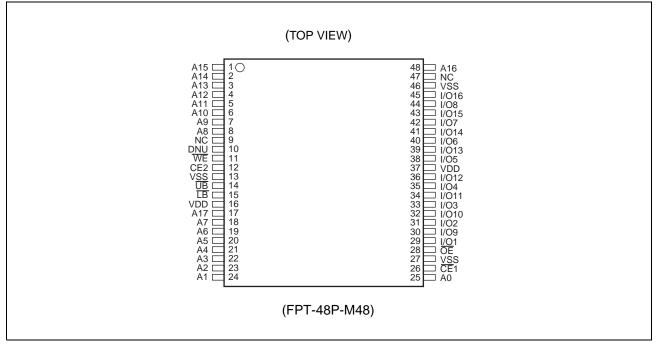
Memory FRAM

4 M Bit (256 K × 16)

MB85R4002A

DESCRIPTIONS

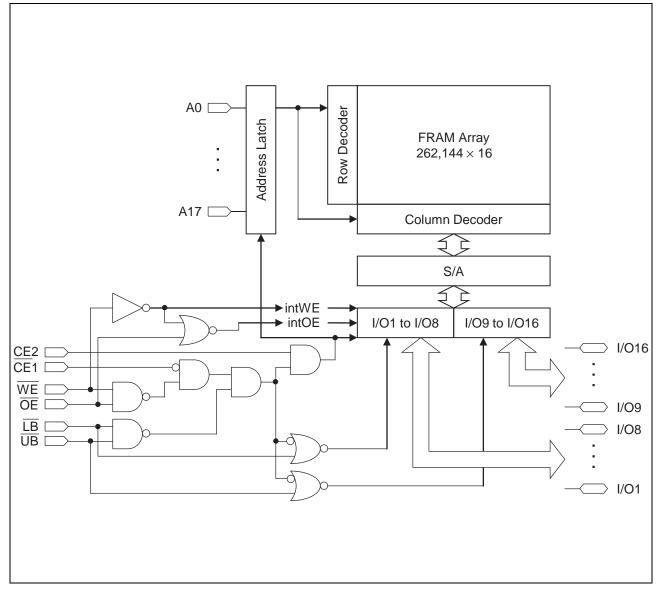
The MB85R4002A is an FRAM (Ferroelectric Random Access Memory) chip consisting of 262,144 words \times 16 bits of nonvolatile memory cells fabricated using ferroelectric process and silicon gate CMOS process technologies.


The MB85R4002A is able to retain data without using a back-up battery, as is needed for SRAM. The memory cells used in the MB85R4002A can be used for 10¹⁰ read/write operations, which is a significant improvement over the number of read and write operations supported by Flash memory and E²PROM. The MB85R4002A uses a pseudo-SRAM interface that is compatible with conventional asynchronous SRAM.

FEATURES

 Bit configuration LB and UB data byte control 	: 262,144 words \times 16 bits
Read/write endurance	: 10 ¹⁰ times / byte
 Data retention 	: 10 years (+ 55 °C), 55 years (+ 35 °C)
 Operating power supply voltage 	: 3.0 V to 3.6 V
 Low power operation 	: Operating power supply current 15 mA (Typ)
	Standby current 50 µA (Typ)
 Operation ambient temperature range 	$e: -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$
 Package 	: 48-pin plastic TSOP (FPT-48P-M48)
	RoHS compliant

■ PIN ASSIGNMENTS



■ PIN DESCRIPTIONS

Pin Number	Pin Name	Functional Description
1 to 8, 17 to 25, 48	A0 to A17	Address Input pins
29 to 36, 38 to 45	I/O1 to I/O16	Data Input/Output pins
26	CE1	Chip Enable 1 Input pin
12	CE2	Chip Enable 2 Input pin
11	WE	Write Enable Input pin
28	ŌĒ	Output Enable Input pin
14, 15	LB, UB	Data Byte Control Input pins
16, 37	VDD	Supply Voltage pins Connect all two pins to the power supply.
13, 27, 46	VSS	Ground pins Connect all three pins to ground.
9, 47	NC	No Connect pins Leave these pins open, or connect to VDD or VSS.
10	DNU	Do Not Use pin Make sure to connect this pin to VDD.

MB85R4002A

■ BLOCK DIAGRAM

■ FUNCTIONAL TRUTH TABLE

Mode	CE1	CE2	WE	ŌE	LB	UB	I/O1 to I/O8	I/O9 to I/O16	Supply Current					
	Н	Х	Х	X X	Х	Х								
Standby Precharge	Х	L	Х	Х	Х	Х	Hi-Z	Hi-Z	Standby					
Stanuby Frecharge	Х	Х	Н	Н	Х	Х			(Іѕв)					
	Х	Х	Х	Х	Н	Н								
					L	L	Data Output	Data Output						
	Ł	Н	Н	L	L	Н	Data Output	Hi-Z						
Read					Н	L	Hi-Z	Data Output						
Reau					L	L	Data Output	Data Output						
	L	_F	Н	Н	Н	Н	Н	L	L	Н	Data Output	Hi-Z		
							Н	L	Hi-Z	Data Output				
Read					L	L	Data Output	Data Output						
(Pseudo-SRAM,	L	н	н	ľ	L	Н	Data Output	Hi-Z						
OE control*1)										Н	L	Hi-Z	Data Output	Operation
					L	L	Data Input	Data Input	(Idd)					
	Ł	н	L	н	L	Н	Data Input	Hi-Z						
Write					Н	L	Hi-Z	Data Input						
white					L	L	Data Input	Data Input						
	L	⊸	L	н	L	Н	Data Input	Hi-Z						
					Н	L	Hi-Z	Data Input						
Write					L	L	Data Input	Data Input						
(Pseudo-SRAM,	L	н	Ł	Н	L	Н	Data Input	Hi-Z						
WE control*2)					Н	L	Hi-Z	Data Input						

Note: $L = V_{IL}$, $H = V_{IH}$, X can be either H, L, $\neg L$ or I, Hi-Z = High Impedance

 γ : Latch address and latch data at falling edge, 🚡: Latch address and latch data at rising edge

*1 : \overline{OE} control of the Pseudo-SRAM means the valid address at the falling edge of \overline{OE} to read.

