NB4N527S

3.3V, 2.5Gb/s Dual AnyLevel ${ }^{\mathrm{TM}}$ to LVDS Receiver/Driver/Buffer/ Translator with Internal Input Termination

NB4N527S is a clock or data Receiver/Driver/Buffer/Translator capable of translating AnyLevel ${ }^{\mathrm{TM}}$ input signal (LVPECL, CML, HSTL, LVDS, or LVTTL/LVCMOS) to LVDS. Depending on the distance, noise immunity of the system design, and transmission line media, this device will receive, drive or translate data or clock signals up to $2.5 \mathrm{~Gb} / \mathrm{s}$ or 1.5 GHz , respectively.

The NB4N527S has a wide input common mode range of GND +50 mV to $\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV}$ combined with two 50Ω internal termination resistors is ideal for translating differential or single-ended data or clock signals to 350 mV typical LVDS output levels without use of any additional external components (Figure 6).

The device is offered in a small $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ QFN-16 package. NB4N527S is targeted for data, wireless and telecom applications as well as high speed logic interface where jitter and package size are main requirements. Application notes, models, and support documentation are available on www.onsemi.com.

- Maximum Input Clock Frequency up to 1.5 GHz
- Maximum Input Data Rate up to $2.5 \mathrm{~Gb} / \mathrm{s}$ (Figure 5)
- 470 ps Maximum Propagation Delay
- 1 ps Maximum RMS Jitter
- 140 ps Maximum Rise/Fall Times
- Single Power Supply; $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 10 \%$
- Temperature Compensated TIA/EIA-644 Compliant LVDS Outputs
- Internal 50Ω Termination Resistor per Input Pin
- GND +50 mV to $\mathrm{V}_{\mathrm{CC}}-50 \mathrm{mV} \mathrm{V}_{\mathrm{CMR}}$ Range
- These are $\mathrm{Pb}-$ Free Devices

Figure 2. Typical Output Waveform at $2.488 \mathrm{~Gb} / \mathrm{s}$ with PRBS $\mathbf{2 ~}^{23-1}$ (VINPP $=400 \mathrm{mV}$; Input Signal DDJ = $\mathbf{1 4} \mathrm{ps}$)

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

Figure 1. Functional Block Diagram $*_{\mathrm{T}}{ }_{\text {TN }}$

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

NB4N527S

Figure 3. Pin Configuration (Top View)

Table 1. PIN DESCRIPTION

Pin	Name	1/0	Description
1	VTD1	-	Internal 50Ω termination pin for D1. ($\mathrm{R}_{\text {TIN }}$)
2	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D1 input (Note 1).
3	D1	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{\text { D1 }}$ input (Note 1).
4	VTD1	-	Internal 50Ω termination pin for $\overline{\mathrm{D} 1 .}$ ($\mathrm{R}_{\text {TIN }}$)
5	GND	-	0 V . Ground.
6, 7	NC		No connect.
8	V_{CC}		Positive Supply Voltage.
9	Q1	LVDS Output	Inverted D1 output. Typically loaded with 100Ω receiver termination resistor across differential pair.
10	Q1	LVDS Output	Noninverted D1 output. Typically loaded with 100Ω receiver termination resistor across differential pair.
11	$\overline{\text { Q0 }}$	LVDS Output	Inverted DO output. Typically loaded with 100Ω receiver termination resistor across differential pair.
12	Q0	LVDS Output	Noninverted DO output. Typically loaded with 100Ω receiver termination resistor across differential pair.
13	VTD0	-	Internal 50Ω termination pin for DO.
14	D0	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Noninverted differential clock/data D0 input (Note 1).
15	D0	LVPECL, CML, LVDS, LVCMOS, LVTTL, HSTL	Inverted differential clock/data $\overline{\text { DO }}$ input (Note 1).
16	VTDO	-	Internal 50Ω termination pin for $\overline{\mathrm{DO}}$.
EP			Exposed pad. EP on the package bottom is thermally connected to the die improved heat transfer out of package. The pad is not electrically connected to the die, but is recommended to be soldered to GND on the PCB.

