OPERATING UNIT 128x64 with touch panel

TECHNICAL DATA

Dimension: $71.4 \times 54.4 \times 13.6 \mathrm{~mm}$

EAeDIP128W-6LWTP

EA eDIP128B-6LWTP

* LCD-GRAPHIC DISPLAY WITH A RANGE OF GRAPHIC FUNCTIONS
* 3DIFFERENT INTERFACES ONBOARD:RS-232, I²C-BUS OR SPI-BUS
* 128x64 OR64X128DOTSWITH LEDBACKLIGHT
* WHITELED-BACKLIGHTBLUENEGATIVEOR
* BLACK\&WHITEPOSITIVE, FSTN-TECHNOLOGY
* 8BUILT-INFONTS
* FONT ZOOM FROM 2MMTO ABOUT 80MM,TURNABLE IN 90° STEPS
* POWER SUPPLY WIDE RANGE +3,3V / 190mA/12mA ...+5V / 125mA / 20mA (WITH/ WITHOUTBACKLIGHT)
* POWER-DOWN-MODE $25 \mu \mathrm{~A}$,WITHWAKEUPVIATOUCH ORI²C
* POSITIONING ACCURATETOTHE PIXELWITH ALL FUNCTIONS
* LINE, DOT, AREA, AND/OR/EXOR, BARGRAPH...
* CLIPBOARD FUNCTIONEN, PULL-DOWN MENU
* UPTO 256 PICTURES INTERNALY STORED
* UPTO 256 MACROS PROGRAMMABLE (64kB EEPROM ONBOARD)
* MIXTEXT AND GRAPHIC, FLASHING ATTRIBUTE:ON/OFF/INVERT
* BACKLIGHTBRIGHTNESSPERSOFTWARE
* ANALOGUETOUCH PANEL:VARIABLE GRID
* FREEDEFINABLE KEY AND SWITCH

ORDERING CODES

DISPLAYS
128x64 DOTS, WHITE LED-BACKLIGHT, BLUENEGATIVE
AS ABOVE, BUTWITHTOUCH PANEL
128x64 DOTS, WHITE LED-BACKLIGHT, POSITIVE MODE, FSTN
AS ABOVE, BUTWITHTOUCH PANEL
EA eDIP128B-6LW
EA eDIP128B-6LWTP
EA eDIP128W-6LW
EA eDIP128W-6LWTP
STARTERKIT
INCLUDES EAeDIP128B-6LWPANDEVALUATIONBOARDWITH USB FOR DIRECT CONNECTIONTO PC AND INTERFACE BOARDS FOR
CONNECTIONWITHYOURHOSTSYSTEM
AS ABOVE, BUTWITH EAeDIP128W-6LWTP
EA EVALeDIP128B
EA EVALeDIP128W
ADDTIOTNALPARTS
MOUNTING BEZEL(ALUMINIUM), BLACK ANODIZED
SOCKET 1x16, 4.5 mm HIGH (1 piece)

EA 0FP130-6SW
EA B254-16

Documentation of revision						
Date	Type	Old	New	Reason / Description		
October, 2010	0.1			preliminary Version		
August, 2011	1.0			first release		

CONTENTS

GENERAL 3
RS-232 4
RS-485, USB 5
SPI 6
$I^{2} \mathrm{C}$ 7
IN- AND OUTPUTS 8
ROTATEDMOUNTING 9
POWER-DOWN-MODE 9
SOFTWAREPROTOCOL 10-11
TERMINAL MODE, FILL PATTERN 12
COMMANDS/FUNCTIONS INTABULAR FORMAT 13-17
TOUCHPANEL , KEY STYLE 16-17
RESPONSES OFTHE OPERATING PANEL 18
CHARACTERSETS 19-20
FLASH-MODE 21
MACROPROGRAMMING 24-25
ELECTRICALCHARACTERISTICS 26
MOUNTINGBEZEL 27
DIMENSION 28

GENERAL

The EA eDIP series of displays are the world's first displays with integrated intelligence. In addition to a variety of integrated fonts that can be used with pixel accuracy, they offer a whole range of sophisticated graphics functions.
The displays are ready for operation immediately with an operating voltage range of $+3.3 \mathrm{~V} . .+5 \mathrm{~V}$. They are controlled via one of the 3 integrated interfaces: RS-232, SPI or I². The displays are "programmed" by means of high-level language-type graphics commands. There is no longer any need for the time-consuming programming of character sets and graphics routines. The ease of use of this display with its touch panel dramatically reduces development times.

HARDWARE

The display is designed to work at an operating voltage range of $+3.3 \mathrm{~V} . .+5 \mathrm{~V}$. Data transfer is either serial and asynchronous in RS-232 format or synchronous via the SPI or ${ }^{2} \mathrm{C}$ specification. To improve data security, a simple protocol is used for all types of transfer.

ANALOGUE TOUCH PANEL

All versions are also available with an integrated touch panel: You can make entries and menu or bar graph settings by touching the display. The labeling of the "keys" is flexible and can also be changed during runtime (different languages, icons). The drawing of the individual "keys" and the labeling is handled by the integrated software.

LED ILLUMINATION, B- ANDW-TYPES

All displays in blue-and-white (B) and black-and-white (W) are equipped with a modern, low power consumption LED backlight. Whereas the black\&white can still be read even when the backlight is switched off completely, the blue-white display requires a minimum level of illumination to be legible. The backlight can be switched off with a software command and the brightness can be adjusted. We recommend the black\&white version for use in direct sunlight. For all other applications, we recommend the high-contrast, blue-white version. Note that the white LED backlight is subject to aging. That means switching off or dimming backlight is a must for 24 -hour-applications.

SOFTWARE

This display is programmed by means of commands, such as draw a rectangle from $(0,0)$ to $(64,15)$. No additional software or drivers are required. Strings and images can be placed with pixel accuracy. Text and graphics can be combined at any time. Different character sets can be used at same time. Each character set and the images can be zoomed from 2 to 8 times and rotated in 90° steps. With the largest character set, the words and numbers displayed will fill the screen.

ACCESSORIES

Evaluation-Board (Programmer) for internal data flash memory
The display is shipped fully programmed and with all fonts. The additional Evaluation-Board is thus generally not required.
However, if the internal character sets have to be changed or extended, or if images or macros have to be stored internally, the Evaluation-Board EA 9777-2USB, which is available as an accessory, will burn the data/images you have created into the on-board EEPROM (64 kB) permanently.
The Evaluation-Board runs under Windows and is connected to the PC's USB interface. It is shipped with an interface cable and the installation software. The Evaluation-Board is equipped with serveral LEDs, pushbottons and potentiometer to test all peripherial modes of the eDIP.
Interface-Expansion for Evaluation-Board (included in the Starter-Kit):
Wtih the expansion EA 9777-2PE for the Evaluation-Board all interfaces of the display are made available with the help from small adapter boards: RS-232, RS-485, SPI, IC, RS-232 (CMOS level). Further information you will find in the datasheet of the Evalution-Board.

RS-232 INTERFACE

If the display is wired as shown below, the RS-232 interface is selected. The pin assignment is specified in the table on the right. The RxD and TxD lines lead CMOS level (VDD) to a microcontroller, for example, for direct connection.
If "genuine" RS-232 levels are required (e.g. for connection to a PC), an external level converter (e.g. MAX232) is required.

