OmROn

Safety Relay

Slim Safety Relays Conforming to EN

Standards

- The forcibly guided contact in the G7SA assures safe operation (EN50205 Class A, approved by VDE.)
- Ideal for use in safety circuits in press machinery, machine tools, and other production machinery.
■ Four-pole and six-pole Relays are available.
- The Relay's terminal arrangement simplifies PWB pattern design.
- Reinforced insulation between inputs and outputs. Reinforced insulation between some poles.
- UL, CSA approval.

- CE marking.

Note: Be sure to refer to the Precautions on page 131.

Ordering Information

Safety Relays

Type	Sealing	Poles	Contacts	Rated voltage	Model
Standard	Flux-tight	4 poles	3PST-NO, SPST-NC	24 VDC	G7SA-3A1B
			DPST-NO, DPST-NC		G7SA-2A2B
		6 poles	5PST-NO, SPST-NC		G7SA-5A1B
			4PST-NO, DPST-NC		G7SA-4A2B
			3PST-NO, 3PST-NC		G7SA-3A3B

Safety Relay Sockets

Type		LED indicator	Poles	Rated voltage	Model
Track-mounting	Track mounting and screw mounting possible	No	4 poles	---	P7SA-10F
			6 poles		P7SA-14F
		Yes	4 poles	24 VDC	P7SA-10F-ND
			6 poles		P7SA-14F-ND
Back-mounting	PCB terminals	No	4 poles	---	P7SA-10P
			6 poles		P7SA-14P

Model Number Legend

G7SA- $\square \mathbf{A} \square \mathbf{B}$

1. NO Contact Poles

2: DPST-NO
3: 3PST-NO
4: 4PST-NO
5: 5PST-NO
2. NC Contact Poles

1: SPST-NC
2: DPST-NC
3: 3PST-NC

Specifications

■ Ratings

Coil

Rated voltage	Rated current	Coil resistance	Must-operate voltage	Must-release voltage	Max. voltage	Power consumption
24 VDC	4 poles: 15 mA	4 poles: $1,600 \Omega$	75% max. (V)	$10 \% \mathrm{~min} .(\mathrm{V})$	$110 \%(\mathrm{~V})$	4 poles: Approx. 360 mW 6 poles: Approx. 500 mW

Note: 1. The rated current and coil resistance are measured at a coil temperature of $23^{\circ} \mathrm{C}$ with tolerances of $\pm 15 \%$.
2. Performance characteristics are based on a coil temperature of $23^{\circ} \mathrm{C}$.
3. The value given for the maximum voltage is for voltages applied instantaneously to the Relay coil (at an ambient temperature of $23^{\circ} \mathrm{C}$) and not continuously.
Contacts

Load	Resistive load (cos $\phi=1$)
Rated load	6 A at 250 VAC, 6 A at 30 VDC
Rated carry current	6 A
Max. switching voltage	$250 \mathrm{VAC}, 125 \mathrm{VDC}$
Max. switching current	6 A
Max. switching capacity (reference value)	$1,500 \mathrm{VA}, 180 \mathrm{~W}$

- Characteristics

Safety Relay Sockets

Model	Continuous current	Dielectric strength	Insulation resistance
P7SA-14 \square	6 A (see note 1)	2,500 VAC for 1 min . between poles	$100 \mathrm{M} \Omega$ min. (see note 2)

Note: 1. If the P7SA-1 $\square \mathrm{F}$ is used between 55 and $85^{\circ} \mathrm{C}$, reduce the continuous current (from 6 A) by 0.1 A for every degree.
2. Measurement conditions: Measurement of the same points as for the dielectric strength at 500 VDC.
3. When using the P7SA-1 \square F-ND at 24 VDC , use at an ambient operating temperature from -25 to $55^{\circ} \mathrm{C}$.

Safety Relays

Contact resistance		$100 \mathrm{~m} \Omega$ max. (The contact resistance was measured with 1 A at 5 VDC using the voltage-drop method.)
Operating time (see note 2)		20 ms max .
Response time (see note 2)		10 ms max. (The response time is the time it takes for the normally open contacts to open after the coil voltage is turned OFF.)
Release time (see note 2)		20 ms max .
Maximum operating frequency	Mechanical	36,000 operations/hr
	Rated load	1,800 operations/hr
Insulation resistance		$100 \mathrm{M} \Omega \mathrm{min}$. (at 500 VDC) (The insulation resistance was measured with a $500-\mathrm{VDC}$ megger at the same places that the dielectric strength was measured.)
Dielectric strength (see notes 3,4)		Between coil contacts/different poles: 4,000 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min (2,500 VAC between poles 3-4 in 4-pole Relays or poles 3-5, 4-6, and 5-6 in 6-pole Relays.) Between contacts of same polarity: 1,500 VAC, $50 / 60 \mathrm{~Hz}$ for 1 min
Vibration resistance		10 to $55 \mathrm{~Hz}, 1.5-\mathrm{mm}$ double amplitude
Shock resistance	Destruction	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
	Malfunction	$100 \mathrm{~m} / \mathrm{s}^{2}$
Life expectancy	Mechanical	10,000,000 operations min. (at approx. 36,000 operations/hr)
	Electrical	100,000 operations min. (at the rated load and approx. 1,800 operations/hr)
Min. permissible load (see note 5) (reference value)		$5 \mathrm{VDC}, 1 \mathrm{~mA}$
Ambient temperature (see note 6)		Operating: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation) Storage: $\quad-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity		Operating: 35% to 85% Storage: 35% to 85%
Weight		4 poles: Approx. 22 g 6 poles: Approx. 25 g
Approved standards		EN61810-1 (IEC61810-1), EN50205, UL508, CSA22.2 No. 14