*2 : $\overline{\text{WE}}$ control of the Pseudo-SRAM means the valid address and data at the falling edge of $\overline{\text{WE}}$ to write.

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rat	Unit	
Falanetei	Symbol	Min	Мах	Onit
Power Supply Voltage*	Vdd	-0.5	+4.0	V
Input Pin Voltage*	Vin	-0.5	$V_{DD} + 0.5 \ (\le 4.0)$	V
Output Pin Voltage*	Vout	-0.5	$V_{DD} + 0.5 \ (\le 4.0)$	V
Operation Ambient Temperature	TA	-40	+85	°C
Storage Temperature	Тѕтс	-55	+125	°C

* : All voltages are referenced to VSS (ground 0 V).

WARNING: Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
Faidilielei	Symbol	Min	Тур	Max	Unit
Power Supply Voltage*	Vdd	3.0	3.3	3.6	V
High Level Input Voltage*	Vін	Vdd × 0.8		$V_{DD} + 0.5$ (≤ 4.0)	V
Low Level Input Voltage*	VIL	-0.5	—	+0.6	V
Operation Ambient Temperature	TA	- 40		+85	°C

* : All voltages are referenced to VSS (ground 0 V).

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(within recommended operating conditions)

Parameter	Symbol	ymbol Condition		Value			
Farameter	Symbol	Condition	Min	Тур	Max	Unit	
Input Leakage Current*1	lu	$V_{IN} = 0 V \text{ to } V_{DD}$			10	μΑ	
Output Leakage Current	I LO	$\frac{V_{OUT} = 0 V \text{ to } V_{DD},}{\overline{CE1} = V_{IH} \text{ or } \overline{OE} = V_{IH}}$	_		10	μΑ	
Operating Power Supply Current* ²	ldd	$\overline{CE1} = 0.2 \text{ V}, \text{ CE2} = \text{V}_{\text{DD}} - 0.2 \text{ V},$ $I_{\text{out}} = 0 \text{ mA}$	—	15	20	mA	
		$\overline{CE}1 \ge V_{DD} - 0.2 V$					
Standby Current*3	ISB	$CE2 \le 0.2 V$		50	150	μΑ	
Standby Current	158	$\overline{OE} \geq V_{\text{DD}} - 0.2 \text{ V}, \ \overline{WE} \geq V_{\text{DD}} - 0.2 \text{ V}$			150		
		$\overline{LB} \geq V_{\text{DD}} - 0.2 \text{ V}, \ \overline{UB} \geq V_{\text{DD}} - 0.2 \text{ V}$					
High Level Output Voltage	Vон	Іон = – 1.0 mA	$V_{\text{DD}} imes 0.8$			V	
Low Level Output Voltage	Vol	IoL = 2.0 mA			0.4	V	

*1 : This also applies to DNU pins.

*2 : During the measurement of IDD , the Address and Data In were taken to only change once per active cycle. Iout : output current

*3 : All pins other than setting pins shall be input at the CMOS level voltages such as H \geq V_{DD} – 0.2 V, L \leq 0.2 V.

2. AC Characteristics

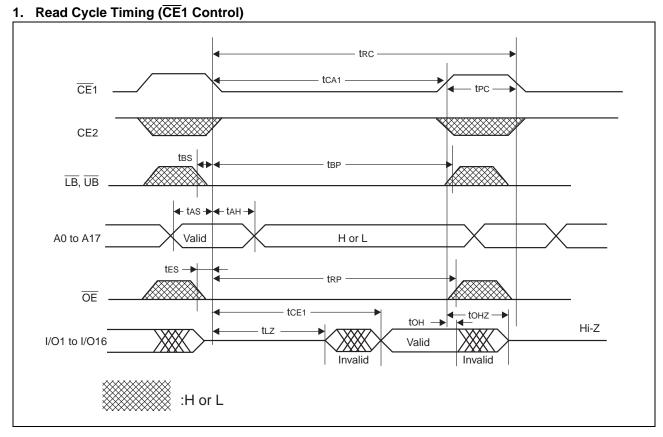
• AC Test Conditions

Power Supply Voltage	: 3.0 V to 3.6 V
Operation Ambient Temperature	: -40 °C to +85 °C
Input Voltage Amplitude	: 0.3 V to 2.7 V
Input Rising Time	: 5 ns
Input Falling Time	: 5 ns
Input Evaluation Level	: 2.0 V / 0.8 V
Output Evaluation Level	: 2.0 V / 0.8 V
Output Load Capacitance	: 50 pF

