\qquad General Description
The MAX649/MAX651/MAX652 BiCMOS, step-down DCDC switching controllers provide high efficiency over three decades of load current. A unique, current-limited pulse-frequency-modulated (PFM) control scheme gives these devices the benefits of pulse-width-modulation (PWM) converters (high efficiency at heavy loads), while using only $100 \mu \mathrm{~A}$ of supply current (vs. 2 mA to 10 mA for PWM converters). The result is high efficiency over loads ranging from 10 mA to more than 2.5A.
These devices use miniature external components. Their high switching frequency (up to 300 kHz) allows for less than 9 mm diameter surface-mount inductors.
The MAX649/MAX651/MAX652 have dropout voltages less than 1 V and accept input voltages up to 16.5 V . Output voltages are preset at 5 V (MAX649), 3.3V (MAX651), and 3V (MAX652). These controllers can also be adjusted to any voltage from 1.5 V to the input voltage by using two resistors.
These step-down controllers drive external P-channel MOSFETs at loads greater than 10W. If less power is required, use the MAX639/MAX640/MAX653 step-down converters with on-chip FETs, which allow up to a 225 mA load current.

Applications

5V-to-3.3V Green PC Applications
High-Efficiency Step-Down Regulation
Minimum-Component DC-DC Converters
Battery-Powered Applications

Ordering Information continued at end of data sheet.

* Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$.
**Contact factory for availability and processing to MIL-STD-883.

Pin Configuration

Maxim Integrated Products 1

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V_{+}to GND... \qquad $-0.3 \mathrm{~V},+17 \mathrm{~V}$
REF, SHDN, FB, CS, EXT, OUT.......................-0.3V, (V+ + 0.3V)
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
Plastic DIP (derate $9.09 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 727 mW
SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$). .471 mW
CERDIP (derate $8.00 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 640 mW

Operating Temperature Ranges	
MAX649C_A, MAX65_C_A	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
MAX649E A, MAX65 E A..	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MAX649MJA, MAX65_MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	
Lead Temperature (soldering	$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}+=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
V+ Input Voltage Range	V+			4.0		16.5	V
Supply Current	lQ	$\mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{SHDN} \leq 0.4 \mathrm{~V}$ (operating, switch off)			80	100	$\mu \mathrm{A}$
		$\mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{SHDN} \geq 1.6 \mathrm{~V}$ (shutdown)			4		
		$\mathrm{V}+=10 \mathrm{~V}, \mathrm{SHDN} \geq 1.6 \mathrm{~V}$ (shutdown)			2	5	
FB Trip Point		MAX649C, MAX65_C		1.470	1.5	1.530	V
		MAX649E, MAX65_E		1.4625	1.5	1.5375	
		MAX649M, MAX65_M		1.455	1.5	1.545	
FB Input Current	IfB	MAX649C, MAX65_C				± 50	nA
		MAX649E, MAX65_E				± 70	
		MAX649M, MAX65_M				± 90	
Output Voltage	Vout	Circuit of Figure 1	MAX649, $\mathrm{V}_{+}=6 \mathrm{~V}$ to 16.5 V	4.80	5.0	5.20	V
			MAX651, $\mathrm{V}_{+}=4 \mathrm{~V}$ to 16.5 V	3.17	3.3	3.43	
			MAX652, $\mathrm{V}_{+}=4 \mathrm{~V}$ to 16.5 V	2.88	3.0	3.12	
Reference Voltage	VREF	MAX649C, MAX65_C, IREF $=0$		1.470	1.5	1.530	V
		MAX649E, MAX65_E, IREF = 0		1.4625	1.5	1.5375	
		MAX649M, MAX65_M, IREF = 0		1.455	1.5	1.545	
REF Load Regulation		$0 \leq \operatorname{IREF} \leq 100 \mu \mathrm{~A},$ sourcing only	MAX649C/E, MAX65_C/E		4	10	mV
			MAX649M, MAX65_M		4	15	
REF Line Regulation		$4 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V}$			40	100	$\mu \mathrm{V} / \mathrm{V}$
Output Voltage Line Regulation		Circuit of Figure 1	$\begin{aligned} & \text { MAX649, } 6 \mathrm{~V} \leq \mathrm{V}_{+} \leq 16 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A} \end{aligned}$		2.6		mV / V
			$\begin{aligned} & \text { MAX651, } 4.5 \mathrm{~V} \leq \mathrm{V}+\leq 16 \mathrm{~V}, \\ & \mathrm{I} \text { LOAD }=1 \mathrm{~A} \end{aligned}$		1.7		
			$\begin{aligned} & \text { MAX652, } 4 \mathrm{~V} \leq \mathrm{V}_{+} \leq 16 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{LOAD}}=1 \mathrm{~A} \end{aligned}$		1.9		