Note: 1. The values listed above are initial values.
2. These times were measured at the rated voltage and an ambient temperature of $23^{\circ} \mathrm{C}$. Contact bounce time is not included.
3. Pole 3 refers to terminals $31-32$ or $33-34$, pole 4 refers to terminals $43-44$, pole 5 refers to terminals $53-54$, and pole 6 refers to terminals 63-64.
4. When using a P7SA Socket, the dielectric strength between coil contacts/different poles is $2,500 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ for 1 min .
5. Min. permissible load is for a switching frequency of 300 operations $/ \mathrm{min}$.
6. When operating at a temperature between $70^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$, reduce the rated carry current (6 A at $70^{\circ} \mathrm{C}$ or less) by 0.1 A for each degree above $70^{\circ} \mathrm{C}$.

Dimensions

Note: All units are in millimeters unless otherwise indicated. The diagrams are drawn in perspective.

■ Safety Relays

G7SA-3A1B
 G7SA-2A2B

Terminal Arrangement/
Internal Connection Diagram
(Bottom View)
G7SA-3A1B

G7SA-2A2B

Note: Terminals 23-24, 33-34, and 43-44 are normally open. Terminals 11-12 and 21-22 are normally closed.

Terminal Arrangement/
Internal Connection Diagram
(Bottom View)
G7SA-5A1B

G7SA-4A2B

G7SA-3A3B

Note: Terminals 23-24, 33-34, 53-54, and 63-64 are normally open. Terminals 11-12, 21-22, and 31-32 are normally closed.

- Safety Relay Sockets

Track-mounting Socket
 P7SA-10F, P7SA-10F-ND

Note: The socket is shown with
the finger cover removed.
Note: Only the -ND Sockets have LED indicators.
Track-mounting Socket

Note: Only the -ND Sockets have LED indicators.

Terminal Installation/Internal Connection Diagram (Top View)

Terminal Arrangement/Internal Connection Diagram (Top View)

P7SA-10P Back-mounting Socket (for PCB)

Three, 2.6 dia.
(for M3 tapping screws)

Terminal Arrangement/Internal Mounting Hole Placement Connection Diagram (Bottom View) (Bottom View)
(± 0.1 tolerance)

G7SA-3A1B

G7SA-2A2B
Mounted

Note: Terminals 23-24, 33-34, and 43-44 are normally open. Terminals 11-12 and 21-22 are normally closed.

P7SA-14P Back-mounting Socket (for PCB)

Terminal Arrangement/Internal Connection Diagram
(Bottom View)

G7SA-3A3B

Note: Terminals $23-24,33-34,43-44,53-54$, and 63-64 are normally open. Terminals 11-12, 21-22, and 31-32 are normally closed.

Precautions

Safety Relays

A Safety Relay is a Relay with which a safety circuit can be configured.

Wiring

Use one of the following wires to connect to the P7SA-10F/10F-ND/14F/14F-ND.

$$
\begin{array}{ll}
\text { Stranded wire: } & 0.75 \text { to } 1.5 \mathrm{~mm}^{2} \\
\text { Solid wire: } & 1.0 \text { to } 1.5 \mathrm{~mm}^{2}
\end{array}
$$

Tighten each screw of the P7SA-10F/10F-ND/14F/14F-ND to a torque of $0.98 \mathrm{~N} \cdot \mathrm{~m}$ securely.
Wire the terminals correctly with no mistakes in coil polarity, otherwise the G7SA will not operate.

Cleaning

The G7SA is not of enclosed construction. Therefore, do not wash the G7SA with water or detergent.

Forcibly Guided Contacts (from EN50205)

If an NO contact becomes welded, all NC contacts will maintain a minimum distance of 0.5 mm when the coil is not energized. Likewise if an NC contact becomes welded, all NO contacts will maintain a minimum distance of 0.5 mm when the coil is energized.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Safety Relays category:
Click to view products by Omron manufacturer:
Other Similar products are found below :
7-1618103-5 1351-1X 1618089-2 C200HDA003 C200HMR432 C200HMR832 C200HMR833 20-050-36X C500OD415CN 2-1618068-0 $\underline{25994}$ 9-1618103-2 SP10-ETL01 21-890 3-1618060-0 C200HNC112 C200HOD214 C500CN812N 1100X 1100-42X 1-1618062-0 6-1618082-4 7-1618103-6 50.12.9.110.1000 SP16DRD SP16DRA XPSAXE5120P XPSECPE5131P C500-CE243 607.5111.020 439390016 607.5111.009 607.5111.010 PSR-MM25-1NO-2DO-24DC-SC NXSL5500 600PSR-165/300-CU SR4D4110 J73KN-AM-22 G7SA-3A1B DC12 G7SA-4A2B DC12 G7SA-3A1B DC48 G7SA-2A2B DC48 ES-FA-9AA 50.12.9.024.5000 44510-2310 V23047-A1036-A501 445101081 44510-2021 44510-2232 WUF-12-5060-T