Pinout eDIP128-6: RS-232/RS-485 mode						
Pin Symbol	In/Out	Function	Pin	Symbol	In/Out	Function
1 GND		Ground Potential for logic (0V)	17	DPROT	In	L: Disable Smallprotokoll do not connect for normal operation
2 VDD		Power supply for logic ($+3,3 \mathrm{~V}$.. 5 V)	18	PWR	Out	L: Normal Operation H: Powerdownmode
3 NC		do not connect	19	NC		do not connect
4 NC		do not connect	20	TEST SBUF	$\begin{aligned} & \text { In } \\ & \text { Out } \end{aligned}$	open-drain with internal pullup 20k..50k IN (Power-On) L: Testmode OUT L: data in sendbuffer
5 RESET	In	L: Reset	21	GND		Ground (0V)
6 BAUDO	In	Baud Rate 0	22	VDD		Power supply (+3,3..5V)
$\begin{array}{ll} \hline 7 & \text { BAUD1 } \\ 8 & \text { RAump } \end{array}$	In	Baud Rate 1	23	NC		do not connect
$9 \quad \text { ADRO }$	In	Address 0 for RS-485	25	IN8/OUT1		
10 RxD	In	Receive Data	26	IN7/OUT2		
11 TxD	Out	Transmit Data	27	IN6/OUT3		8 digital inputs
12 EN485	Out	Transmit Enable for RS-485 driver	28	IN5/OUT4		(internal 20k..50k pullup)
13 WUP	In	L: (Power-On) disable Power-On-Macro L: Wakeup from Powerdownmode	29	IN4/OUT5		alternativ up to 8 digital outputs maximum current:
14 ADR1	In	Address 1 for RS-485	30	IN3/OUT6		$1 \mathrm{OL}=1 \mathrm{OH}=10 \mathrm{~mA}$
15 ADR2	In	Address 2 for RS-485	31	IN2/OUT7		
16 BUZZ	Out	Buzzer output	32	IN1/OUT8		

BAUD RATES

The baud rate is set by means of pins 6,7 and 8 (baud 0 to 2). The data format is set permanently to 8 data bits, 1 stop bit, no parity.
startbit D0 D1 D2 D3 D4 D5 D6 D7/Stopbit
RTS/CTS handshake lines are not required. The required control is taken over by the integrated software protocol (see pages 10 and 11).

Baud Rates			
Baud0	Baud1	Baud2	data format $8, \mathrm{~N}, 1$
1	0	0	2400
0	1	0	4800
1	1	0	9600
0	0	1	19200
1	0	1	38400
0	1	1	57600
1	1	1	115200
0	0	0	230400

Note:
The pins BAUD 0 to 2, ADR 0 to 2, DPOM, DPROT and TEST/SBUF have an internal pullup, which is why only the LO level $(0=G N D)$ is to be actively applied. These pins must be left open for a hi level. For RS232 operation (without addressing) the pins ADR 0 to ADR 2 must be left open.
On pin 20 (SBUF) the display indicates with a low level that data is ready to be retrieved from the internal send buffer. The line can be connected to an interrupt input of the host system, for example.

APPLICATION EXAMPLE „REAL" RS-232 INTERFACE

The eDIP fits for direct connection to a RS-232 interface with CMOS level (VDD).
If you have an interface with $\pm 12 \mathrm{~V}$ level, an external levelshifter is needed.

APPLICATION EXAMPLE: RS-485 INTERFACE

With an external converter (e.g. SN75176), the EA eDIP can be connected to a 2-wire RS-485 bus. Large distances of up to 1200 m can thus be implemented (remote display). Several EA eDIP displays can be operated on a single RS-485 bus by setting addresses.

Adressing:

- Up to eight hardware addresses (0 to 7) can be set by means of Pins ADRO..ADR2
- The eDIP with the address 7 is selected and ready to receive after power-on.
- The eDIPS with the addresses 0 to 6 are deselcted after power-on
- Up to 246 further software addresses can be set by means of the '\#KA adr' command in the power-on macro (set eDIP externally to address 0)

APPLICATIONEXAMPLE:USB INTERFACE

With an external converter (e.g. FT232R from FTDI) the eDIP can be connected to an USB-Bus.
Virtual-COM-Port drivers are available for different Systems on the FTDI Homepage:
http://www.ftdichip.com/drivers/vcp.htm.

SPIINTERFACE

If the display is wired as shown below, SPI mode is activated. The data is then transferred via the serial, synchronous SPI interface.
The transfer parameter will be set via the pins DORD, CPOL and CPHA.

Pinout eDIP128-6: SPI mode						
Pin Symbol	In/Out	Function	Pin	Symbol	In/Out	Function
1 GND		Ground Potential for logic (0V)	17	DPROT	In	L: Disable Smallprotokoll do not connect for normal operation
2 VDD		Power supply for logic ($+3,3 \mathrm{~V}$.. 5 V)	18	PWR	Out	L: Normal Operation H: Powerdownmode
3 NC		do not connect	19	NC		do not connect
4 NC		do not connect	20	TEST SBUF	$\begin{aligned} & \text { In } \\ & \text { Out } \end{aligned}$	open-drain with internal pullup 20k..50k IN (Power-On) L: Testmode OUT L: data in sendbuffer
5 RESET	In	L: Reset	21	GND		Ground (0V)
6 SS	In	Slave Select	22	VDD		Power supply (+3,3..5V)
7 MOSI 8 MISO	In Out	Serial In Serial Out	23	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$		do not connect do not connect
$9 \quad \text { CLK }$	In	Shift Clock	25	IN8/OUT1		
10 DORD	In	Data Order (0=MSB first; 1=LSB first)	26	IN7/OUT2		
11 SPIMOD	In	connect to GND for SPI interface	27	IN6/OUT3		8 digital inputs
12 NC		do not connect	28	IN5/OUT4		(internal 20k..50k pullup)
13 WUP	In	L: (Power-On) disable Power-On-Macro L: Wakeup from Powerdownmode	29	IN4/OUT5		alternativ up to 8 digital outputs maximum current:
14 CPOL	In	Clock Polarity ($0=$ LO 1=HI when idle)	30	IN3/OUT6		$1 \mathrm{OL}=1 \mathrm{IOH}=10 \mathrm{~mA}$
15 CPHA	In	Clock Phase sample 0=1st; $1=2$ nd edge	31	IN2/OUT7		
16 BUZZ	Out	Buzzer output	32	IN1/OUT8		

Note:

The pins DORD, CPOL, CPHA, DPOM, DPROT and TEST/SBUF have an internal pullup, which is why only the LO level $(0=G N D)$ is to be actively applied. These pins must be left open for a hi level.
On pin 20 (SBUF) the display indicates with a low level that data is ready to be retrieved from the internal send buffer. The line can be connected to an interrupt input of the host system, for example.

DATATRANSFERSPI

Write operation: a clock rate up to 100 kHz is allowed without any stop. Together with a pause of $100 \mu \mathrm{~s}$ between every data byte a clock rate up to 3 MHz can be reached.
Read operation: to read data (e.g. the „ACK" byte) a dummy byte (e.g. OxFF) need to be sent.
Note that the EA eDIP for internal operation does need a short time before providing the data; therefore a short pause of min. $6 \mu \mathrm{~s}$ (no activity of CLK line) is needed for each byte.

I2C-BUSINTERFACE

If the display is wired as shown below, it can be operated directly on an $\mathrm{I}^{2} \mathrm{C}$ bus.
8 different base addresses and 8 slave addresses can be selected on the display.
Data transfer is possible at up to 100 kHz . However, if pauses of at least $100 \mu \mathrm{~s}$ are maintained between the individual bytes during transfer, a byte can be transferred at up to 400 kHz .

Pinout eDIP128-6: I2C mode						
Pin Symbol	In/Out	Function	Pin	Symbol	In/Out	Function
1 GND		Ground Potential for logic (OV)	17	DPROT	In	L: Disable Smallprotokoll do not connect for normal operation
2 VDD		Power supply for logic (+5V)	18	PWR	Out	L: Normal Operation H: Powerdownmode
3 NC		do not connect	19	NC		do not connect
4 NC		do not connect	20	TEST SBUF	$\begin{aligned} & \text { In } \\ & \text { Out } \end{aligned}$	open-drain with internal pullup 20k..50k IN (Power-On) L: Testmode OUT L: data in sendbuffer
5 RESET	In	L: Reset	21	GND		Ground (0V)
6 BAO	In	Basic Address 0	22	VDD		Power supply (+3,3..5V)
7 BA1	In	Basic Address 1	23	NC		do not connect
8 SAO	In	Slave Address 0	24	NC		do not connect
9 SA1	In	Slave Address 1	25	IN8/OUT1		
10 SA2	In	Slave Address 2	26	IN7/OUT2		
11 BA2	In	Basic Address 2	27	IN6/OUT3		8 digital inputs
12 I 2 CMOD	In	connect to GND for ${ }^{2} \mathrm{C}$ interface	28	IN5/OUT4		(internal 20k..50k pullup)
13 WUP	In	L: (Power-On) disable Power-On-Macro L: Wakeup from Powerdownmode	29	IN4/OUT5		alternativ up to 8 digital outputs maximum current:
14 SDA	Bidir.	Serial Data Line	30	IN3/OUT6		$\mathrm{IOL}=\mathrm{IOH}=10 \mathrm{~mA}$
15 SCL	In	Serial Clock Line	31	IN2/OUT7		
16 BUZZ	Out	Buzzer output	32	IN1/OUT8		