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{+}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}\right.$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage Load Regulation		Circuit of Figure 1	$\begin{aligned} & \text { MAX649, } 0 \leq \mathrm{I} \text { LOAD } \leq 1.5 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{IN}}=10 \mathrm{~V} \end{aligned}$		-47		mV / A
			$\begin{aligned} & \text { MAX651, } 0 \leq \operatorname{ILOAD} \leq 1.5 \mathrm{~A}, \\ & \mathrm{VIN}=5 \mathrm{~V} \end{aligned}$		-45		
			$\begin{aligned} & \text { MAX652, } 0 \leq \operatorname{ILOAD} \leq 1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$		-45		
Efficiency		Circuit of Figure 1	$\begin{aligned} & \text { MAX649, } \mathrm{V}+=10 \mathrm{~V}, \\ & \mathrm{I} \text { LOAD }=1 \mathrm{~A} \end{aligned}$		92		\%
			$\begin{aligned} & \text { MAX651, } V_{+}=5 \mathrm{~V}, \\ & \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A} \end{aligned}$		89		
			$\begin{aligned} & \text { MAX652, } \mathrm{V}_{+}=5 \mathrm{~V}, \\ & \mathrm{ILOAD}=1 \mathrm{~A} \end{aligned}$		88		
SHDN Input Current		$\mathrm{V}_{+}=16.5 \mathrm{~V}, \mathrm{SHDN}=0 \mathrm{~V}$ or V_{+}				1	$\mu \mathrm{A}$
SHDN Input Voltage High	V_{IH}	$4 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V}$		1.6			V
SHDN Input Voltage Low	VIL	$4 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V}$				0.4	V
Current-Limit Trip Level (V+ to CS)	VCS	$4 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V}$	MAX649C/E, MAX65_C/E	180	210	240	mV
			MAX649M, MAX65_M	160	210	260	
CS Input Current		$4 \mathrm{~V} \leq \mathrm{V}+\leq 16.5 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Switch Maximum On-Time	$\begin{gathered} \operatorname{ton} \\ (\max) \end{gathered}$	$\mathrm{V}+=12 \mathrm{~V}$		12	16	20	$\mu \mathrm{s}$
Switch Minimum Off-Time	$\begin{aligned} & \text { toff } \\ & (\mathrm{min}) \end{aligned}$	$\mathrm{V}+=12 \mathrm{~V}$		1.8	2.3	2.8	$\mu \mathrm{s}$
EXT Rise Time		CEXT $=0.001 \mu \mathrm{~F}, \mathrm{~V}+=12 \mathrm{~V}$			50		ns
EXT Fall Time		CEXT $=0.001 \mu \mathrm{~F}, \mathrm{~V}+=12 \mathrm{~V}$			50		ns

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

\qquad

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

MAX649
LOAD-TRANSIENT RESPONSE

A: LOAD CURRENT (100 mA \& 1 A), $500 \mathrm{~mA} /$ div B: 5V OUTPUT VOLTAGE, ACळOUPLED, $50 \mathrm{mV} / \mathrm{div}$
MAX649
SHUTDOWN RESPONSE TIME

