-4.5 V	4.5	3.38	3.38	31	145	140	6.7
TQ2SO-L2-5 V	5	3.75	3.75	28.1	178	140	7.5
TQ2SO-L2-6 V	6	4.5	4.5	23.3	257	140	9
TQ2SO-L2-9 V	9	6.75	6.75	15.5	579	140	13.5
TQ2SO-L2-12 V	12	9	9	11.7	1,028	140	18
TQ2SO-L2-24 V	24	18	18	8.3	2,880	200	36

O: For each surface-mounted terminal variation, input the following letter.
SA type: \underline{A}, SL type: \underline{L}, SS type: \underline{S}
Notes: 1 . Specified value of the pick-up, drop-out, set and reset voltage is with the condition of square wave coil pulse.
2. Standard packing: Tube: 50 pcs.; Case: 1,000 pcs.

Tape and reel: 500 pcs.; Case: 1,000 pcs.
3. In case of 5 V transistor drive circuit, it is recommended to use 4.5 V type relay.

CAD Data

SA type

CAD Data
SL type

CAD Data

SS type

General tolerance: $\pm 0.3 \pm .012$

Recommendable mounting pad (Top view) SA type

SL type

SS type

Tolerance: $\pm 0.1 \pm .004$

Schematic (Top view)
-Single side stable (Deenergized condition)

*Orientation stripe located on top of relay.
-1-coil latching (Reset condition)

*Orientation stripe located on top of relay.
-2-coil latching (Reset condition)

*Orientation stripe located on top of relay.

REFERENCE DATA

1. Maximum switching capacity

4.-(1) Electrical life (2 A $30 \vee$ DC resistive load)

Tested sample: TQ2SA-12V, 6 pcs.
Operating frequency: 20 cpm
Change of pick-up and drop-out voltage
(mounting by IRS method)

2. Life curve

3. Mechanical life (mounting by IRS method) Tested sample: TQ2SA-12V, 10 pcs.

Change of contact resistance (mounting by IRS method)

4.-(2) Electrical life (0.5 A 125 V AC resistive load)

Tested sample: TQ2SA-12V, 6 pcs
Operating frequency: 20 cpm
Change of pick-up and drop-out voltage
(mounting by IRS method)

5. Coil temperature rise

Tested sample: TQ2SA-12V, 6 pcs.
Point measured: Inside the coil
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

6. Operate/release time

 Tested sample: TQ2SA-12V, 6 pcs.
7. Distribution of pick-up and drop out voltage Tested sample: TQ2SA-12V, 50 pcs.

8. Distribution of set and reset voltage

Tested sample: TQ2SA-L-12V, 30 pcs.

9. Ambient temperature characteristics Tested sample: TQ2SA-12V, 5 pcs.

10. Distribution of contact resistance

Tested sample: TQ2SA-5V, 30 pcs . (30×4 contacts)

11.-(1) High-frequency characteristics Isolation characteristics

11.-(2) High-frequency characteristics Insertion loss characteristics

12.-(1) Malfunctional shock (single side stable) Tested sample: TQ2SA-12V, 6 pcs

12.-(2) Malfunctional shock (latching)
 Tested sample: TQ2SA-L2-12V, 6 pcs.

13.-(1) Influence of adjacent mounting Tested sample: TQ2SA-12V, 5 pcs.

13.-(2) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

13.-(3) Influence of adjacent mounting Tested sample: TQ2SA-12V, 6 pcs.

14. Pulse dialing test

Tested sample: TQ2SA-12V, 6 pcs. (35 mA 48 V DC wire spring relay load) Circuit

Change of pick-up and drop-out voltage (mounting by IRS method)

Change of contact resistance (mounting by IRS method)

NOTES

1. Packing style
1) The relay is packed in a tube with the relay orientation mark on the left side, as shown in the figure below.

2) Tape and reel packing (surface-mount terminal type)
(1) Tape dimensions
(i) SA type

(ii) SL, SS type

For Cautions for Use, see Relay Technical Information.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Low Signal Relays - PCB category:
Click to view products by Panasonic manufacturer:

Other Similar products are found below :
6-1393813-4 6-1462039-0 6-1617529-6 617-12 M39016/11-048P 67RPCX-3 7-1393809-0 7-1393813-3 7556072001 80.010.4522.1 FTRB4GA006Z FW1210S02 9-1393813-6 9-1617519-3 9-1617582-5 G6AK-2-H-DC5 A-1.5W-K DF2E-L2-DC3V DS1EM24J DS1EM5J DS1ES5J DS4E-M-DC5V-H48 EC2-4.5TNJ EC2-9NJ B07B939BC1-0868 1608043-4 1617076-5 1617117-3 1617137-2 1617518-5 1617560 HMB1130K00 HMB1131S06 HMS1119S01 HMS1131S10 HMS1201S03 HMS1201S87 HMS1205S02 2-1393807-6 2-1617071-2 2-1617594-1 JMGSC-5LW K6-PS KHS-17D11-110 9-1393761-0 9-1617352-3 9-1617583-1 276XAXH-9D 1617072-3 1617075-4