Note:
The pins DORD, CPOL, CPHA, DPOM, DPROT and TEST/SBUF have an internal pullup, which is why only the LO level $(0=G N D)$ is to be actively applied. These pins must be left open for a hi level.
On pin $20(S B U F)$ the display indicates with a low level that data is ready to be retrieved from the internal send buffer. The line can be connected to an interrupt input of the host system, for example..

all pins open: Write $\$ D E$

DATATRANSFER ${ }^{2}$ ² INTERFACE

principle I2C-bus transfer:

- ${ }^{2} \mathrm{C}$-Start
- Master-Transmit: EA eDIP-I²C-address (e.g. \$DE), send smallprotocol package (data)
- ${ }^{2} \mathrm{C}$-Stop
- ${ }^{2} \mathrm{C}$-Start
- Master-Read: EA eDIP-I²C-Address (e.g. \$DF), read ACK-byte and opt. smallprotocoll package (data) - I2C-Stop

Read operation: for internal operation the EA eDIP does need a short time before providing the data; therefore a short pause of $\mathrm{min} .6 \mu \mathrm{~s}$ is needed for each byte (no activity of SCL line).

IN- AND OUTPUTS

The eDIP128-6 has 8 digital in- or outputs (CMOS level, grounded). They can be redefined freely.

Inputs

As status on delivery, all ports are defined as inputs. Each input provides an internal $20 . .50 \mathrm{k} \Omega$ pull-up resistor, so it is possible to connect a key or switch directly between input and GND. The inputs can be queried and evaluated directly via the serial interface („ESC Y R").
In addition to that every port change may start an individual port - or bit- macro (see p.

24). The command "ESC Y A 1" activates automatic port query. Every alteration of inputs firstly calls bit macros and afterwards port macros. If there is no definied macro, the new status is transfered into the send buffer (refer to p. 18).
Note: The logic circuitry is designed for slow operations; in other words, more than 3 changes per second cannot be easily executed.

Outputs
The command "ESC Y M number" redefines one or several inputs as outputs. In this case the more significant inputs are used as outputs.
'ESC Y M 3' switches IN8, IN7 and IN6 as outputs OUT1, OUT2 and OUT3 for example.

Each line can be controlled individually using the "ESC Y W" command. A
 maximum current of 10 mA can be switched per line. This give the opportunity to drive a low power LED in direct way. To source higher current please use an external transistor.

EXTENDED OUTPUTS

It is possible to connect 1 to 32 chips like 74 HC 4094 to the eDIP (OUT1...OUT3), this is why it is attainable to have 8 to 256 additional outputs. The command "ESC Y En1 n2 n3" (see p. 16) provides a comfortable way to control the outputs.

TOPVIEW ANDTWISTED MOUNTING

The prefered view of the eDIP128 is bottom view, (6 o'clock).
The eDIP can be mounted turned around 180° to gain a top view display (12 o'clock). To set the viewing direction you have to run (e.g. in PowerOnMacro) the command 'ESC DO 2' (refer to p. 13). In addition it is possible to mount the display turned with 90° or 270° to gain a portrait mode display with 64×128 pixels.

POWER DOWN MODE

To save energy (battery operation), you can activate one of three power-down modes by means of the command 'ESC PD n1' (see page 15 below).

Mode $0(25 \mu \mathrm{~A})$: The LED illumination is switched off, and the contents of the display become invisible although they are still there. In power-down mode including suppressor diodes, the eDIP128 requires up to $1000 \mu \mathrm{~A}$ (delivery state). The suppressor diodes can be deactivated by removing the two 0Ω resistors. Then powerdown current of typically $25 \mu \mathrm{~A}$ is reached. They are labeled with R_{pd}.
Important: When deactivating the suppressor diodes, it is essential that the polarity of the display is correct all the time: GND, VDD (pin $1+2$). Even very brief polarity reversal or overvoltage can damage the display immediately and irreparably.

Mode 1 (1mA): The LED illumination is switched off, the contents of the display stay visible. Current consumption is reducing to 1 mA . This power down mode is mainly usable with the versions EA eDIP128W with positive display, because they are readable without backlight.

Mode $2(4 \mathrm{~mA})$: The LED illumination stays on and the display content is readable. The current consumption reduces to $3-4 \mathrm{~mA}$ plus adjusted LED current. Therefore you can use the eDIP in dark surroundings and dimmed illumination under e.g. 10 mA .

The eDIP128 can be woken up from power down mode with a low level on pin 13 (WUP), or the adressing via ${ }^{2} \mathrm{C}$.
In additon the eDIP128 can be woke up by using the touchpanel (independed from position).
After wake up, special WakeUpMacros can be used (refer to p. 24).

DATATRANSFER PROTOCOL(SMALL PROTOCOL)

The protocol has an identical structure for all 3 interface types: RS-232, SPI and I2C. Each data transfer is embedded in a fixed frame with a checksum (protocol package). The EA eDIP128-6 acknowledges this package with the character <ACK> (=\$06) on successful receipt or <NAK> (=\$15) in the event of an incorrect checksum or receive buffer overflow. In the case of <NAK>, the entire package is rejected and must be sent again. Receiving the <ACK> byte means only that the protocol package is ok, there is no syntax check for the command.
Note: It is neccessary to read the <ACK> byte in any case. If the host computer does not receive an acknowledgment, at least one byte is lost. In this case, the set timeout has to elapsed before the package is sent again. The raw data volume per package is limited to 255 bytes (len $<=255$). Commands longer than 255 bytes (e.g. Load image ESC UL...) must be split up between a number of packages. All data in the packages are compiled again after being correctly received by the EA eDIP.

DEACTIVATINGTHESMALL PROTOCOL

For tests the protocol can be switched off with an L-level at pin $17=$ DPROT. In normal operation, however, you are urgently advised to activate the protocol. If you do not, any overflow of the receive buffer will not be detected.

BUILDINGTHE SMALL PROTOCOL PACKAGES

The user data is transferred framed by <DC1>, the number of bytes (len) and the checksum (bcc). The display responds with <ACK>.
$<D C 1>=17($ dez. $)=\$ 11$
$<A C K>=6($ dez. $)=\$ 06$
len $=$ count of user data (without $\langle D C 1\rangle$, without checksum bcc)
$b c c=1$ byte $=$ sum of all bytes incl. $\langle D C 1\rangle$ and len, modulo 256

Request for content of send buffer

The command sequence <DC2>, 1, S, bcc empties the display's send buffer. The display replies with the acknowledgement <ACK> and begins to send all the collected data such as touch keystrokes.

Request for buffer information

	$>$	$<$ DC2>	1	I	bcc
$<$	$<A C K>$				
	$<$ LC2>	2	send buffer bytes ready	receive buffer bytes free	bcc

$<D C 2>=18($ dez. $)=\$ 12 \quad I=1($ dez. $)=\$ 01 \quad I=73($ dez. $)=\$ 49$
$<A C K>=6($ dez. $)=\$ 06$
send buffer bytes ready $=$ count of bytes stored in send buffer
receive buffer bytes free $=$ count of bytes for free receive buffer
bcc $=1$ byte $=$ sum of all bytes incl. $\langle D C 2\rangle$, modulo 256

Protocol settings

This command queries whether user data is ready to be picked up and how full the display's receive buffer is.

Request for protocol settings

$<D C 2>=18($ dez. $)=\$ 12 \quad 1=1($ dez. $)=\$ 01 \quad P=80($ dez. $)=\$ 50$
$<A C K>=6(\mathrm{dez})=.\$ 06$
max. packet size $=$ count of maximum user data for 1 package $(e D I P 128-6=255)$
akt. send packet size $=$ current package size for send
akt. timeout $=$ current timeout in $1 / 100$ seconds
$b c c=1$ byte $=$ sum of all bytes incl. $\langle D C 2\rangle$, modulo 256

Repeat the last package

$<D C 2>=18($ dez. $)=\$ 12 \quad 1=1($ dez. $)=\$ 01$

$$
R=82(\text { dez. })=\$ 52
$$

$<A C K>=6(\mathrm{dez})=.\$ 06$
$\langle D C 1\rangle=17($ dez. $)=\$ 11$
len $=$ count of user data in byte (without ckecksum, without $\langle D C 1\rangle$ or $\langle D C 2\rangle$)
$b c c=1$ byte $=$ sum of all bytes incl. $\langle D C 2>$ and len, modulo 256

Adressing (only for RS232/RS485)

This command can be used to select or deselect the eDIP with the address adr.