1. In the differential configuration when the input termination pins(VTDO/VTDO, VTD1/VTD1) are connected to a common termination voltage or left open, and if no signal is applied on D0/D0, D1/D1 input, then the device will be susceptible to self-oscillation.

NB4N527S

Table 2. ATTRIBUTES

Characteristics	Value	
Moisture Sensitivity (Note 2)	Level 1	
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
ESD ProtectionHuman Body Model Machine Model Charged Device Model	$>2 \mathrm{kV}$ $>200 \mathrm{~V}$ $>1 \mathrm{kV}$	
Transistor Count		
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test		

2. For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
$\mathrm{V}_{\text {CC }}$	Positive Power Supply	GND $=0 \mathrm{~V}$		3.8	V
V_{1}	Positive Input	GND $=0 \mathrm{~V}$	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}$	3.8	V
I_{N}	Input Current Through $\mathrm{R}_{\mathrm{T}}(50 \Omega$ Resistor)	Static Surge		$\begin{aligned} & 35 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iosc	Output Short Circuit Current Line-to-Line (Q to $\overline{\mathrm{Q}}$) Line-to-End (Q or $\overline{\mathrm{Q}}$ to GND)	$\begin{aligned} & \mathrm{Q} \text { or } \overline{\mathrm{Q}} \text { to } \mathrm{GND} \\ & \mathrm{Q} \text { to } \overline{\mathrm{Q}} \end{aligned}$	Continuous Continuous	$\begin{aligned} & 12 \\ & 24 \end{aligned}$	mA
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	QFN-16		-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) (Note 3)	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \text { lfpm } \end{aligned}$	$\begin{aligned} & \text { QFN-16 } \\ & \text { QFN-16 } \end{aligned}$	$\begin{aligned} & 41.6 \\ & 35.2 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	1S2P (Note 3)	QFN-16	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave SolderPb $\mathrm{Pb}-\mathrm{Free}$			$\begin{aligned} & 265 \\ & 265 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
3. JEDEC standard multilayer board - 1S2P (1 signal, 2 power) with 8 filled thermal vias under exposed pad.

Table 4. DC CHARACTERISTICS, CLOCK INPUTS, LVDS OUTPUTS $\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Characteristic	Min	Typ	Max	Unit
$I_{\text {CC }}$	Power Supply Current (Note 8)		40	53	mA

DIFFERENTIAL INPUTS DRIVEN SINGLE-ENDED (Figures 11, 12, 16, and 18)

V_{th}	Input Threshold Reference Voltage Range (Note 7)	GND +100	$\mathrm{~V}_{\mathrm{CC}}-100$	mV	
V_{IH}	Single-ended Input HIGH Voltage	$\mathrm{V}_{\mathrm{th}}+100$		$\mathrm{~V}_{\mathrm{CC}}$	mV
V_{IL}	Single-ended Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{th}}-100$	mV

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 7, 8, 9, 10, 17, and 19)

$\mathrm{V}_{\text {IHD }}$	Differential Input HIGH Voltage	100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{V}_{\text {ILD }}$	Differential Input LOW Voltage	GND		$\mathrm{V}_{\mathrm{CC}}-100$	mV
$\mathrm{V}_{\mathrm{CMR}}$	Input Common Mode Range (Differential Configuration)	$\mathrm{GND}+50$		$\mathrm{~V}_{\mathrm{CC}}-50$	mV
$\mathrm{V}_{\text {ID }}$	Differential Input Voltage ($\left.\mathrm{V}_{\text {IHD }}-\mathrm{V}_{\text {ILD }}\right)$	100		$\mathrm{~V}_{\mathrm{CC}}$	mV
$\mathrm{R}_{\text {TIN }}$	Internal Input Termination Resistor	40	50	60	Ω

LVDS OUTPUTS (Note 4)

V_{OD}	Differential Output Voltage	250		450	mV
$\Delta \mathrm{V}_{\mathrm{OD}}$	Change in Magnitude of V_{OD} for Complementary Output States (Note 9)	0	1	25	mV
V_{OS}	Offset Voltage (Figure 15)	1125		1375	mV
$\Delta \mathrm{V}_{\mathrm{OS}}$	Change in Magnitude of V_{OS} for Complementary Output States (Note 9)	0	1	25	mV
V_{OH}	Output HIGH Voltage (Note 5)		1425	1600	mV
V_{OL}	Output LOW Voltage (Note 6)	900	1075		mV