$1 \mathrm{~ms} / \mathrm{div}^{2}$
LLOAD $=1 \mathrm{~A}$
A: SHDN INPUT VOLTAGE (OV \& 5V), 2V/div
B: 5V OUTPUT VOLTAGE 2V/div
Pin Description

PIN	NAME	FUNCTION
1	OUT	Sense input for fixed 5V, 3.3V, or 3V output operation. OUT is internally connected to the on-chip voltage divider. Although it is connected to the output of the circuit, the OUT pin does not supply current.
2	FB	Feedback input. Connect to GND for fixed-output operation. Connect a resistor divider between OUT, FB, and GND for adjustable-output operation. See Setting the Output Voltage section.
3	SHDN	Active-high TTLCMOS logic-level input. Part is placed in shutdown when SHDN is driven high. In shutdown mode, the reference and the external MOSFET are turned off, and OUT = 0V. Connect to GND for normal operation.
4	REF	1.5V reference output that can source 100 $\mu \mathrm{A}$. Bypass with 0.1 $\mu \mathrm{FF}$.
5	V+	Positive power-supply input
6	CS	Current-sense input. Connect current-sense resistor between V+ and CS. When the voltage across the resistor equals the current-limit trip level, the external MOSFET is turned off.
7	EXT	Gate drive for external P-channel MOSFET. EXT swings between V+ and GND. 8

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

Figure 1. Test Circuit
Detailed Description
The MAX649/MAX651/MAX652 are BiCMOS, stepdown, switch-mode power-supply controllers that provide fixed outputs of $5 \mathrm{~V}, 3.3 \mathrm{~V}$, and 3 V , respectively. Their unique control scheme combines the advantages of pulse-frequency-modulation (low supply current) and pulse-width-modulation (high efficiency at high loads). An external P-channel power MOSFET allows peak currents in excess of 3A, increasing the output current capability over previous PFM devices. Figure 2 is the block diagram.
The MAX649/MAX651/MAX652 offer three main improvements over prior solutions:

1) The converters operate with tiny (less than 9 mm diameter) surface-mount inductors, due to their 300 kHz switching frequency.
2) The current-limited PFM control scheme allows greater than 90% efficiencies over a wide range of load currents (1.0 mA to 1.5 A).
3) The maximum supply current is only $100 \mu \mathrm{~A}$.

PFM Control Scheme

The MAX649/MAX651/MAX652 use a proprietary, cur-rent-limited PFM control scheme. As with traditional PFM converters, the external power MOSFET is turned on when the voltage comparator senses that the output
is out of regulation. However, unlike traditional PFM converters, switching is accomplished through the combination of a peak current limit and a pair of oneshots that set the maximum switch on-time ($16 \mu \mathrm{~s}$) and minimum switch off-time $(2.3 \mu \mathrm{~s})$. Once off, the minimum off-time one-shot holds the switch off for $2.3 \mu \mathrm{~s}$. After this minimum time, the switch either 1) stays off if the output is in regulation, or 2) turns on again if the output is out of regulation.
The MAX649/MAX651/MAX652 also limit the peak inductor current, which allows them to run in continuous-conduction mode and maintain high efficiency with heavy loads (Figure 3a). This current-limiting feature is a key component of the control circuitry. Once turned on, the switch stays on until either 1) the maximum on-time one-shot turns it off ($16 \mu \mathrm{~s}$ later), or 2) the current limit is reached.
To increase light-load efficiency, the current limit for the first two pulses is set to half the peak current limit. If those pulses bring the output voltage into regulation, the voltage comparator holds the MOSFET off and the current limit remains at half its peak. If the output voltage is still out of regulation after two pulses, the current limit for the next pulse is raised to its peak (Figure 3b). Calculate the peak current limit by dividing the Current-Limit Trip Level (see Electrical Characteristics) by the value of the current-sense resistor.

Shutdown Mode

When SHDN is high, the MAX649/MAX651/MAX652 enter shutdown mode. In this mode, the internal biasing circuitry is turned off (including the reference) and the supply current drops to less than $5 \mu \mathrm{~A}$. EXT goes high, turning off the external MOSFET. SHDN is a TTL/CMOS logic-level input. Connect SHDN to GND for normal operation.