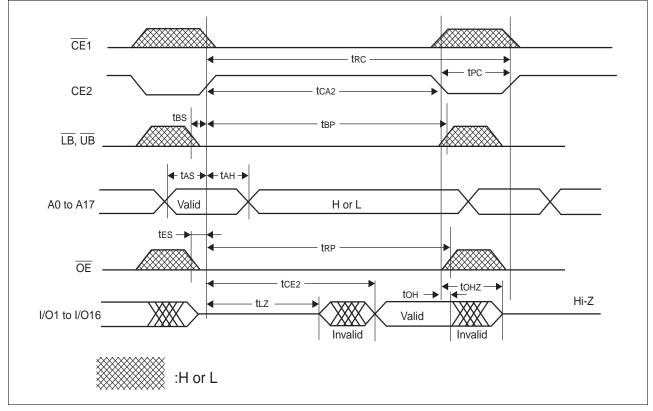
(1) Read Cycle

Decementer	Cumhal	Va	lue	L lucit
Parameter	Symbol	Min	Max	Unit
Read Cycle time	t RC	150		ns
CE1 Active Time	t _{CA1}	120		ns
CE2 Active Time	tCA2	120		ns
OE Active Time	t RP	120		ns
LB, UB Active Time	tвр	120		ns
Precharge Time	t _{PC}	20		ns
Address Setup Time	tas	0		ns
Address Hold Time	tан	50		ns
OE Setup Time	tes	0		ns
LB, UB Setup Time	tвs	5		ns
Output Data Hold time	tон	0		ns
Output Set Time	t∟z	30		ns
CE1 Access Time	tce1	_	120	ns
CE2 Access Time	tce2		120	ns
OE Access Time	toe		120	ns
Output Floating Time	tонz		20	ns

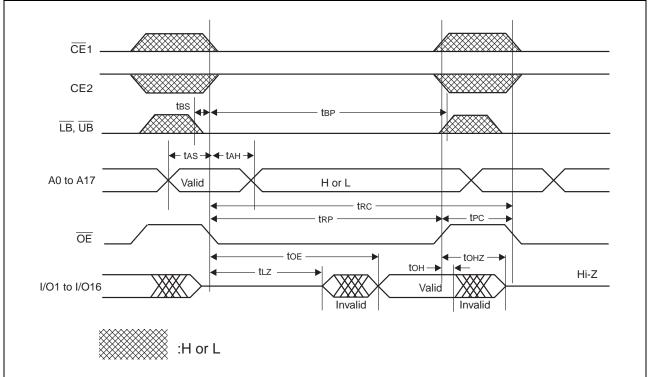
MB85R4002A

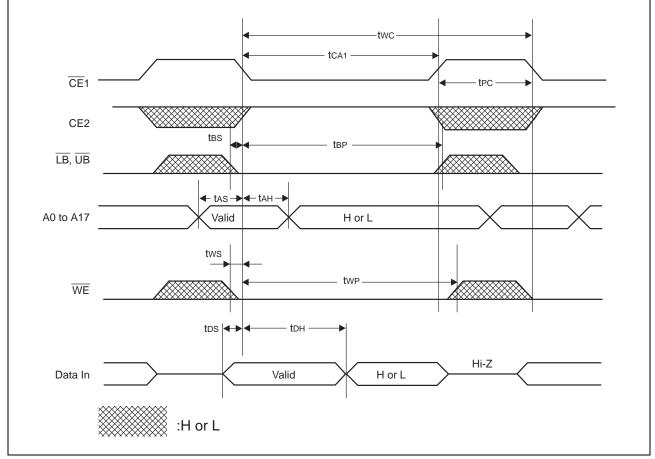

(2) Write Cycle

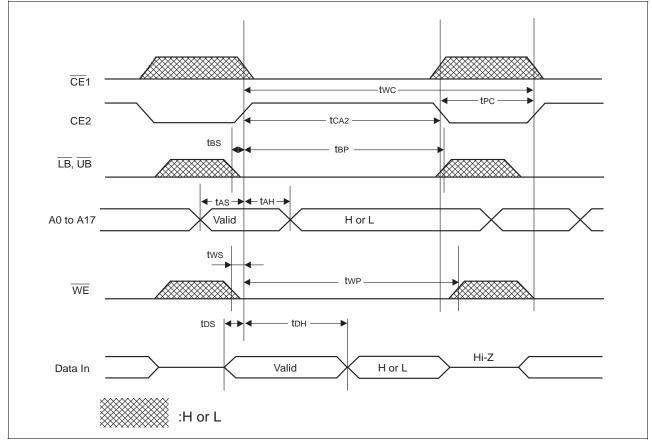
Parameter	Symbol	Va	Unit	
Falanielei	Symbol	Min	Max	Unit
Write Cycle Time	twc	150		ns
CE1 Active Time	tca1	120		ns
CE2 Active Time	tca2	120		ns
LB, UB Active Time	tвр	120	_	ns
Precharge Time	tec	20	_	ns
Address Setup Time	tas	0	_	ns
Address Hold Time	tан	50		ns
LB, UB Setup Time	tвs	5	_	ns
Write Pulse Width	twp	120	_	ns
Data Setup Time	tos	0	_	ns
Data Hold Time	tон	50		ns
Write Setup Time	tws	0		ns

