ULTRA PRECISION CHIP RESISTORS

BLU SERIES

\square Industry's widest range of precision chip resistors!
\square Tolerance to $\pm 0.01 \%$, TCR to $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

CUSTOM OPTIONS

\square Option P: Pulse resistant design
\square Option ER: Burn-In for Hi-Rel applications
\square Option V: $+200^{\circ}$ operating temperature
\square Option A: Marking of resis. code in 3 or 4 digits (not available on BLU0201 or BLU0402)
\square Matched sets and TC's to 2ppm available (limited range)

'Blu-Chip' performance at an economical price!

RCD's expertise in the field of ultra-precision resistors since 1973, combined with the latest in automated chip resistor production equipment, enables precision chip resistors at prices comparable to lower grade devices. The BLU-chip design features excellent stability levels. Intermediate and extended-range values are available on custom basis. Popular values are available from stock.

$\begin{aligned} & \text { RCD } \\ & \text { Type } \end{aligned}$	Power @ $70^{\circ} \mathrm{C}$	Max. Working Voltage*	$\begin{gathered} \text { TCR }^{2} \\ \left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	Standard Resistance Range ${ }^{1}$				Dimensions			
				0.01\%	.02\%, .05\%	0.1\%,0.25\%	0.5\%, 1\%	L	W	T	t
BLU0201	.05W	15V	10, 15	N/A	N/A	100 2 - 10K	100 - 10K	$\begin{gathered} .020 \pm .004 \\ {[.5 \pm .1]} \end{gathered}$	$\begin{gathered} .01 \pm .002 \\ {[.25 \pm .05]} \end{gathered}$	$\begin{gathered} .014 \pm .004 \\ {[.35 \pm .1]} \end{gathered}$	$\begin{gathered} 01 \pm .005 \\ {[.25 \pm .12]} \end{gathered}$
			25,50	N/A	N/A	100 2 - 10K	$33 \Omega-22 \mathrm{~K}$				
			100	N/A	N/A	100 2 - 10K	10, -22K				
BLU0402	.062W	25 V	5	$50 \Omega-2 \mathrm{~K}$	$50 \Omega-2 \mathrm{~K}$	$51 \Omega-2 \mathrm{~K}$	$50 \Omega-2 \mathrm{~K}$	$\begin{gathered} .040 \pm .004 \\ {[1.0 \pm .1]} \end{gathered}$	$\begin{aligned} & .020 \pm .002 \\ & {[.5 \pm .05]} \end{aligned}$	$\begin{gathered} .014 \pm .004 \\ {[.35 \pm .1]} \end{gathered}$	$\begin{gathered} .01 \pm .005 \\ {[.25 \pm .12]} \end{gathered}$
			10, 15	$50 \Omega-12 \mathrm{~K}$	$50 \Omega-12 \mathrm{~K}$	51 Ω-12K	25ת-12K				
			25	$50 \Omega-12 \mathrm{~K}$	$50 \Omega-12 \mathrm{~K}$	10, -100K	$10 \Omega-100 \mathrm{~K}$				
			50,100	$50 \Omega-12 \mathrm{~K}$	50Ω-12K	10, -100K	10, -1M				
BLU0603	.1W	75V	5	$50 \Omega-8 \mathrm{~K}$	$50 \Omega-8 \mathrm{~K}$	$50 \Omega-8 \mathrm{~K}$	$50 \Omega-8 \mathrm{~K}$	$\begin{aligned} & .063 \pm .008 \\ & {[1.6 \pm .2]} \end{aligned}$	$\begin{gathered} .031 \pm .006 \\ {[.8 \pm .15]} \end{gathered}$	$\begin{aligned} & .018 \pm .006 \\ & {[.45 \pm .15]} \end{aligned}$	$\begin{gathered} .012 \pm .008 \\ {[.3 \pm .2]} \end{gathered}$
			10, 15	$25 \Omega-100 \mathrm{~K}$	$25 \Omega-100 \mathrm{~K}$	$10 \Omega-402 \mathrm{~K}$	$25 \Omega-100 \mathrm{~K}$				
			25	$25 \Omega-100 \mathrm{~K}$	4.7Ω-150K	$4.7 \Omega-402 \mathrm{~K}$	$2 \Omega-402 \mathrm{~K}$				