[^0]This is how the maximum package size that can be sent by the display can be limited. The default setting is a package size with up to 128 bytes of user data. The timeout can be set in increments of $1 / 100$ seconds. The timeout is activated when individual bytes get lost. The entire package then has to be sent again.

This command is used to query protocol settings.

TERMINALMODE

When you switch the unit on, the cursor flashes in the first line, indicating that the display is ready for operation. All the incoming characters are displayed in ASCII format on the terminal (exception: CR,LF,FF,ESC,'\#'). The prerequisite for this is a working protocol frame (pages 10 and 11) or a deactivated protocol.
Line breaks are automatic or can be executed by means of the 'LF' character. If the last line is full, the contents of the terminal scroll upward. The 'FF' character (page feed) deletes the terminal. The character '\#' is used as an escape character and thus cannot be displayed directly on the terminal. If the character '\#' is to be output on the terminal, it must be transmitted twice: '\#\#'.
The terminal has its own level for displaying and is thus entirely independent of the graphic outputs. If the graphics screen is deleted with 'ESC DL', for example, that does not affect the contents of the terminal window. The terminal font is fixed in the ROM and can also be used for graphic outputs 'ESC Z...' (set FONT nr=0).

FILLPATTERN

A pattern type can be set as a parameter with various commands. In this way, for example, rectangular areas and bar graphs can be filled with different patterns. There are 16 internal fill patterns available.

USINGTHESERIALINTERFACE

The operating unit can be programmed by means of various integrated commands. Each command begins with ESCAPE followed by one or two command letters and then parameters. There are two ways to transmit commands:

1. ASCII mode

- The ESC character corresponds to the character '\#' (hex: \$23, dec: 35).
- The command letters follow directly after the '\#' character.
- The parameters are transmitted as plain text (several ASCII characters) followed by a separating character (such as a comma ','), also after the last parameter e.g.: \#GD0,0,159,103,
- Strings (text) are written directly without quotation marks and concluded with CR (hex: \$0D) or LF (hex: \$0A).

2. Binary mode

- The escape character corresponds to the character ESC (hex: \$1B, dec: 27).
- The command letters are transmitted directly.
- The coordinates xx and yy are transmitted as 16-bit binary values (first the LOW byte and then the HIGH byte).
- All the other parameters are transmitted as 8-bit binary values (1 byte).
- Strings (text) are concluded with CR (hex: \$0D) or LF (hex: \$0A) or NUL (hex: \$00).

No separating characters, such as spaces or commas, may be used in binary mode.
The commands require no final byte, such as a carriage return (apart from the string \$00).).

ALL COMMANDS AT A GLANCE

The built-in intelligence allows an easy creation of your individual screen content. Below mentioned commands can be used either directly via the serial interface (see page 12) or together with the selfdefinable macro.

Terminal commands							After reset
Command	Codes					Remarks	
Form feed FF (dec:12)	\wedge L					The contents of the screen are deleted and the cursor is placed at pos. (1,1)	
Carriage return CR(13)	$\wedge \mathrm{M}$					Cursor to the beginning of the line on the extreme left	
Line feed LF (dec:10)	\wedge J					Cursor 1 line lower, if cursor in last line then scroll	
Position cursor	ESC	T	P	C	L	C=column; L=line; origin upper-left corner (1,1)	1,1
Cursor on/off			C	n1		$\mathrm{n} 1=0$: Cursor is invisible; $\mathrm{n} 1=1$: Cursor flashes;	1
Save cursor position			S			The current cursor position is saved	
Restore cursor position			R			The last saved cursor position is restored	
Terminal off			A			Terminal display is switched off; outputs are rejected	
Terminal on			E			Terminal display is switched on;	On
Output version	ESC	T	V			The version no. is output in the terminal (e.g. "EA eDIP128-6 V1.0 Rev.A")	
Output project name			J			The macro project name is output to the terminal (e.g. "init / delivery state")	
Output information	ESC		I			The terminal is initialized and deleted; software version, hardware revision, the macro project name and the CRC-checksum is ouput to the terminal	

Clipboard commands (Buffer for display area)									after reset
Command	Codes							Remarks	
Save display contents	ESC	C	B					The entire contents of the display are copied to the clipboard as an image area	
Save area			S	x1	y1	x2	y2	The image area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ is copied to the clipboard	
Restore area Copy area			R	x1	y1			The image area on the clipboard is copied back to the display The image area on the clipboard is copied to $x 1, y 1$ in the display	

Change / draw rectangular areas										after reset
Command	Codes								Remarks	
Delete area	ESC	R	L	x 1	y1	x2	y2		Delete an area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ (all pixels off)	
Invert area Fill area			S	$\begin{aligned} & \hline \mathrm{x} 1 \\ & \mathrm{x} 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathrm{y} 1 \\ \mathrm{y} 1 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { x2 } \\ & \text { x2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y} 2 \\ & \mathrm{y} 2 \\ & \hline \end{aligned}$		Invert an area from $x 1, y 1$ to $\times 2, y 2$ (invert all pixels) Fill an area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ (all pixels on)	
Area with fill pattern Draw box			M	$\begin{aligned} & \hline \mathrm{x} 1 \\ & \mathrm{x} 1 \end{aligned}$	$\begin{array}{\|l} \mathrm{y} 1 \\ \mathrm{y} 1 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { x2 } \\ & \text { x2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y} 2 \\ & \mathrm{y} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { n1 } \\ & \text { n1 } \\ & \hline \end{aligned}$	Fill an area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ with pattern n 1 (always set) Draw rectangle from $\mathrm{x} 1, \mathrm{y} 1$ to $\times 2, \mathrm{y} 2$ with pattern n 1 (always replace)	
Draw frame Draw frame box			R	$\begin{aligned} & \hline \mathrm{x} 1 \\ & \mathrm{x} 1 \end{aligned}$	$\begin{array}{\|l} \mathrm{y} 1 \\ \mathrm{y} 1 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { x2 } \\ & \text { x2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{y} 2 \\ & \mathrm{y} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { n1 } \\ & \text { n1 } \end{aligned}$	Draw frame of type n 1 from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ (always set) Draw frame box of type n 1 from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ (always replace)	

Text commands									after reset
Befehl	Codes							Remarks	
Settings									
Set font	ESC	z	F	n1				Set font with the number $\mathrm{n} 1=0 . .15$	0
Set font zoom factor			Z	n1	n2			n 1 = x -zoom factor ($1 \mathrm{x} . .4 \mathrm{4}$); n2 = y-zoom factor ($1 \mathrm{x} . .4 \mathrm{4x}$)	1,1
Additonal line spacing			Y	n1				Insert $\mathrm{n} 1=0 . .15$ dots between two lines as additional spacing	0
Spacewidth			J	n1				Spacewidth: $\mathrm{n} 1=0$ use from font; $\mathrm{n} 1=1$ same width as number; $\mathrm{n} 1>=2$ width in dot	0
Text angle			w	n1				Text angle: $\mathrm{n} 1=0: 0^{\circ} ; \mathrm{n} 1=1: 90^{\circ}$;	0
Text link mode			V	n1				Mode n1: 1=set; 2=delete; 3=inverse; 4=replace; 5=inverse replace	4
Text flashing attribute	ESC	Z	B	n1				n1:0=no flashing; 1=on/off; 2=flash inversly; 3=off/on (phase shifted)	0
Output strings									
Output string L: left justified C: centered R: right justified	ESC	Z	L	x 1	y1	Text	NUL	A string is output to $\mathrm{x} 1, \mathrm{y} 1$; string termination is: 'NUL' (\$00), 'LF' (\$OA) or 'CR' (\$OD); several lines are seperated by the character '\|' (\$7C); Text between two ' \sim ' (\$7E): characters flashes on/off; Text between two '\&' (\$26): characters flashes phase shifted; Text between two '@' (\$40): characters flashes inverse; The character 'l' (\$5C, backslash) cancels the special funtion of characters '\|~@\'; e.g. "name\@test.de" => "name@test.de"	
String for terminal	ESC	Z	T	Text ...				Command to output a string (text...) from a macro to the terminal	