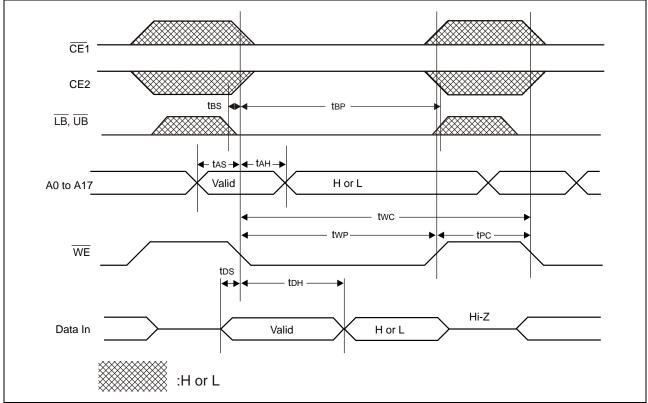

3. Pin Capacitance

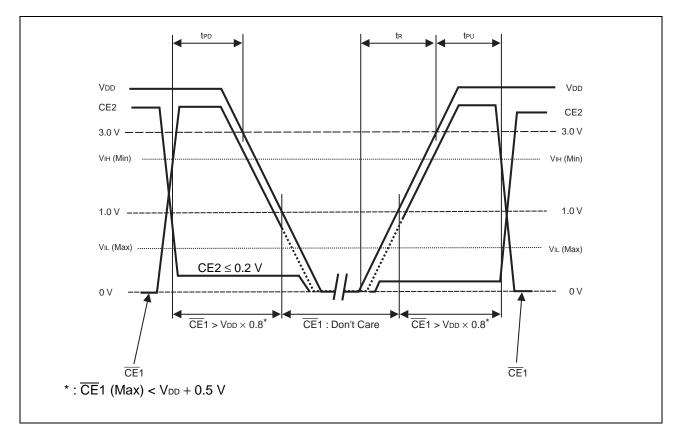
Parameter	Symbol	Condition		Value		Unit
Farameter	Symbol	Condition	Min	Тур	Max	Onit
Input Capacitance	CIN		—	—	10	pF
Output Capacitance	Соит	$V_{DD} = V_{IN} = V_{OUT} = 0 V,$ f = 1 MHz, T _A = + 25 °C	—	_	10	pF
DNU Pin Input Capacitance	CDNU	· · · · · · · · · · · · · · · · · · ·		_	10	pF


■ TIMING DIAGRAMS


2. Read Cycle Timing (CE2 Control)


3. Read Cycle Timing (OE Control)


4. Write Cycle Timing (CE1 Control)


5. Write Cycle Timing (CE2 Control)

6. Write Cycle Timing (WE Control)

■ POWER ON/OFF SEQUENCE

Parameter	Symbol		Unit		
Farameter	Symbol	Min	Тур	Max	Onic
CE1 level hold time for Power OFF	t PD	85	—		ns
CE1 level hold time for Power ON	t PU	85			ns
Power supply rising time	tR	0.05	—	200	ms

If the device does not operate within the specified conditions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed.

In case the power is turned on or off, use the power supply reset IC and fix the CE2 to low level, to prevent unexpected writing. Use either of $\overline{CE1}$ or CE2, or both to disable control of the device.

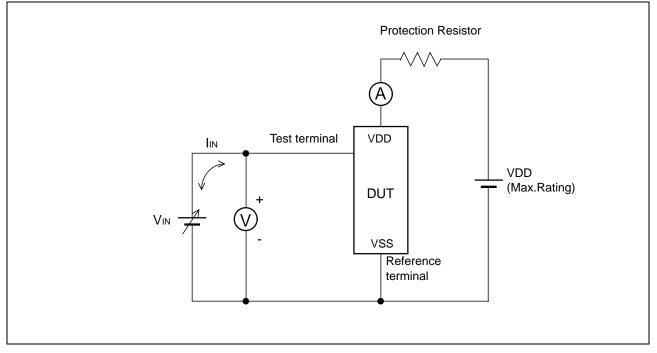
■ FRAM CHARACTERISTICS

ltem	Min	Max	Unit	Parameter
Read/Write Endurance*1	10 ¹⁰	_	Times/byte	Operation Ambient Temperature $T_A = +85 \ ^{\circ}C$
Data Retention*2	10	—	Years	Operation Ambient Temperature $T_A = +55 \ ^{\circ}C$
	55	—	Teals	Operation Ambient Temperature $T_A = +35 \ ^{\circ}C$

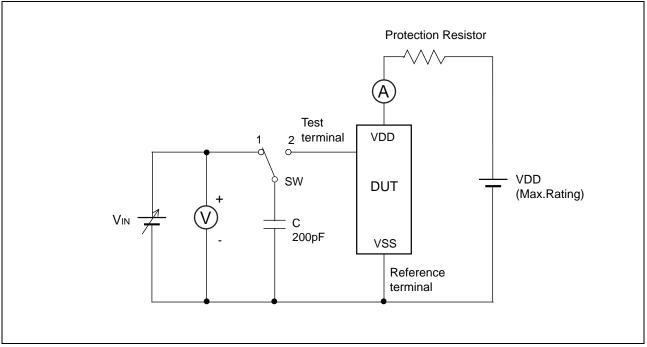
*1 : Total number of reading and writing defines the minimum value of endurance, as an FRAM memory operates with destructive readout mechanism.

*2 : Minimun values define retention time of the first reading/writing data right after shipment, and these values are calculated by qualification results.

NOTES ON USE


Data written before performing IR reflow is not guaranteed after IR reflow.

■ ESD AND LATCH-UP


Test	DUT	Value
ESD HBM (Human Body Model) JESD22-A114 compliant		≥ 2000 V
ESD MM (Machine Model) JESD22-A115 compliant		≥ 200 V
ESD CDM (Charged Device Model) JESD22-C101 compliant		
Latch-Up (I-test) JESD78 compliant	MB85R4002ANC-GE1	
Latch-Up (V _{supply} overvoltage test) JESD78 compliant		
Latch-Up (Current Method) Proprietary method		≥ 300 mA
Latch-Up (C-V Method) Proprietary method		

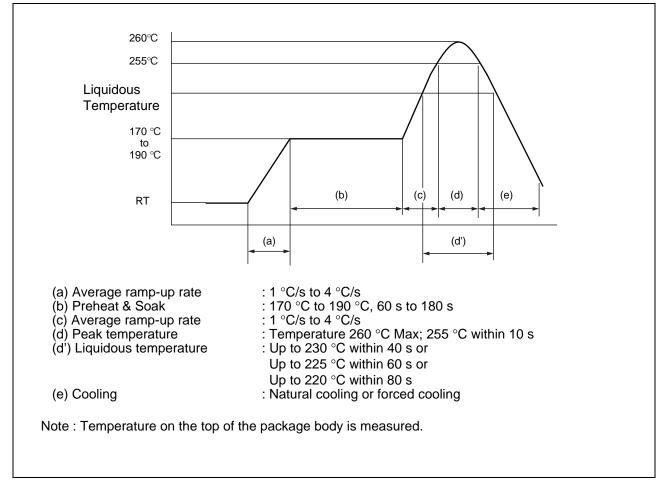
• Current method of Latch-Up Resistance Test

Note : The voltage V_{IN} is increased gradually and the current I_{IN} of 300 mA at maximum shall flow.
 Confirm the latch up does not occur under I_{IN} = ± 300 mA.
 In case the specific requirement is specified for I/O and I_{IN} cannot be 300 mA, the voltage shall be increased to the level that meets the specific requirement.