			50,100	$25 \Omega-100 \mathrm{~K}$	$4.7 \Omega-150 \mathrm{~K}$	4.7 Ω-402K	$2 \Omega-1 \mathrm{M}$				
BLU0805	.125W	100V	5	$50 \Omega-16 \mathrm{~K}$	50Ω-16K	$50 \Omega-16 \mathrm{~K}$	$50 \Omega-16 \mathrm{~K}$	$\begin{aligned} & .079 \pm .006 \\ & {[2.0 \pm .15]} \end{aligned}$	$\begin{aligned} & .050 \pm .006 \\ & {[1.25 \pm .15]} \end{aligned}$	$\begin{aligned} & .018 \pm .006 \\ & {[.45 \pm .15]} \end{aligned}$	$\begin{aligned} & .014 \pm .008 \\ & {[.35 \pm .2]} \end{aligned}$
			10, 15	$25 \Omega-200 \mathrm{~K}$	$25 \Omega-200 \mathrm{~K}$	$10 \Omega-499 \mathrm{~K}$	$25 \Omega-200 \mathrm{~K}$				
			25,50,100	25, -200K	4.7 - -500K	4.7 - 1M	1 Ω-1M				
BLU1206	.25W	150V	5	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$\begin{aligned} & .126 \pm .006 \\ & {[3.2 \pm .15]} \end{aligned}$	$\begin{gathered} .063 \pm .006 \\ {[1.6 \pm .15]} \end{gathered}$	$\begin{aligned} & .020 \pm .006 \\ & {[.50 \pm .15]} \end{aligned}$	$\begin{gathered} .020 \pm .010 \\ {[.51 \pm .25]} \end{gathered}$
			10, 15	$25 \Omega-500 \mathrm{~K}$	$25 \Omega-500 \mathrm{~K}$	$10 \Omega-1 \mathrm{M}$	$25 \Omega-500 \mathrm{~K}$				
			25,50,100	25, -500K	4.7 - 1M	4.7 - 1M	1 Ω-2M				
BLU1210	.33W	150V	5,10	$100 \Omega-30 \mathrm{~K}$	100 2 -330K	$100 \Omega-330 \mathrm{~K}$	$100 \Omega-330 \mathrm{~K}$	$\begin{aligned} & .126 \pm .006 \\ & {[3.2 \pm .15]} \end{aligned}$	$\begin{aligned} & .098 \pm .008 \\ & {[2.5 \pm .2]} \end{aligned}$	$\begin{aligned} & .024 \pm .008 \\ & {[.61 \pm .2]} \end{aligned}$	$\begin{aligned} & .020 \pm .010 \\ & {[.51 \pm .25]} \end{aligned}$
			25	$51 \Omega-500 \mathrm{~K}$	$51 \Omega-2 \mathrm{M}$						
			50,100	$51 \Omega-500 \mathrm{~K}$	$51 \Omega-2 \mathrm{M}$	51 Ω - 2 M	$10 \Omega-4.7 \mathrm{M}$				
BLU2010	.5W	150V	5	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$50 \Omega-30 \mathrm{~K}$	$\begin{gathered} .197 \pm .008 \\ {[5 \pm .2]} \end{gathered}$	$\begin{aligned} & .098 \pm .008 \\ & {[2.5 \pm .2]} \end{aligned}$	$\begin{aligned} & .024 \pm .008 \\ & {[.61 \pm .2]} \end{aligned}$	$\begin{aligned} & .024 \pm .008 \\ & {[.61 \pm .2]} \end{aligned}$
			10, 15	$25 \Omega-500 \mathrm{~K}$	$25 \Omega-500 \mathrm{~K}$	$10 \Omega-1 \mathrm{M}$	$25 \Omega-500 \mathrm{~K}$				
			25,50,100	$25 \Omega-500 \mathrm{~K}$	$4.7 \Omega-1 \mathrm{M}$	$4.7 \Omega-1 \mathrm{M}$	1 Ω-2M				
BLU2512	1W	200V	5	$50 \Omega-50 \mathrm{~K}$	$50 \Omega-50 \mathrm{~K}$	$50 \Omega-50 \mathrm{~K}$	$50 \Omega-50 \mathrm{~K}$	$\begin{aligned} & .248 \pm .008 \\ & {[6.3 \pm .2]} \end{aligned}$	$\begin{aligned} & .126 \pm .008 \\ & {[3.2 \pm .2]} \end{aligned}$	$\begin{aligned} & .024 \pm .008 \\ & {[.61 \pm .2]} \end{aligned}$	$\begin{aligned} & .024 \pm .008 \\ & {[.61 \pm .2]} \end{aligned}$
			10, 15	$25 \Omega-500 \mathrm{~K}$	$25 \Omega-500 \mathrm{~K}$	$10 \Omega-1 \mathrm{M}$	$25 \Omega-500 \mathrm{~K}$				
			25,50,100	$25 \Omega-500 \mathrm{~K}$	$4.7 \Omega-1 \mathrm{M}$	$4.7 \Omega-1 \mathrm{M}$	$1 \Omega-2 \mathrm{M}$				