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
4. LVDS outputs require 100Ω receiver termination resistor between differential pair. See Figure 14.
5. $\mathrm{V}_{\mathrm{OH}} \max =\mathrm{V}_{\mathrm{OS}} \max +1 / 2 \mathrm{~V}_{\mathrm{OD}} \max$.
6. $\mathrm{V}_{\text {OL }} \max =\mathrm{V}_{\text {OS }} \min -1 / 2 \mathrm{~V}_{\text {OD }} \max$.
7. $V_{\text {th }}$ is applied to the complementary input when operating in single-ended mode.
8. Input termination pins open, $D x / D x$ at the $D C$ level within $V_{C M R}$ and output pins loaded with $R_{L}=100 \Omega$ across differential.
9. Parameter guaranteed by design verification not tested in production.

Table 5. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{GND}=0 \mathrm{~V}$; (Note 10)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V ${ }_{\text {OUTPP }}$	Output Voltage Amplitude (@ $\left.V_{\text {INPPmin }}\right) f_{i n} \leq 1.0 \mathrm{GHz}$ (Figure 4)	$\begin{aligned} & \hline 220 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$		$\begin{aligned} & 220 \\ & 200 \end{aligned}$	$\begin{aligned} & 350 \\ & 300 \end{aligned}$		mV
$\mathrm{f}_{\text {DATA }}$	Maximum Operating Data Rate	1.5	2.5		1.5	2.5		1.5	2.5		Gb/s
$\mathrm{t}_{\text {PLH }}$, $t_{\text {PHL }}$	Differential Input to Differential Output Propagation Delay	270	370	470	270	370	470	270	370	470	ps
tskew	Duty Cycle Skew (Note 11) Within Device Skew (Note 17) Device-to-Device Skew (Note 15)		$\begin{gathered} 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} 45 \\ 25 \\ 100 \end{gathered}$		$\begin{gathered} 8 \\ 5 \\ 30 \end{gathered}$	$\begin{gathered} \hline 45 \\ 25 \\ 100 \end{gathered}$		8 5 30	$\begin{gathered} 45 \\ 25 \\ 100 \end{gathered}$	ps
$\mathrm{t}_{\text {JITTER }}$			$\begin{gathered} \hline 0.5 \\ 0.5 \\ 6 \\ 7 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ 10 \\ 20 \\ 20 \\ 25 \\ 40 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.5 \\ 6 \\ 7 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ 10 \\ 20 \\ 20 \\ 25 \\ 40 \end{gathered}$		$\begin{gathered} \hline 0.5 \\ 0.5 \\ 6 \\ 7 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} 1 \\ 1 \\ 10 \\ 20 \\ 20 \\ 25 \\ 40 \end{gathered}$	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing/Sensitivity (Differential Configuration) (Note 12)	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}-1 \\ & \mathrm{GND} \end{aligned}$	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & \mathrm{GND} \end{aligned}$	mV
$\begin{array}{\|l\|l} \hline t_{r} \\ t_{f} \end{array}$	$\begin{aligned} & \begin{array}{l} \text { Output Rise/Fall Times @ } 250 \mathrm{MHz} \\ (20 \%-80 \%) \end{array} \quad \text { Q, } \overline{\mathrm{Q}} \end{aligned}$	60	100	140	60	100	140	60	100	140	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.
10. Measured by forcing $V_{\text {INPPmin }}$ with 50% duty cycle clock source and $V_{C C}-1400 \mathrm{mV}$ offset. All loading with an external $R_{L}=100 \Omega$ across " D " and " D " of the receiver. Input edge rates $150 \mathrm{ps}(20 \%-80 \%)$.
11. See Figure 13 differential measurement of $t_{\text {skew }}=\left|t_{\text {PLH }}-t_{\text {PHL }}\right|$ for a nominal 50% differential clock input waveform @ 250 MHz .
12. Input voltage swing is a single-ended measurement operating in differential mode.
13. RMS jitter with 50% duty cycle input clock signal.
14. Deterministic jitter with input NRZ data at PRBS $2^{23}-1$ and K28.5.
15. Skew is measured between outputs under identical transition @ 250 MHz .
16. Crosstalk induced jitter is the additive deterministic jitter to channel one with channel two active both running at $622 \mathrm{~Gb} / \mathrm{s} \operatorname{PRBS} 2^{23}-1$ as an asynchronous signals.
17. The worst case condition between $\mathrm{Q} 0 / \mathrm{Q0}$ and $\mathrm{Q} 1 / \mathrm{Q1}$ from either $\mathrm{DO} / \overline{\mathrm{DO}}$ or $\mathrm{D} 1 / \overline{\mathrm{D} 1}$, when both outputs have the same transition.