• C-V method of Latch-Up Resistance Test

Note : Charge voltage alternately switching 1 and 2 approximately 2 sec interval. This switching process is considered as one cycle.

Repeat this process 5 times. However, if the latch-up condition occurs before completing 5 times, this test must be stopped immediately.


ĪTSU

FU

■ REFLOW CONDITIONS AND FLOOR LIFE

ltem	Condition	
Method	IR (infrared reflow), Convection	
Times	2	
	Before unpacking	Please use within 2 years after production.
	From unpacking to 2nd reflow	Within 8 days
Floor life	In case over period of floor life	Baking with 125 °C+/-3 °C for 24hrs+2hrs/-0hrs is required. Then please use within 8 days. (Please remember baking is up to 2 times)
Floor life condition	Between 5 °C and 30 °C and also below 70%RH required. (It is preferred lower humidity in the required temp range.)	

Reflow Profile

RESTRICTED SUBSTANCES

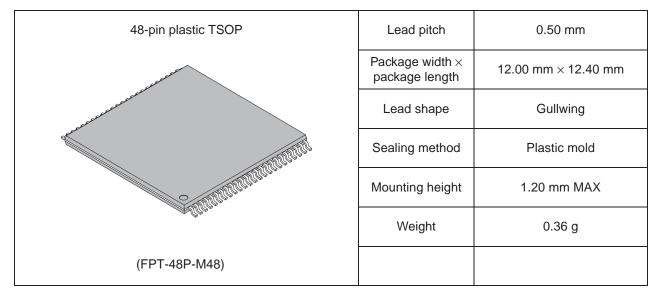
This product complies with the regulations below (Based on current knowledge as of November 2011).

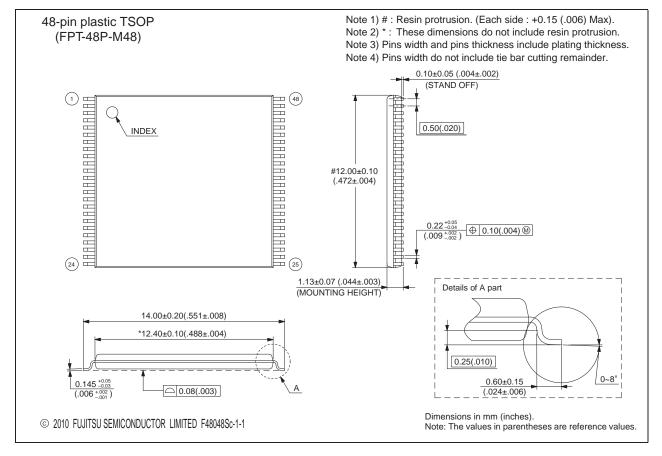
- EU RoHS Directive (2002/95/EC)
- China RoHS (Administration on the Control of Pollution Caused by Electronic Information Products (电子信息产品污染控制管理办法))
- Vietnam RoHS (30/2011/TT-BCT)

Restricted substances in each regulation are as follows.

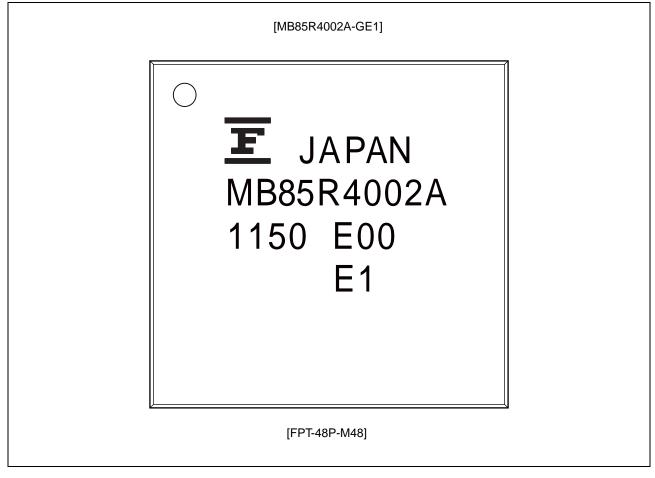
Substances	Threshold	Contain status*
Lead and its compounds	1,000 ppm	О
Mercury and its compounds	1,000 ppm	О
Cadmium and its compounds	100 ppm	О
Hexavalent chromium compound	1,000 ppm	О
Polybrominated biphenyls (PBB)	1,000 ppm	О
Polybrominated diphenyl ethers (PBDE)	1,000 ppm	О

* : The mark of "O" shows below a threshold value.