Bitmap commands									after reset
Command	Codes							Remarks	
Settings									
Image zoom factor	ESC	U	Z	n1	n2			n1 = x-zoom factor(1x..4x); n2 = y-zoom factor ($1 \mathrm{x} . .4 \mathrm{4x}$)	1,1
Image angle			W	n1				Image angle: $\mathrm{n} 1=0$: $0^{\circ} ; \mathrm{n} 1=1: 90^{\circ}$	0
Image link mode			V	n1				Mode n1: 1=set; 2=delete; 3=inverse; 4=replace; 5=inverse replace;	4
Image flashing attribute	ESC	U	B	n1				n1:0=no flashing; 1=on/off; 2=flash inverted; 3=off/on (phase shifted)	0
Output									
Image from clipboard	ESC	U	C	x1	y1			The current contents of the clipboard are loaded to $\mathrm{x} 1, \mathrm{y} 1$ with all the image attributes	
Load internal image			1	x1	y1	nr		Load internal image with nr ($0 . .255$) from EEPROM to $\mathrm{x} 1, \mathrm{y} 1$	
Load image			L	x1	y1	BLH data ...		Load an image to $\times 1, \mathrm{y} 1$; data... = image in BLH-format	
Hardcopy									
Send hardcopy	ESC	U	H	x1	y1	x2	y2	An image area $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ is put into the sendbuffer. The image is send in BLH-format	

Flashing commands									after reset
Command	Codes							Remarks	
Settings									
Set flashing time	ESC	Q	Z	n1				Set flashing time to $n 1=1 . .15$ in $1 / 10$ s; $0=$ flashing deactivated	6
Flashing areas									
Delete flashing attribute	ESC	Q	L	x1	y1	x2	y2	Delete the flashing attribute from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$. Do not use this command for phase shifted areas! (Copies the area from graficlayer to blinklayer)	
Flashing inversely			1	x1	y1	x2	y2	Define an inverted flashing area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$. (Copies the inverted area from graficlayer to blinklayer)	
Flashing area pattern			M	x1	y1	x2	y2 n1	Define a flashing area (on/off) with pattern n 1 frim $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$ (Draw the pattern into blinklayer)	
Phase shifted areas									
Restore phase shifted area	ESC	Q	R	x1	y1	x2	y2	Delete the phase shifted flashing area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$. Do not use this command for other flashing attributes! (Copies the area from blinklayer to graphiklayer)	
Inverted phase shifted area			E	x1	y1	x2	y2	Define a phase shifted inverted flashing area from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$. (Copies the inverted are from blinklayer to graphiklayer)	
Phase shifted flashing pattern			P	x1	y1	x2	y2 n1	Define a phase shifted flashing area (off/on) with pattern n 1 from $\mathrm{x} 1, \mathrm{y} 1$ to $\mathrm{x} 2, \mathrm{y} 2$. (Draw the pattern into graficlayer)	

General commands								after reset
Command	Codes						Remarks	
Backlight								
Illumination brightness	ESC	Y	H	n1			Set brightness of the LED illumination to $\mathrm{n} 1=0 \% . .100 \%$	100
Brightness changetime			Z	n1			Time $\mathrm{n} 1=0 . .31$ in $1 / 10$ s for changing brightness from 0\% to 100%	5
Illumination on/off			L	n1			LED illumination $\mathrm{n} 1=0$: off; $\mathrm{n} 1=1$: on; $\mathrm{n} 1=2$ to 255 : The illumination is switched on for $\mathrm{n} 1 / 10$ s.	1
Save parameter			@				Save actual brightness and changetime parameter for power on to EEPROM	
Send commands								
Send bytes	ESC	S	B	len		data ...	len (=1 to 255) bytes are sent to the sendbuffer data... = data to send. In the source text of the macro programming, the number len must not be specified. This is counted by the ediptt-compiler and entered.	
Send version Send projectname			$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~J} \\ & \hline \end{aligned}$				The version is sent as a string to sendbuffer, e.g. "EA eDIP128-6 V1.0 Rev.A TP+" The macro project name is sent as a string to sendbuffer, e.g. "init / delivery"	
Send internal infos			1				Internal information about the eDIP is sent to the sendbuffer	
Other commands								
Wait (pause)	ESC	X	n1				Wait $\mathrm{n} 1 / 10$ s before next command is executed	
Set RS485 address	ESC	K	A	adr			For RS232/RS485 operation only and only possible when Hardware address is 0 . The eDIP is assigned a new address adr (in the Power-On-Macro).	
Buzzer output	ESC	Y	S	n1			The buzzer output (pin 16) becomes $\mathrm{n} 1=0: \mathrm{OFF} ; \mathrm{n} 1=1: \mathrm{ON} ; \mathrm{n} 1=2$ to $255: \mathrm{ON}$ for $\mathrm{n} 1 / 10$ s	OFF
Power down	ESC	P	D	n1	n2		After this command, the display goes into power-down mode n1=0..2 (see page 9). $\mathrm{n} 2=0$: no wake-up by touch; $\mathrm{n} 2=1$: wake-up by touch possible	

I/O-Ports								after reset
Command	Codes						Remarks	
Input ports								
Read input port	ESC	Y	R	n1			$n 1=0$: Read all input ports as binary value (to sendbuffer) $\mathrm{n} 1=1 . .8$: Read input port n1	
Port scan on/off			A	n1			The automatic scan of the input port is $\mathrm{n} 1=0$ deactivated, $\mathrm{n} 1=1$ activated	1
Invert input port			1	n1			The input port is $\mathrm{n} 1=0$ is evaluated normal, $\mathrm{n} 1=$ evaluated inverted	0
Redefine input bitmacro			D	n1	n2	n3	Input port $\mathrm{n} 1=1 . .8$ is assigned by falling edge $\mathrm{n} 2=0$ to BitMacro $\mathrm{n} 3=0 . .255$ Input port $\mathrm{n} 1=1 . .8$ is assigned by rising edge $\mathrm{n} 2=1$ to BitMacro $\mathrm{n} 3=0 . .255$	
Output ports								
Define output port	ESC	Y	M	n1			n1=0: All 8 I/O-Ports are inputs IN1..IN8 (=default after Power-On / Reset) $\mathrm{n} 1=1 . .8: \mathrm{n} 1 \mathrm{l} / \mathrm{O}$-lines will be set to output (beginninge at OUT1 upwards)	0
Write output port			W	n1	n2		$\mathrm{n} 1=0$: Set all defined output ports in accordance with n 2 (=binary value) $\mathrm{n} 1=1 . .8$: Reset output port n 1 ($\mathrm{n} 2=0$); set ($\mathrm{n} 2=1$); invert ($\mathrm{n} 2=2$)	
Port expansion with 74HC4094								
Write extended ports	ESC	Y	E	n1	n2	n3	Set the outputs of the external 74HC4094 (refer to page 8) from port $\mathrm{n} 1=0 . .255$ to port n2=0..255; n3=0: low; n3=1: high; n3=2: invert	

TOUCH PANEL(ONLY EAeDIP128x-6xxTP)

The -xxxTP versions are shipped with an analog, resistive touch panel. Up to 40 touch areas (keys, switches, menus, bar graph inputs) can be defined simultaneously. The fields can be defined with pixel accuracy. The display supports user-friendly commands (see page 17). When the touch "keys" are touched, they can be automatically inverted and an external tone can sound (pin 16), indicating they have been touched. The predefined return code of the "key" is transmitted via the interface, or an internal touch macro with the number of the return code is started instead (see page 22, Macro programming).

FRAMES AND KEY SHAPES

A frame type can be set by using the Draw frame or Draw frame box command or by drawing touch keys. 18 frame types are available ($0=$ do not draw a frame). The frame size must be at least 16×16 pixels.

BITMAPS AS KEYS

Apart from the frame types, which are infinitely scalable, it is also possible to use bitmaps (2 each, for not printed and printed) as touch keys or touch switches. You can use ELECTRONIC ASSEMBLY LCD-Tools*) to integrate your own buttons as images ("PICTURE" compiler statement). A button always consists of two monochrome Windows BMPs of equal size (one bitmap to display the touch key in its normal state and one for when it is pressed). The active area of the touch key automatically results from the size of the button bitmaps.