Quiescent Current In normal operation, the quiescent current is less than $100 \mu \mathrm{~A}$. However, this current is measured by forcing the external transistor switch off. In an actual application, even with no load, additional current is drawn to supply external feedback resistors (if used) and the diode and capacitor leakage currents. In the circuit of Figure 1, with V_{+}at 5 V and VOUT at 3.3 V , the typical quiescent current is $90 \mu \mathrm{~A}$.

EXT Drive Voltage Range EXT swings from V_{+}to GND and provides the drive output for an external P-channel power MOSFET.

Modes of Operation
When delivering high output currents, the MAX649/ MAX651/MAX652 operate in continuous-conduction mode (CCM). In this mode, current always flows in the

5V/3.3V/3V or Adjustable, High-Effic ienc y, Low IQ, Step-Down DC-DC Controllers

Figure 2. Block Diagram

5V/3.3V/3V or Adjustable, High-Efficienc y, Low IQ, Step-Down DC-DC Controllers

Figure 3a. MAX649 Continuous-Conduction Mode, Heavy Load-Current Waveform (500mA/div)
inductor, and the control circuit adjusts the switch duty cycle to maintain regulation without exceeding the switch current capability (Figure 3a). This provides excellent load-transient response and high efficiency.
In discontinuous-conduction mode (DCM), current through the inductor starts at zero, rises to a peak value, then ramps down to zero. Although efficiency is still excellent, the output ripple increases slightly, and the switch waveforms exhibit ringing (the self-resonant frequency of the inductor). This ringing is to be expected and poses no operational problems.

Dropout

The MAX649/MAX651/MAX652 are said to be in dropout when the input voltage (V_{+}) is low enough that the output drops below the minimum output voltage specification (see Electrical Characteristics). The dropout voltage is the difference between the input and output voltage when dropout occurs. See the Typical Operating Characteristics for the Dropout Voltage vs. Load Current and Dropout Voltage vs. Temperature graphs.

Figure 3b. MAX649 Light/Medium Load-Current Waveform ($500 \mathrm{~mA} /$ div)

Figure 4. Adjustable-Output Operation

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

Figure 5a. MAX649 Current-Sense Resistor Graph

Design Procedure

Setting the Output Voltage The MAX649/MAX651/MAX652 are preset for 5V, 3.3V, and 3 V output voltages, respectively. Tie FB to GND for fixed-output operation. They may also be adjusted from 1.5 V (the reference voltage) to the input voltage, using external resistors R2 and R3 configured as shown in Figure 4. For adjustable-output operation, $150 \mathrm{k} \Omega$ is recommended for resistor R3. $150 \mathrm{k} \Omega$ is a good value-high enough to avoid wasting energy, yet low enough to avoid RC delays caused by parasitic capacitance at FB. R2 is given by:

$$
\mathrm{R} 2=\mathrm{R} 3 \times\left[\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{REF}}}-1\right]
$$

where $V_{\text {REF }}=1.5 \mathrm{~V}$.
When using external resistors, it does no harm to connect OUT and the output together, or to leave OUT unconnected.

Current-Sense Resistor Selection

The current-sense resistor limits the peak switch current to $210 \mathrm{mV} /$ RSENSE, where RSENSE is the value of the current-sense resistor, and 210 mV is the currentlimit trip level (see Electrical Characteristics).
To maximize efficiency and reduce the size and cost of external components, minimize the peak current. However, since the available output current is a function of the peak current, the peak current must not be too low.

Figure 5b. MAX651 Current-Sense Resistor Graph

Figure 5c. MAX652 Current-Sense Resistor Graph
To choose the proper current-sense resistor for a particular output voltage, determine the minimum input voltage and the maximum load current. Next, referring to Figures $5 \mathrm{a}, 5 \mathrm{~b}$, or 5 c , using the minimum input voltage, find the curve with the largest sense resistor that provides sufficient output current. It is not necessary to perform worst-case calculations. These curves take into account the worst-case values for sense resistor ($\pm 5 \%$), inductor ($22 \mu \mathrm{H} \pm 10 \%$), diode drop (0.6 V), and the IC's current-sense trip level; an external MOSFET on-resistance of 0.13Ω is assumed for $\mathrm{VGS}=-4.5 \mathrm{~V}$.