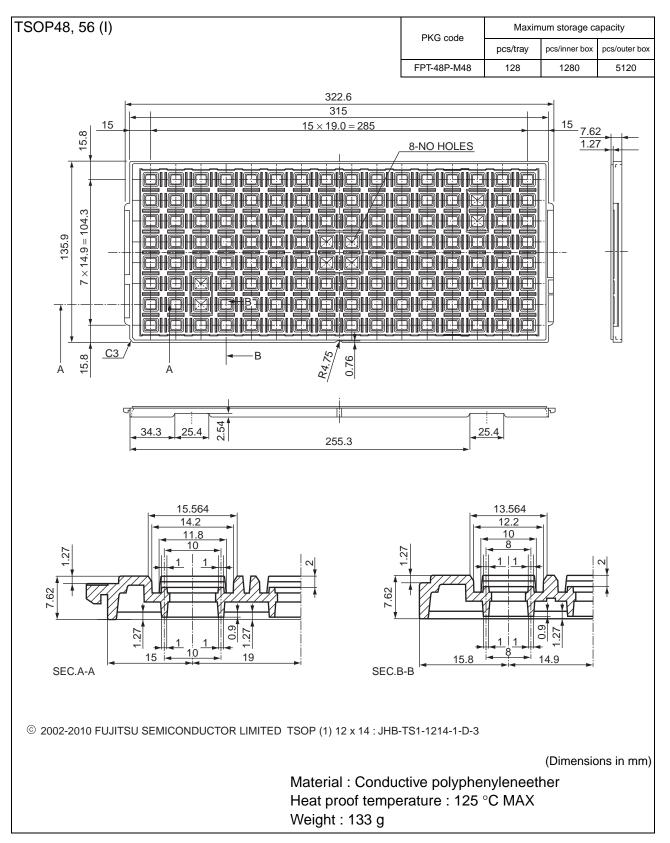


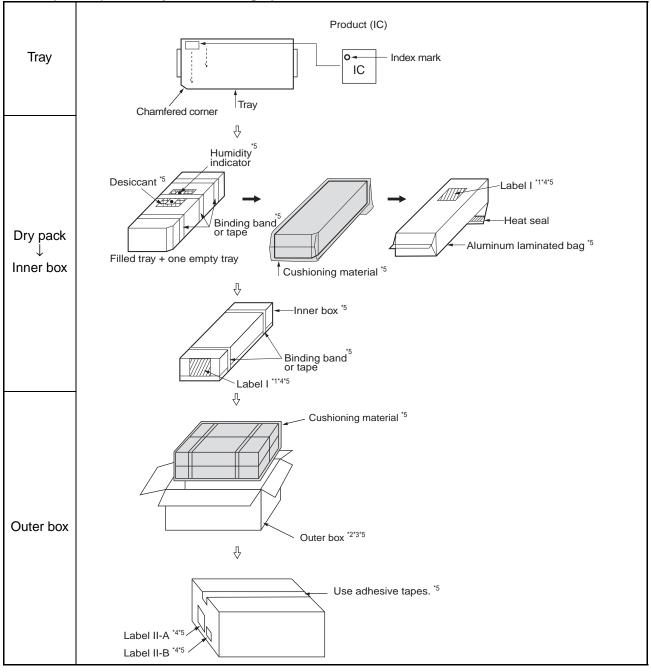

■ ORDERING INFORMATION

Part Number	Package	Shipping form	Minimum shipping quantity
MB85R4002ANC-GE1	48-pin plastic TSOP (FPT-48P-M48)	Tray	1



PACKAGE DIMENSIONS


MARKING



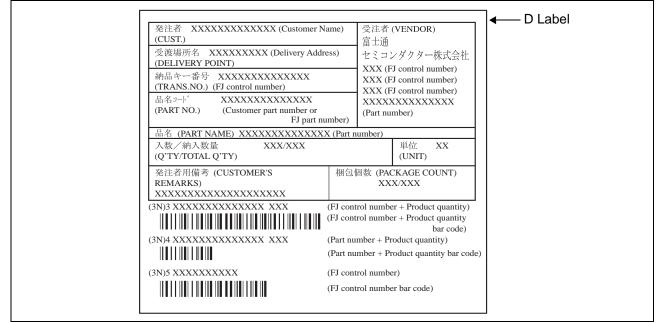
SHIPPING FORM

- 1. Tray
- 1.1 Tray Dimensions

FUITSU

1.2 IEC (JEDEC) TRAY Dry Pack Packing Specifications

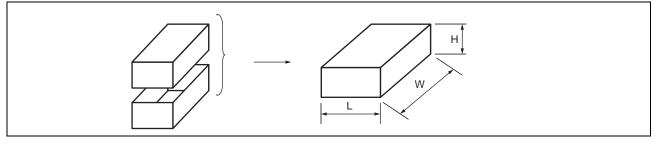
- *1: For a product of witch part number is suffixed with "E1", a " G (B) " marks is display to the moisture barrier bag and the inner boxes.
- *2: The size of the outer box may be changed depending on the quantity of inner boxes.
- *3: The space in the outer box will be filled with empty inner boxes, or cushions, etc.
- *4: Please refer to an attached sheet about the indication label.
- *5: The packing materials except tray may differ slightly from the color and dimensions depend on country of manufacture.


Note: The packing specifications may not be applied when the product is delivered via a distributer.

1.3 Product label indicators

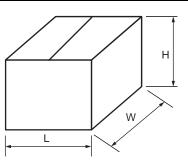
Label I: Label on Inner box/Moisture Barrier Bag/ (It sticks it on the reel for the emboss taping) [C-3 Label (50mm x 100mm) Supplemental Label (20mm x 100mm)]

Label II-A: Label on Outer box [D Label] (100mm x 100mm)


Label II-B: Outer boxes product indicate

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	rt number)		
(Lot Number)	(Count)	(Quantity)	
XXXX-XXX	X 箱 X 箱	XXX 個 XXX 個	
XXXX-XXX		XXX 個	