SWITCHES IN GROUPS (RADIO GROUP)

Touch switches (radio buttons) change their status from ON to OFF or vice versa each time they are touched. Several touch switches can be included in a group ('ESC A R nr' command). If a touch switch in the group ' n '' is switched on, all the other touch switches in this group are automatically switched off. Only one switch is ever on.

ADJUSTTOUCHPANEL

The touch panel is perfectly adjusted and immediately ready for operation on delivery. As a result of aging and wear, it may become necessary to readjust the touch panel.

Adjustment procedure:

1. Touch the touch panel at power-on and keep it depressed. After the message "touch adjustment?" appears, release the touch panel again (or issue the 'ESC @' command).
2. Touch the touch panel again within a second for at least a second.
3. Follow the instructions for adjustment (press the 2 points upper left and lower right).

RESPONSES OFTHE EA EDIP128-6VIA SERIALINTERFACE

The table below contains all response codes. Some response data will come automatically some others on request. In addition to that with command 'ESC SB ...' user is able to transmit individual data packages. All reponses are placed into the sendbuffer. With the smallprotocol command 'Request for content of send buffer' (see page10) the host can read out the sendbuffer. This can be done per polling, alternatively pin 20 'SBUF' shows with Low-level that data is ready to transmit.

PRELOADEDFONTS

Apart from the 8×8 terminal font（font no．8）， 3 additional monospaced fonts， 3 proportional fonts and 1 large numeric font are integrated as standard．The proportional fonts result in a more attractive appearance，and at the same time require less space on screen（e．g．the＂i＂is narrow and the＂W＂is wide）．Each character can be positioned with pixel accuracy and the width and height can be scaled．Each text can be output left justified， right justified or centered． 90° rotation is also possible．Macro programming permits additional fonts to be integrated（up to 15）．This is done using the LCD－Tools＊）（EA 9777－2USB）．

$+$	$\begin{aligned} & \$ 0 \\ & \text { (0) } \end{aligned}$	$\begin{aligned} & \$ 1 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (22) \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \end{aligned}$	$\begin{aligned} & \$ 4 \\ & (4) \end{aligned}$	$\begin{aligned} & \$ 5 \\ & (5) \end{aligned}$	$\begin{array}{\|c} \$ 6 \\ (66) \end{array}$	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & \$ 9 \\ & (9) \end{aligned}$	$\begin{aligned} & \$ A \\ & (10) \end{aligned}$	$\begin{aligned} & \text { si } \\ & (111) \end{aligned}$	$\begin{gathered} \$ c \\ (12) \end{gathered}$	$\begin{aligned} & \text { SD } \\ & (13) \end{aligned}$	$\underset{(14)}{\substack{\$ E}}$	$\begin{array}{\|l\|l} \hline \mathrm{SF} \\ (15) \end{array}$
\＄20（dez：32）		！	＂	＊	5	\％	8	＇	\because	3	＊	＋	．	－	．	\checkmark
\＄30（dez：48）	\square	1	e	${ }^{-}$	4	5	E	7	－	9	：	；	\checkmark	$=$	＞	$?$
\＄40（dez：64）	0	н	E	c	＂	E	F	i	н	I	J	＊	1	H	＂	\cdots
\＄50（dez：80）	$\stackrel{ }{ }$	0	к	s	T	u	＂	н	＊	v	z	［	\checkmark	1	＊	－
\＄60（dez：96）	－	$\stackrel{ }{ }$	b	＝	d	＊	¢	9	h	i	；	＊	$\stackrel{1}{ }$	н	＂	－
870 （dez：112）	P	\square	－	＊	t	u	＂	\pm	＊	y	x	c	1	＊	＊	$\stackrel{ }{*}$
\＄80（dez：128）	E	\＃			a										й	
\＄90（dez：144）					－					＊	i				F	

Font 1：4x6 monospaced

Upper	$\begin{aligned} & \$ 0 \\ & (0) \end{aligned}$	$\begin{aligned} & \$ 1 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (2) \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \end{aligned}$	$\begin{aligned} & \$_{4}, \\ & \text { (4) } \end{aligned}$	$\frac{55}{55}$			$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{gathered} \$ 8 \\ (8) \end{gathered}$	$\begin{aligned} & \$ 9 \\ & (9) \end{aligned}$	$\begin{aligned} & \text { SA } \\ & (10) \end{aligned}$	$\begin{aligned} & \text { sB } \\ & (111) \end{aligned}$	$\begin{aligned} & \$ \mathrm{sc} \\ & \text { (12) } \end{aligned}$	$\begin{gathered} \text { SD } \\ (13) \end{gathered}$	$\underset{(14)}{\substack{\$ E \\ \hline}}$	sF （15）
\＄20（dez：32）		！	＊	\＃	＊	7			＇	（	）	＊	＋	，	－	－	／
\＄30（dez：48）	10	1	2	3	4	5			7	8	9	：	；	＜	＝	\rangle	7
\＄40（dez：64）	e	H	B	C	D	E	F		G	H	I	J	K	L	H	H	0
\＄50（dez：80）	P	Q	R	5	T	U			н	\％	Y	z	［	4	］	\wedge	－
\＄60（dez：96）	，	a	b	c	d	e	f		9	h	i	j	k	I	iil	n	0
\＄70（dez：112）	P	q	－	3	t	u			H	x	y	z	f	I	\}	\sim	Δ
\＄80（dez：128）	e	ii	é	a	a	a			c	e	e	e	i	1	$\mathbf{1}$	ï	4
590 （dez：144）	E		［	0	0	ò			ù	I	0i	ii	＋	\pm	Y	0	f
SAO（dez：160）	á	i	0	ú	ถ̆	F			－	i	r	7	1	4	i	＊	\％
\＄BO（dez：176）																	
\＄C0（dez：192）																	
\＄DO（dez：208）																	
\＄EO（dezi 224）	Q	［	Γ	π	Σ	¢			＇	面	θ	n	E	¢	\＄	E	0
\＄FO（dez：240）	三	\pm	2	\leq		J			$:=$	－	＊	－	\checkmark	0	2	3	－

Font 3：7x12 monospaced

＋Lower Upper	$\begin{aligned} & \$ 0 \\ & (0) \end{aligned}$	$\begin{aligned} & \$ 1 \\ & (1) \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (2) \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \end{aligned}$	$\begin{aligned} & \$ 4 \\ & (4) \end{aligned}$	$\begin{aligned} & \$ 5 \\ & (5) \end{aligned}$	$\begin{aligned} & \$ 6 \\ & (6) \end{aligned}$	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & (8) \end{aligned}$	$\begin{aligned} & \$ 9 \\ & (9) \end{aligned}$	$\begin{gathered} \$ \mathrm{~A} \\ (10) \end{gathered}$	$\begin{aligned} & \$ B \\ & \text { (11) } \end{aligned}$	$\begin{gathered} \$ \mathrm{C} \\ (12) \end{gathered}$	$\begin{array}{\|l} \$ D \\ (13) \end{array}$	$\begin{gathered} \$ E \\ (14) \end{gathered}$	$\begin{gathered} \$ F \\ (15) \end{gathered}$
\＄20（dez：32）														－	－	
\＄30（dez：48）											\bullet					

Upper	$\begin{aligned} & 80 \\ & (0) \end{aligned}$	$\begin{aligned} & \$ 1 \\ & (1) \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (2) \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \end{aligned}$	$\begin{aligned} & \rho_{44} \\ & 4 \end{aligned}$	$\begin{aligned} & 85 \\ & (5) \end{aligned}$	$\begin{gathered} \text { \$6 } \\ \text { (6) } \end{gathered}$	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & (88) \end{aligned}$	$\begin{gathered} \$ 9 \\ \$ 9 \end{gathered}$	$\begin{gathered} \$ A \\ (10) \end{gathered}$	$\begin{array}{\|l} \$ 8 \\ \text { (11) } \end{array}$	$\begin{aligned} & \text { sc } \\ & (12) \end{aligned}$	$\begin{aligned} & \text { sD } \\ & (13) \end{aligned}$	$\begin{aligned} & \$ E \\ & (14) \end{aligned}$	sF （15）
\＄20（dez：32）		！	＂	\＃	＊	$\%$	\％	，	©	2	＊	＋	＊	－	－	\checkmark
\＄30（dez：48）	\square	1	2	3	4	5	6	7	8	9	：	；	＜	$=$	＞	$?$
\＄40（dez：64）	®	A	B	c	［	E	F	E	H	I	J	κ	L	17	H	0
\＄50（dez：80）	F	Q	R	5	T	U	v		X	Y	2	［	\checkmark	〕	\wedge	－
\＄60（dez：96）	，	\cdots	b	c	d	e	f	9	h	i	j	k	1	mii	n	\bigcirc
\＄70（dez：112）	p	9	r	\equiv	t	\square	v	w	x	\cdots	z	¢	i	\cdots	\cdots	0
\＄80（dez：128）	¢	is	E	$\overline{3}$	3	a	a	c	E	\because	E	i	I	i	\＃	$\dot{\square}$
\＄90（dez：144）	E		1	S	a	a	a	is	ij	6	ii	4	\pm	¥	B	f
\＄AO（dez：160）	\square	i	5	－	$\bar{\square}$	$\overline{\mathrm{N}}$	\square	9	e	г	ᄀ	近	4	i	＊	＊
\＄B0（dez：176）																
\＄C0（dez：192）																
\＄D0（dez：208）																
\＄EO（dez：224）	α	${ }^{\text {® }}$	Γ	π	Σ	\square	μ	T	호	θ	A	s	＊	פ	E	Π
\＄FO（dez：240）	\equiv	\pm	2	\leq	Γ	」	\div	\because	0	－	－	\checkmark	π	2	¥	－