5V/3.3V/3V or Adjustable, High-Efficienc y, Low IQ, Step-Down DC-DC Controllers

Standard wire-wound and metal-film resistors have an inductance high enough to degrade performance. Surface-mount (chip) resistors have very little inductance and are well suited for use as current-sense resistors. A wire resistor made by IRC works well in through-hole applications. Because this resistor is a band of metal shaped as a " U ", its inductance is less than 10 nH (an order of magnitude less than metal film resistors). Resistance values between $5 \mathrm{~m} \Omega$ and 0.1Ω are available (see Table 1).

Inductor Selection
Practical inductor values range from $10 \mu \mathrm{H}$ to $50 \mu \mathrm{H}$ or more. The circuit operates in discontinuous-conduction mode if:

$$
V_{+} \leq \frac{\operatorname{VOUT} x(R+1)}{R}+\frac{V_{D}}{R}+V_{s w}
$$

R, the switch on-time/off-time ratio, equals $6.7 . \mathrm{V}_{\mathrm{D}}$ is the diode's drop, and VSW is the voltage drop across the P-channel FET. To get the full output capability in discontinuous-conduction mode, choose an inductor value no larger than:

$$
\mathrm{L}(\max)=\frac{\mathrm{RSENSE} \times 12 \mu \mathrm{~s} \times\left(\mathrm{V}_{+}-\mathrm{VSW}^{2}-\mathrm{VOUT}\right)}{\mathrm{V}_{\mathrm{CS}}}
$$

where V_{CS} is the current-sense voltage.
In both the continuous and discontinuous modes, the lower limit of the inductor is more important. With a small inductor value, the current rises faster and overshoots the desired peak current limit because the cur-rent-limit comparator cannot respond fast enough. This reduces efficiency slightly and, more importantly, could cause the current rating of the external components to be exceeded. Calculate the minimum inductor value as follows:

$$
\mathrm{L}(\min)=\frac{(\mathrm{V}+(\max)-\mathrm{VsW}-\mathrm{VOUT}) \times 0.3 \mu \mathrm{~s}}{\Delta \times \mathrm{ILIM}(\mathrm{~min})}
$$

where Δ is the percentage of inductor-current overshoot, where ILIM $=\mathrm{VCS}^{2} /$ RSENSE and $0.3 \mu \mathrm{~s}$ is the time it takes the comparator to switch. An overshoot of 10\% is usually not a problem. Inductance values above the minimum work well if the maximum value defined above is not exceeded. Smaller inductance values cause higher output ripple because of overshoot. Larger values tend to produce physically larger coils.
For highest efficiency, use a coil with low DC resistance; a value smaller than $0.1 \mathrm{~V} / \mathrm{ILIM}$ works best. To minimize radiated noise, use a toroid, pot core, or shielded-bobbin inductor. Inductors with a ferrite core or equivalent are recommended. Make sure the induc-
tor's saturation-current rating is greater than lıIM(max). However, it is generally acceptable to bias the inductor into saturation by about 20% (the point where the inductance is 20% below its nominal value).

The peak current of Figure 1 is 2.35 A for a 1.5 A output. The inductor used in this circuit is specified to drop by 10% at 2.2A (worst case); a curve provided by the manufacturer shows that the inductance typically drops by 20% at 3.1 A . Using a slightly underrated inductor can sometimes reduce size and cost, with only a minor impact on efficiency. The MAX649/MAX651/MAX652 current limit prevents any damage from an underrated inductor's low inductance at high currents.
Table 1 lists inductor types and suppliers for various applications. The efficiencies of the listed surfacemount inductors are nearly equivalent to those of the larger size through-hole versions.