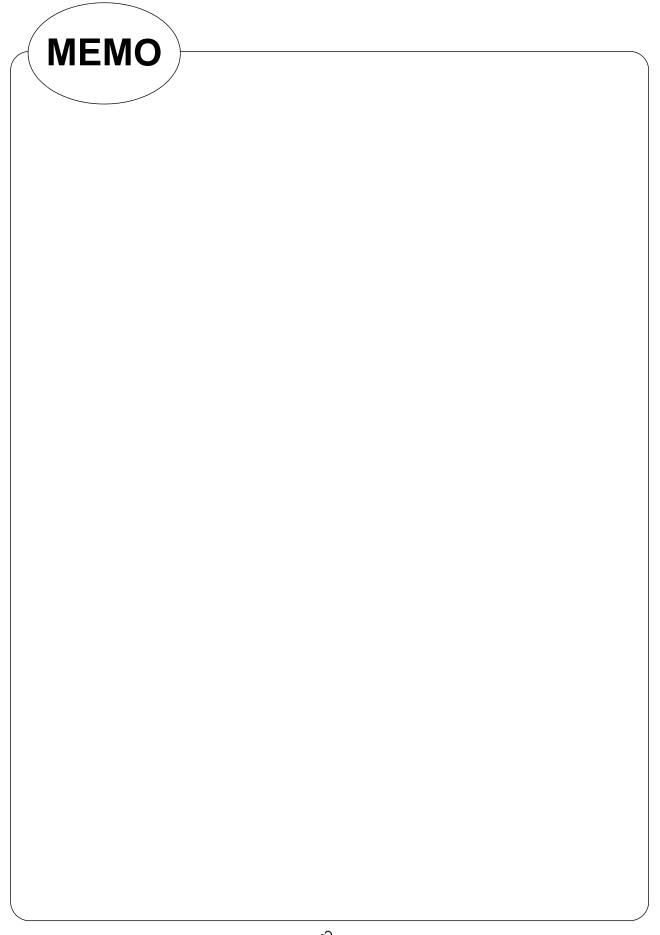
Note: Depending on shipment state, "Label II-A" and "Label II-B" on the external boxes might not be printed.

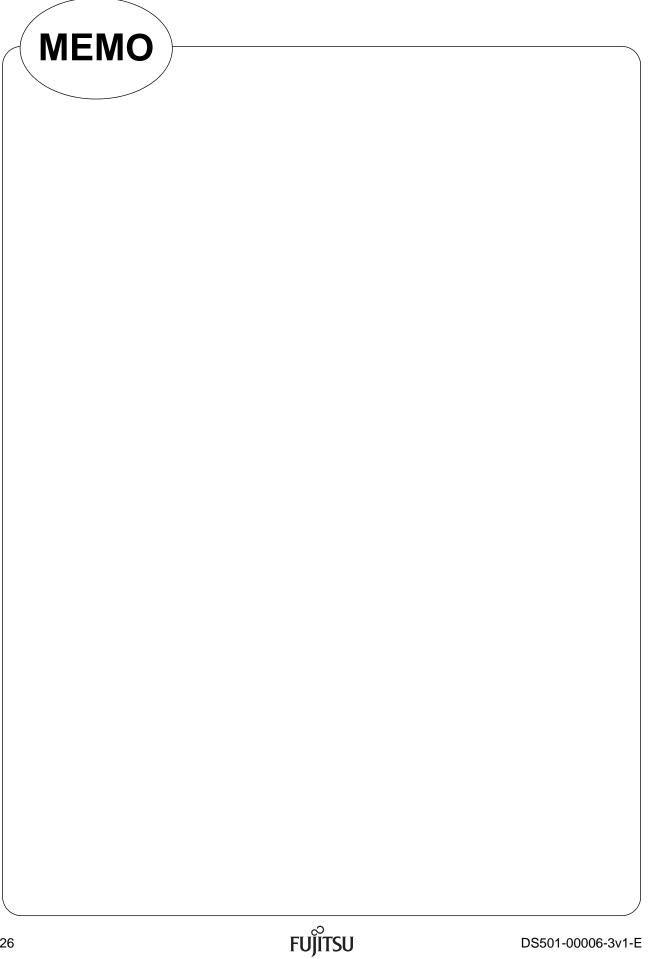

1.4 Dimensions for Containers

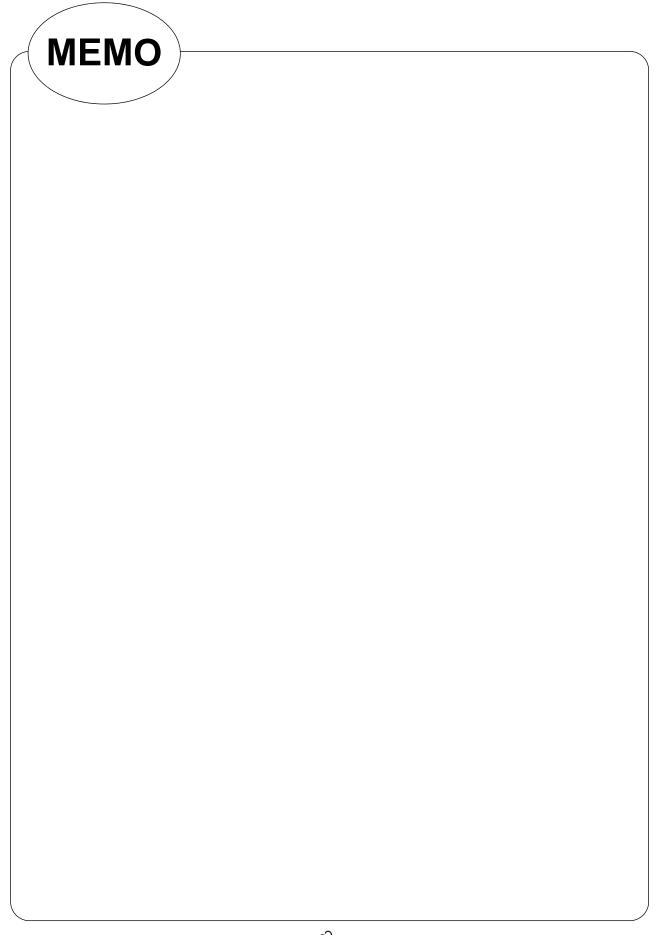
(1) Dimensions for inner box

L	W	Н
165	360	75
		(Dimensions in mm)

(2) Dimensions for outer box


355 385 195	L	W	Н	
		385	195	


(Dimensions in mm)


■ MAJOR CHANGES IN THIS EDITION

A change on a page is indicated by a vertical line drawn on the left side of that page.