Font 2：6x8 monospaced

$\text { Upper }+ \text { Lower }$	$\$ 0$ （0）	\＄1 （1）	$\begin{aligned} & \$ 2 \\ & (2) \end{aligned}$	$\$ 3$ （3）	$\$ 4$ （4）	$\$ 5$ （5）	$\$ 6$ （6）	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\$ 8$ （8）	$\$ 9$ （9）	$\begin{array}{\|c\|} \hline \$ A \\ (10) \end{array}$	$\begin{aligned} & \$ 8 \\ & \text { (11) } \end{aligned}$	$\$$ （12）	$\begin{gathered} \$ D \\ (13) \end{gathered}$	$\begin{gathered} \$ E \\ (14) \end{gathered}$	$\left.\begin{gathered} \$ F \\ (15) \end{gathered} \right\rvert\,$
\＄20（dez：32）		！	＂	\＃	串	$\%$	$\dot{\otimes}$	－	\bigcirc	j	＊	＋	，	－	．	＇
\＄30（dez：48）	0	1	2	3	4	5	6	7	8	9	：	；	＜	$=$	＞	$?$
\＄40（dez：64）	9	¢	B	I－	D	E	F	G	H	1	J	K	L	M	N	0
\＄50（dez：80）	F	\square	R	5	T	U	V	＇＇	x	Y	z	［	，	］	\cdots	－
\＄60（dez：96）	＊	3	b	0	d	e	f	9	h	1	j	k	1	m	π	0
\＄70（dez：112）	P	＇ 7	r	5	t	U	v	w	\times	$\underline{1}$	z	（	I	7	\cdots	4
\＄80（dez：128）	Θ	ij	Ė	含	ä	a	8	9	＊	E	E	ï	ث	i	̈̈	宕
\＄90（dez：144）	\dot{E}	豆	，俉	\％	\％	$\dot{\Delta}$	¢	ì	ij	$\ddot{\square}$	Ü					
\＄A0（dez：160）	a	i	6	U	ก̈̀	NT	a	9								
\＄B0（dez：176）																
\＄CO（dez：192）																
\＄D0（dez：208）																
\＄EO（dez：224）		B														
\＄FO（dez：240）									0							

Font 4：GENEVA10 proportional

$\underset{\text { Upper }}{+ \text { Lower }}$	$\begin{aligned} & \$ 0 \\ & (0) \end{aligned}$	$\begin{aligned} & \$ 1 \\ & \text { (1) } \end{aligned}$	$\begin{aligned} & \$ 2 \\ & (2) \end{aligned}$	$\begin{aligned} & \$ 3 \\ & (3) \end{aligned}$	$\begin{aligned} & \mathbf{S}_{4}(4) \end{aligned}$	$\begin{aligned} & \$ 5 \\ & (5) \end{aligned}$	$\begin{aligned} & \$ 6 \\ & { }^{(6)} \end{aligned}$	$\begin{aligned} & \$ 7 \\ & (7) \end{aligned}$	$\begin{aligned} & \$ 8 \\ & { }_{88} \end{aligned}$	$\begin{aligned} & \$ 9 \\ & (99) \end{aligned}$	$\begin{gathered} \$ A \\ (10) \end{gathered}$	$\$ 8$ (11)	$\begin{array}{\|l\|l\|l\|l\|} \hline 12) \\ (12) \end{array}$	$\begin{aligned} & \text { \$D } \\ & \text { (13) } \end{aligned}$	$\begin{aligned} & \text { SE } \\ & (14) \end{aligned}$	SF
\$20 (dez: 32)		!	"	\#	\$	$\%$	8	'	$($	J	*	+	,	-	.	7
\$30 (dez: 48)	0	1	2	3	4	5	6	7	8	9	:	;	<	$=$	>	$?$
\$40 (dez: 64)	¢	H	B	C	D	E	F	G	H	I	J	K	L	M	N	0
\$50 (dez: 80)	P	4	R	5	T	U	U	Ш1	H	Y	2	[\checkmark]	^	-
\$60 (dez: 96)	\checkmark	0	b	C	d	e	f	9	h	İ	j	k	I	m	n	0
\$70 (dez: 112)	p	प	r	5	t	U	U	Ш	H	!	z	!	\|	\}	\cdots	Δ
\$80 (dez: 128)	E	ï	é	亿	ä	à	A	CF	e	ë	è	İ	î	i	$\ddot{\text { in }}$	A
590 (dez: 144)	É	\%	II	0	$\ddot{0}$	ò	Û	ù	ị	0	İ					
\$A0 (dez: 160)	A	i	0	Ú	กi	N	a	O								
\$B0 (dez: 176)																
\$CO (dez: 192)																
\$D0 (dez: 208)																
\$EO (dez: 224)		[
\$FO (dez: 240)									\bigcirc							

Font 5: CHICAGO14 proportional

ADDITIONALFONTS

Compile statement "WinFont:"
It is possible to raster TrueType-Fonts in different sizes whitch can be used. A doubleclick to the fontname within the KitEditor opens the font selection box. To simplify the use of fonts, there is the possibilty of an edit box. If you output a string with KitEditor (e.g. \#ZL 5,5, "Hello"), you can perform a double click on the string to open it. Now you can select the desired characters. This is mainly recommended using cyrillic, asian or symbol fonts.
In that way, the KitEditor automatically places the right ASCII-Code. Alternativly you can use instead of the quotation mark curly brackets (e.g. \#ZL 5,5, \{48656C6C6F\}).
Compiler option"Font:"
Following font formats can be used:

- FXT: Textfont as used by eDIP240/320 and KIT series

Import WinFonts

Edit Box

Font 6: Swiss30 Bold proportional

integrated fonts in delivery state

DISPLAY BLINK MODE

After power on or the command 'ESC DG 0' the eDIP128 is in blink mode.
Two picture contents are alternatly shown in an adjustable period.
Blink attributs are set by the commands 'ESC ZB, UB, GB n1':
n1=0: no blink
n1 1 1: On/Off blink
n1=2: blink inverted
$\mathrm{n} 1=3$: Off/On blink (phase shifted)
Between strings ('ESC ZL,ZC,ZR. ..), flashing can be activated locally:
Strings between two ' \sim ' (\$7E) mean blink on/off.
Strings between two ' $\&$ ' (\$26) mean blink off/on phase shifted.
Strings between two '@' (\$40) mean blink inverted.
In addition you can assign or delete postly an rectangle area a blink mode, by using the command 'ESC Q...'

MACRO PROGRAMMING

Single or multiple command sequences can be grouped together in macros and stored in the data flash memory. You can then start them by using the Run macro commands. There are different types of macro (compiler directive marked in green letters):
Normal macro Macro:
These are started by means of an 'ESC MN xx' command via the serial interface or from another macro. A series of macros occurring one after the other can be called cyclically (movie, hourglass, multi-page help text). These automatic macros continue to be processed until either a command is received via the interface or a touch macro with a corresponding return code is activated.
Touch macro TouchMacro:
Started when you touch/release a touch field (only in versions with a touch panel - TP) or issue an 'ESC MT xx' command.
Menu macro (1 to 255) MenuMakro:
Started when you choose a menu item or issue an 'ESC MM xx' command.