${ }^{*}$ Maximum working voltage determined by $\mathrm{E}=\sqrt{\mathrm{PR}, \mathrm{E}}$ should not exceed value listed. Increased voltage ratings available. ${ }^{1}$ Extended range available, consult factory. ${ }^{2} \mathrm{TC}$ measured $25^{\circ}-100^{\circ} \mathrm{C}$

TYPICAL PERFORMANCE CHARACTERISTICS

Requirements	Characteristics (5-25ppm)	Test Method
Short Time Overload, 5 Sec.	$\pm 0.1 \% \Delta \mathrm{R}$	Rated W x 2.5, nte 2x Max..Voltage
Resistance to Solder Heat	$\pm 0.05 \% \Delta \mathrm{R}$	$260 \pm 5^{\circ} \mathrm{C}, 3$ seconds
High Temperature Exposure	$\pm 0.1 \% \Delta \mathrm{R}$	100 hours @ $+125^{\circ} \mathrm{C}$
Thermal Shock	$\pm 0.1 \% \Delta \mathrm{R}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, 0.5 \mathrm{hrs}, 5 \mathrm{cycles}$
Moisture Resistance	$\pm 0.2 \% \Delta \mathrm{R}$	Mil-STD-202 M103 95\% RH 1000hrs
Load Life (1000 hours)	$\pm 0.1 \%(\pm .25 \% 10,000 \mathrm{hrs})$	Mil-PRF-55342G 4.8.11.1 ceramic
Solderability	95% (Min.)	MIL-Std-202, Method 208
Shelf Life	100 ppm/year (Max.)	Room Temp. \& Humidity, No-Load
Dielectric Withstand Voltage	250 V (100V 0402 \& 0603)	60 Seconds, terminal to ceramic

CONSTRUCTION

To ensure utmost reliability, care should be taken to avoid potential sources of ionic contamination.

* The typical $\Delta \mathrm{R}$ of chips with $50-100 \mathrm{ppm}$ TC is double that of chips with 5 to 25 ppm TC

DERATING CURVE
Resistors may be operated up to full rated power with consideration of mounting density, pad geometry, PCB material, and ambient temperature.

RCD Components Inc, 520 E.Industrial Park Dr, Manchester, NH, USA 03109 rcdcomponents.com Tel: 603.669-0054 Fax: 603.669.5455 Email:sales@rcdcomponents.com FA013G Sale of this product is in accordance with GF-061. Specifications subject to change without notice.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for rcd manufacturer:
Other Similar products are found below :
630-8R60-FBW 640B-R100-FBW 605B-1R50-FBW CC1-104-KBW PR1-3R3-JBW LVF15-R010-FBW 210-1R00-FBW 635B-3R00-FBW PWLL25-302-JBW 605B-R100-FBW 210-10R0-FBW 610Q2-331-JBW 160-2500-FBW 160-1R00-FBW 135X-800-JBW 135-1500-FBW 235-1001-FBW 610Q-1250-FBW 135-180-JBW 175-5000-FBW 135-5R00-FBW 610-1R00-FBW 160-510-JBW 175-131-JBW 232-1000FBW PW5-251-JBW PW5-500-JBW RSF1B-4R7-JBW RMF3-103-JBW 135-2500-FBW 135-821-JBW 160-120-JBW 630X-100-JBW LVF15-R040-FBW 135-152-JBW 160-3002-FBW 160-244-JBW 610-5001-FBW 160-1R5-JBW 255-1000-FBW 175-R500-FBW 160-331JBW 175-2R4-JBW 160-R100-FBW 175-820-JBW PW5-912-JBW 160-121-JBW 610-5R00-FBW 620-103-JBW 125P-151-JBQ