Page	Section	Change Results
1	■ FEATURES	Revised the Data retention. 10 years (+ 55 °C) \rightarrow 10 years (+ 55 °C), 55 years (+ 35 °C)
4	■ FUNCTIONAL TRUTH TABLE	Revised the table.
5	■ ABSOLUTE MAXIMUM RANGES	Revised the Storage Temperature. $-40 ^{\circ}\text{C} \rightarrow +55 ^{\circ}\text{C}$
12	■ POWER ON/OFF SEQUENCE	Deleted the following description: "Because turning the power-on from an intermediate level cause malfunction, when the power is turned on, V _{DD} is re- quired to be started from 0V (see the figure below)." Moved the following description under the table: "If the device does not operate within the specified condi- tions of read cycle, write cycle or power on/off sequence, memory data can not be guaranteed. In case the power is turned on or off, use the power supply reset IC and fix the CE2 to low level, to prevent unexpected writing. Use either of CE1 or CE2, or both to disable control of the device."
	■ FRAM CHARACTERISTICS	Revised the table and Note.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 http://jp.fujitsu.com/fsl/en/

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Argues Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 902 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fsk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://sg.fujitsu.com/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. 30F, Kerry Parkside, 1155 Fang Dian Road, Pudong District, Shanghai 201204, China Tel: +86-21-6146-3688 Fax: +86-21-6146-3660 http://cn.fujitsu.com/fss/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 2/F, Green 18 Building, Hong Kong Science Park, Shatin, N.T., Hong Kong Tel: +852-2736-3232 Fax: +852-2314-4207 http://cn.fujitsu.com/fsp/

All Rights Reserved.

FUJITSU SEMICONDUCTOR LIMITED, its subsidiaries and affiliates (collectively, "FUJITSU SEMICONDUCTOR") reserves the right to make changes to the information contained in this document without notice. Please contact your FUJITSU SEMICONDUCTOR sales representatives before order of FUJITSU SEMICONDUCTOR device. Information contained in this document, such as descriptions of function and application circuit examples is presented solely for reference to examples of operations and uses of FUJITSU SEMICONDUCTOR device. FUJITSU SEMICONDUCTOR disclaims any and all warranties of any kind, whether express or implied, related to such information, including, without limitation, quality, accuracy, performance, proper operation of the device or non-infringement. If you develop equipment or product incorporating the FUJITSU SEMICONDUCTOR device based on such information, you must assume any responsibility or liability arising out of or in connection with such information or any use thereof. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any damages whatsoever arising out of or in connection with such information or any use thereof.

Nothing contained in this document shall be construed as granting or conferring any right under any patents, copyrights, or any other intellectual property rights of FUJITSU SEMICONDUCTOR or any third party by license or otherwise, express or implied. FUJITSU SEMICONDUCTOR assumes no responsibility or liability for any infringement of any intellectual property rights or other rights of third parties resulting from or in connection with the information contained herein or use thereof.

The products described in this document are designed, developed and manufactured as contemplated for general use including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated for general use including manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high levels of safety is secured, could lead directly to death, personal injury, severe physical damage or other loss (including, without limitation, use in nuclear facility, aircraft flight control system, air traffic control system, mass transport control system, medical life support system and military application), or (2) for use requiring extremely high level of reliability (including, without limitation, submersible repeater and artificial satellite). FUJITSU SEMICONDUCTOR shall not be liable for you and/or any third party for any claims or damages or damages and and or any third party for any claims or damages or damages and an artificial satellite).

Any semiconductor devices fail or malfunction with some probability. You are responsible for providing adequate designs and safeguards against injury, damage or loss from such failures or malfunctions, by incorporating safety design measures into your facility, equipments and products such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions. The products and technical information described in this document are subject to the Foreign Exchange and Foreign Trade Control

Law of Japan, and may be subject to export or import laws or regulations in U.S. or other countries. You are responsible for ensuring compliance with such laws and regulations relating to export or re-export of the products and technical information described herein. All company names, brand names and trademarks herein are property of their respective owners.

Edited: Sales Promotion Department

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for fujitsu manufacturer:

Other Similar products are found below :

 FCN-268D008-G/1F
 FCN-234D050-G/E
 FCN-361P040-AU
 FCN-364J016-AU
 FCN-744G010-AU/0
 FCN-264D008-G/2F
 FCN-260C008

 A/S3
 FCN-268D008-G/21
 FCN-268D008-G/3M-R
 FCN-723D010/2
 FCN-361J016-AU
 FCN-268D024-G/10-R
 FCN-264D008-G/2D
 FCN

 237B050-G/W
 FCN-361J024-AU
 FCN-268D008-G/20
 FCN-230C050-C/E
 FCN-363J008
 MAT4Z-DR
 FCN-268M024-G/1D
 FTP

 639USL202
 FTR-F1AA024V
 FTR-H1CA012V
 FTR-K3AB012W
 FTR-MYAA005D
 FTR-P6GN012WA
 PZ-2A2415
 PZ-2A2425
 PZ

 2A2430
 PZ-2A2445
 PZ-4A2620
 PZ-6A2805
 PZ-6A2810
 PZ-6A2830
 PZ-6A2840
 GZ-12C
 GZ-18H
 GZ-9H
 AL

 24W-K
 DZ4E-12V
 ITT2B-EH
 ITT2-BR
 25A04C24C
 25A04C28C
 RY-48W-K
 RY-5WZ-K
 26A06C54E
 RZ-24C