Bit macro BitMacro:

will be started by a single line IN $1 . .8$ (bit) will change or by command 'ESC MB xx'. Bit- Macro $1 . .8$ are good for falling edge and Bit Macro $9 . .16$ are good for rising edge at input 1..8. It is possible to change the assignment between Bitmacro and intput with command 'ESC YD n1 n2 n3' (see page 17).
Port macro PortMacro:
These are started when voltage (binary) is applied to IN $1 . .8$ or by command 'ESC MP xx'.
Power-on-macro PowerOnMacro:
Started after power-on. You can switch off the cursor and define an opening screen, for example.
Reset-macro ResetMacro:
Started after an external reset (low level at pin 5).
Watchdog-macro WatchdogMacro:
Started after a fault/error (e.g. failure).
Brown-out-macro BrownOutMacro:
Started after a voltage drop under 3.0V (typ.).
Wake-up-pin-macro WakeupPinMacro:
Started after wake up from power-down-mode with pin 13 (WUP).
Wake-up touch-Macro WakeupTouchMacro:
Started after wake up from power-down-mode with touch (the whole touch area is active).

Important: If a continuous loop is programmed in a power-on, reset, watchdog or brown-out macro, the display can no longer be addressed. In this case, the execution of the power-on macro must be suppressed. You do this by wiring DPOM: - PowerOff - connect pin 13 (DPOM) to GND - PowerOn - open pin 13 (DPOM) again.

Wake-up I2C-Macro WakeupI2CMacro:
Started after wake up from power-down-mode with the $\mathrm{I}^{2} \mathrm{C}$ bus.

STORING IMAGES IN THE DATA FLASH MEMORY

To reduce the transmission times of the interface or to save storage space in the processor system, up to 256 images can be stored in the internal EEPROM with the "PICTURE" compiler directive. They can be called using the "ESC U I" command or from within a macro.
All images in the Windows BMP format (monochrome images only) can be used. They can be created and edited using widely available software such as Windows Paint or Photoshop or the bitmap editor shipped with the product.

CREATING INDIVIDUAL MACROS ANDIMAGES

To create your own fonts, images, animations and macros you need the following:

- To connect the display to the PC, you need the EA 9777-2USB USB evaluation board, which is available as an accessory, or a self-built adapter with a MAX232 level converter (see the application example on page 5).
- ELECTRONIC ASSEMBLY LCD-Tools*), which contains a kiteditor, bitmapeditor, ediptftcompiler, fonts, images, border, pattern and examples (for Windows PCs)
- A PC with an USB or serial COM interface

To define a sequence of commands as a macro, all the commands are written to a file on the PC (e.g. DEMO.KMC). You specify which character sets are to be integrated and which command sequences are to be in which macros. If the macros are defined using the kit editor, you start the eDIP compiler using F5. This creates a file called DEMO.EEP. If an EA 9777-2USB evaluation board is also connected or the display is connected to the PC via a MAX232, this file is automatically burned in the display's data memory.
You can send the created macrofile *.EEP with any other system to the EA eDIP128-6. All programming commands are inside this file, so you only need to send the content of the *.df file (via RS232, SPI or I2C with smallprotocol in packets) to the EA eDIP128-6.

KIT-EDITOR HELP (ELECTRONIC ASSEMBLY LCDTOOLS)

At bottom from the KitEditor window in the statusline you can see a short description for the current command and the parameters. For more information press F1.

*) im Internet unterhttp://www.Icd-module.de/deu/dip/edip.htm

SPECIFICATION AND ELECTRICALCHARACTERISTICS

Characteristics					
Value	Condition	min.	typ.	max.	Unit
Operating Temperature		-20		+70	${ }^{\circ} \mathrm{C}$
Storage Temperature		-30		+80	${ }^{\circ} \mathrm{C}$
Storage Humidity	$<40^{\circ} \mathrm{C}$			90	\%RH
Operating Voltage		3.2		5.2	V
Input Low Voltage		-0.5		0.2*VDD	V
Input High Voltage	Pin Reset only	0.9*VDD		VDD+0.5	V
Input High Voltage	except Reset	0.6*VDD		VDD+0.5	V
Input Leakage Current				1	uA
Input Pull-up Resistor		20		50	kOhms
Output Low Voltage				0.7	V
Output High Voltage	$\begin{gathered} \mathrm{VDD}=3,3 \mathrm{~V} \\ \mathrm{VDD}=5 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 2.5 \\ & 4.2 \end{aligned}$			V
Output Current				20	mA
Current Backlight on	$\begin{gathered} \mathrm{VDD}=3,3 \mathrm{~V} \\ \mathrm{VDD}=5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 210 \\ & 130 \end{aligned}$		mA
Current Backlight off	$\begin{gathered} \mathrm{VDD}=3,3 \mathrm{~V} \\ \mathrm{VDD}=5 \mathrm{~V} \end{gathered}$		$\begin{aligned} & 10 \\ & 17 \end{aligned}$		mA
Power Down	Mode 0		25		$\mu \mathrm{A}$

MOUNTING BEZELEA 0FP130-6SW

As accessory we deliver an optional black anodized mounting bezel. The mounting clips are included in the supplied EA eDIP128-6.

all dimensions are in mm

NOTES ON HANDLING AND OPERATION

- The module can be destroyed by polarity reversal or overvoltage of the power supply; overvoltage, reverse polarity or static discharge at the inputs; or short-circuiting of the outputs.
- It is essential that the power supply is switched off before the module is disconnected. All inputs must also be deenergized.
- The display and touch screen are made of plastic and must not come into contact with hard objects. The surfaces can be cleaned using a soft cloth without solvents.
- The module is designed exclusively for use in buildings. Additional measures have to be taken if it is to be used outdoors. The maximum temperature range of -20 to $+70^{\circ} \mathrm{C}$ must not be exceeded. If used in a damp environment, the module may malfunction or fail. The display must be protected from direct sunshine.

EAeDIP128-6

Page 26

NOTES

NOTES

EAeDIP128-6

Page 28

ELECTRONIC ASSEMBLY reserves the right to change specifications without prior notice. Printing and typographical errors reserved.

DIMENSION

with Touch

Note:

LC displays are generally not suited
to wave or reflow soldering.
Temperatures of over $80^{\circ} \mathrm{C}$ can cause lasting damage.

Two mounting clips are included.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for TFT Displays \& Accessories category:
Click to view products by ELECTRONIC ASSEMBLY manufacturer:
Other Similar products are found below :
OAI-80038AA-2013-A HDA430T-3G1H EA CARREDIPTFT02 NL6448BC20-21D TM022HDHT11-00 NB7W-KBA04 NB-ATT01 NB5Q-ATT01 NB5Q-KBA04 NB-CN001 NL12880BC20-05 NL8060BC26-35C NL8060BC26-35F TCG104SVLQAPNN-AN20 OAI-80038AA-2008-A 315-U004B15300 UMSH-8596MD-34T (REV D) 98-0003-3490-8 $1044278 \underline{1029309} 1060549$ DE 127-TU-30/7,5 DE 128-TU-20/7,5 EP-LK007TFTPCAP FR7.0A00 RC2002A-TIG-CSX NL6448BC2021C TX17D01VM2EAB TX14D23VM5BAA TCG121WXLRXVNNANX35 EIC-LCD-1080P T272480C07VR01 1060632 TCG070WVLPAANN-AN50 TCG035QVLPDANN-GN50 1060630 RFE430V-AIW-DNG T-55619GD065J-LW-ABN NHD-1.8-128160EF-SSXN-FT TCG104SVLPEANN-AN30 NL6448BC33-70 NL192108BC18-06F NLB150XG02L-01 NL6448BC20-30D NL10276BC16-06 NL192108AC10-01D NL6448AC18-08F NL6448BC20-30F NL12880BC20-05BD NL12880BC20-05D

[^0]: $<D C 2>=18($ dez. $)=\$ 12 \quad 3=3($ dez. $)=\$ 03 \quad A=65($ dez. $)=\$ 41$
 select or deselect: ' $S^{\prime}=\$ 53$ or $' D^{\prime}=\$ 44$
 $a d r=0 . .255$
 $b c c=1$ byte $=$ sum of all bytes incl. $\langle D C 2>$ and adr, modulo 256
 $<A C K>=6$ (dec.) $=\$ 06$