Diode Selection
The MAX649/MAX651/MAX652's high switching frequency demands a high-speed rectifier (commonly called a catch diode when used in switching-regulator circuits). Schottky diodes, such as the 1N5817 through 1N5822 families (and their surface-mount equivalents), are recommended. Choose a diode with an average current rating equal to or greater than ILIM (max) and a voltage rating higher than $\mathrm{V}_{+}(\max)$. For high-temperature applications, where Schottky diodes can be inadequate because of high leakage currents, use high-speed silicon diodes instead. At heavy loads and high temperatures, the disadvantages of a Schottky diode's high leakage current may outweigh the benefits of its low forward voltage. Table 1 lists diode types and suppliers for various applications.

External Switching Transistor The MAX649/MAX651/MAX652 drive P-channel enhancement-mode MOSFET transistors only. The choice of power transistor is primarily dictated by the input voltage and the peak current. The transistor's on-resistance, gate-source threshold, and gate capacitance must also be appropriately chosen. The drain-to-source and gate-to-source breakdown voltage ratings must be greater than V_{+}. The total gate-charge specification is normally not critical, but values should be less than 100 nC for best efficiency. The MOSFET should be capable of handling the peak current and, for maximum efficiency, have a very low on-resistance at that current. Also, the on-resistance must be low for the minimum available $V_{G S}$, which equals $\mathrm{V}_{+}(\mathrm{min})$. Select a transistor with an on-resistance between 50% and 100% of the current-sense resistor. The Si9430 transistor chosen for the Typical Operating Circuit has

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

a drain-to-source rating of -20V and a typical on-resistance of 0.115Ω at 2 A with $\mathrm{V}_{\mathrm{GS}}=-4.5 \mathrm{~V}$. Tables 1 and 2 list suppliers of switching transistors suitable for use with these devices.

Capacitor Selection

Output Filter Capacitor
The primary criterion for selecting the output filter capacitor is low equivalent series resistance (ESR), rather than high capacitance. An electrolytic capacitor with low enough ESR will automatically have high enough capacitance. The product of the inductor-current variation and the ESR of the output filter capacitor determines the amplitude of the high-frequency ripple seen on the output voltage. When a $330 \mu \mathrm{~F}, 10 \mathrm{~V}$ Sprague surface-mount capacitor (595D series) with $\mathrm{ESR}=0.15$ תis used, 40 mV of output ripple is typically observed when stepping down from 10 V to 5 V at 1 A .
The output filter capacitor's ESR also affects efficiency. Use low-ESR capacitors for best performance. The smallest low-ESR SMT tantalum capacitors currently available are from the Sprague 595D series. Sanyo OSCON organic semiconductor through-hole capacitors and the Nichicon PL series also exhibit very low ESR. Table 1 lists some suppliers of low-ESR capacitors.

Input Bypass Capacitor
The input bypass capacitor reduces peak currents drawn from the voltage source, and also reduces the
amount of noise at the voltage source caused by the switching action of the MAX649/MAX651/MAX652. The input voltage source impedance determines the size of the capacitor required at the $V+$ input. As with the output filter capacitor, a low-ESR capacitor is recommended. Bypass the IC separately with a $0.1 \mu \mathrm{~F}$ ceramic capacitor placed close to the V_{+}and GND pins.

Reference Capacitor

Bypass REF with a $0.1 \mu \mathrm{~F}$ or larger capacitor. REF can source at least $100 \mu \mathrm{~A}$.

Layout Considerations

Proper PC board layout is essential because of high current levels and fast switching waveforms that radiate noise. Minimize ground noise by connecting the anode of the catch diode, the input bypass capacitor ground lead, and the output filter capacitor ground lead to a single point ("star" ground configuration). A ground plane is recommended. Also minimize lead lengths to reduce stray capacitance, trace resistance, and radiated noise. In particular, the traces connected to FB (if an external resistor divider is used) and EXT must be short. Place the $0.1 \mu \mathrm{~F}$ ceramic bypass capacitor as close as possible to V_{+}and GND.