Figure 4. Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) versus Input Clock Frequency (f_{in}) and Temperature ($@ \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V}$)

NB4N527S

Figure 5. Typical Output Waveform at $2.488 \mathrm{~Gb} / \mathrm{s}$ with PRBS $\mathbf{2}^{23-1}$ and OC48 mask ($\mathrm{V}_{\text {INPP }}=100 \mathrm{mV}$; Input Signal DDJ = $\mathbf{1 4} \mathrm{ps}$)

Figure 6. Input Structure

Figure 7. LVPECL Interface

Figure 9. Standard 50Ω Load CML Interface

Figure 8. LVDS Interface

Figure 10. HSTL Interface

Figure 11. LVCMOS Interface
${ }^{*} \mathrm{R}_{\text {TIN }}$, Internal Input Termination Resistor.

Figure 12. LVTTL Interface

Figure 13. AC Reference Measurement

Figure 14. Typical LVDS Termination for Output Driver and Device Evaluation

Figure 15. LVDS Output

D

Figure 16. Differential Input Driven Single-Ended

Figure 17. Differential Inputs Driven Differentially

Figure 18. $\mathrm{V}_{\text {th }}$ Diagram

Figure 19. $\mathrm{V}_{\mathrm{CMR}}$ Diagram

NB4N527S

ORDERING INFORMATION

Device	Package	Shipping †
NB4N527SMNG	QFN-16 (Pb-Free)	123 Units / Rail
NB4N527SMNR2G	QFN-16 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

QFN16 3x3, 0.5P
CASE 485G-01
ISSUE E

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.18	0.30
D	3.00 BSC	
D2	1.65	1.85
E	3.00 BSC	
E2	1.65	1.85
e	0.50 BSC	
K	0.18 TYP	
L	0.30	0.50
L1	0.00	0.15

RECOMMENDED

DIMENSIONS: MILLIMETERS
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Clock Drivers \& Distribution category:
Click to view products by ON Semiconductor manufacturer:
Other Similar products are found below :
8501BYLF 854S015CKI-01LF 8T33FS6221EPGI NB7V72MMNHTBG Si53314-B-GMR 4RCD0124KC0ATG P9090-0NLGI8 $\underline{\text { SY100EP33VKG } 850 \text { S1201BGILF } 8004 \mathrm{AC}-13-33 \mathrm{E}-125.00000 \mathrm{X} \text { ISPPAC-CLK5520V-01T100C8P 4RCD0124KC0ATG8 854110AKILF }}$ PI6C4931504-04LIE SI53305-B-GMR 83210AYLF NB6VQ572MMNG 4RCD0229KB1ATG PI6C4931502-04LIEX 8SLVD1212ANLGI PI6C4931504-04LIEX AD9508BCPZ-REEL7 NBA3N200SDR2G 8T79S308NLGI SI53315-B-GMR NB7NQ621MMUTWG 49FCT3805DPYGI8 49FCT805BTPYG 49FCT805PYGI RS232-S5 542MILFT 6ES7390-1AF30-0AA0 74FCT3807PYGI SY89873LMG SY89875UMG-TR 853S011BGILFT 853S9252BKILF 8P34S1102NLGI8 8T53S111NLGI CDCVF2505IDRQ1 CDCUA877ZQLT CDCE913QPWRQ1 CDC2516DGGR 8SLVP2104ANBGI/W 8S73034AGILF LV5609LP-E 5T9950PFGI STCD2400F35F 74FCT3807QGI8 74FCT3807PYGI8