Table 1. Component Selection Guide

PRODUCTION METHOD	INDUCTORS	CAPACITORS	DIODES	CURRENT-SENSE RESISTORS	MOSFETS
Surface Mount	Sumida CDR125-220 $(22 \mu \mathrm{H})$ Coiltronics CTX 100 series	Matsuo 267 series Sprague $595 D$ series	Nihon NSQ series	IRC LRC series	Siliconix Little Foot series Motorola medium-power surface-mount products
Miniature Through-Hole	Sumida RCH855-220M	Sanyo OS-CON series low-ESR organic semiconductor		IRC OAR series	Motorola

5V/3.3V/3V or Adjustable, High-Efficienc y, Low IQ, Step-Down DC-DC Controllers

Table 2. Component Suppliers

COMPANY		PHONE	FAX
Coiltronics	USA	$(407) 241-7876$	$(407) 241-9339$
Harris	USA	$(800) 442-7747$	$(407) 724-3937$
International Rectifier	USA	$(310) 322-3331$	$(310) 322-3332$
IRC	USA	$(704) 264-8861$	$(704) 264-8866$
Matsuo	USA	$(714) 969-2491$	$(714) 960-6492$
	Japan	$81-6-337-6450$	$81-6-337-6456$
Motorola	USA	$(800) 521-6274$	$(602) 244-4015$
Nichicon	USA	$(708) 843-7500$	$(708) 843-2798$
	Japan	$81-7-5231-8461$	$81-7-5256-4158$
Nihon	USA	$(805) 867-2555$	$(805) 867-2556$
	Japan	$81-3-3494-7411$	$81-3-3494-7414$
Renco	USA	$(516) 586-5566$	$(516) 586-5562$
Sanyo	USA	$(619) 661-6835$	$(619) 661-1055$
Siliconix	Japan	$81-7-2070-6306$	$81-7-2070-1174$
Sprague	USA	$(408) 988-8000$	$(408) 970-3950$
Sumida	USA	$(603) 224-1961$	$(603) 224-1430$
	USA	$(708) 956-0666$	$(708) 956-0702$
United Chemi-Con	Japan	$81-3-3607-5111$	$81-3-3607-5144$
	USA	$(714) 255-9500$	$(714) 255-9400$

__Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX651CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX651CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX651C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX651EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX651ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX651MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**
MAX652CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX652CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX652C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice ${ }^{*}$
MAX652EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX652ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX652MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP**

* Dice are tested at $T_{A}=+25^{\circ} \mathrm{C}$.
**Contact factory for availability and processing to MIL-STD-883.

TRANSISTOR COUNT: 442; SUBSTRATE CONNECTED TO V+.

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

MAX649/MAX651/MAX652

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

5V/3.3V/3V or Adjustable, High-Efficiency, Low IQ, Step-Down DC-DC Controllers

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
LV5065VB-TLM-H LV5066V-TLM-H LV5725JAZ-AH 633888R MP2908AGF AZ7500EP-E1 NCP1012AP133G NCP1217P133G
NCP1218AD65R2G NCP1234AD100R2G NCP1244BD065R2G NCP1336ADR2G NCP1587GDR2G NCP6153MNTWG
NCP81005MNTWG NCP81101BMNTXG NCP81205MNTXG HV9123NG-G-M934 IR35207MTRPBF ISL6367HIRZ CAT874-80ULGT3
SJ6522AG SJE6600 TLE63893GV50XUMA1 IR35215MTRPBF SG3845DM NCP1216P133G NCP1236DD65R2G NCP1247BD100R2G
NCP1250BP65G NCP4202MNR2G NCP4204MNTXG NCP6132AMNR2G NCP81141MNTXG NCP81142MNTXG NCP81172MNTXG NCP81203MNTXG NCP81206MNTXG NX2155HCUPTR UC3845ADM UBA2051C IR35201MTRPBF MAX8778ETJ+ MAX17500AAUB+T MAX17411GTM+T MAX16933ATIR/V+ NCP1010AP130G NCP1063AD100R2G NCP1216AP133G NCP1217AP100G

