

Specification

BT45228

BTHQ128064AVD1-FSTF-12-LEDWHITE-COG

Doc. No.: COG-BTD12864-42

Version November 2010

DOCUMENT REVISION HISTORY:

FROM TO	DOCUMENT	DATE	DESCRIPTION	CHANGED	CHECKED
A 2010.11.02 First Release. Based on: a.) VL-QUA-012B REV.Y 2010.12.10 According to VL-QUA-012B, LCD size is small because Unit Per Laminate=24 which is more than				ВҮ	ВҮ
		2010.11.02	Based on: a.) VL-QUA-012B REV.Y 2010.12.10 According to VL-QUA-012B, LCD size is small because Unit Per Laminate=24 which is more than	LIWEI	CHI SHAO BO

CONTENTS

		<u>Page No.</u>
1.	GENERAL DESCRIPTION	4
2.	MECHANICAL SPECIFICATIONS	4
3.	INTERFACE SIGNALS	7
4.	ABSOLUTE MAXIMUM RATINGS	9
4.1	ELECTRICAL MAXIMUM RATINGS – FOR IC ONLY	9
4.2	ENVIRONMENTAL CONDITION	10
5.	ELECTRICAL SPECIFICATIONS	11
5.1	TYPICAL ELECTRICAL CHARACTERISTICS	11
5.2	APPENDIX – LED CHROMATICS COORDINATES	11
5.3	TIMING SPECIFICATIONS	12
5.4	COMMAND TABLE	15
5.5	INITIAL CODE SETTING (FOR REFERENCE ONLY)	16
5.6	REFERENCE CIRCUIT	16
6.	ELECTRO-OPTICAL CHARACTERISTICS	17
6.1	ISO PLOT	17
6.2	OPTICAL CHARACTERISTICS DEFINITION	18
7.	LCD COSMETIC CONDITIONS	19
8.	REMARK	19

Specification of LCD Module Type

Model No.: COG-BTD12864-42

1. General Description

• 128 x 64 Dots FSTN Positive Black & White Transflective Dot Matrix LCD Module.

• Viewing Angle: 12 o'clock direction.

• Driving duty: 1/65 Duty, 1/7 bias.

• 'SITRONIX' ST7565P (COG) Dot Matrix LCD Driver or equivalent.

• Logic voltage: 3.3V.

• FPC connection.

• White LED02 backlight.

• "RoHS" compliance.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 2 and summarized in Table 1 below.

Table 1

Parameter	Specifications	Unit
Outline dimensions	55.6(W) x 70.2(H) x 4.42(D) (Included FPC. Excluded pins)	mm
Viewing area	50.60(W) x 31.0(H)	mm
Active area	46.577(W) x 27.697(H)	mm
Display format	128(W) x 64(H)	dots
Dot size	0.349(W) x 0.418(H)	mm
Dot spacing	0.015(W) x 0.015(H)	mm
Dot pitch	0.364(W) x 0.433(H)	mm
Weight	Approx: 14	grams

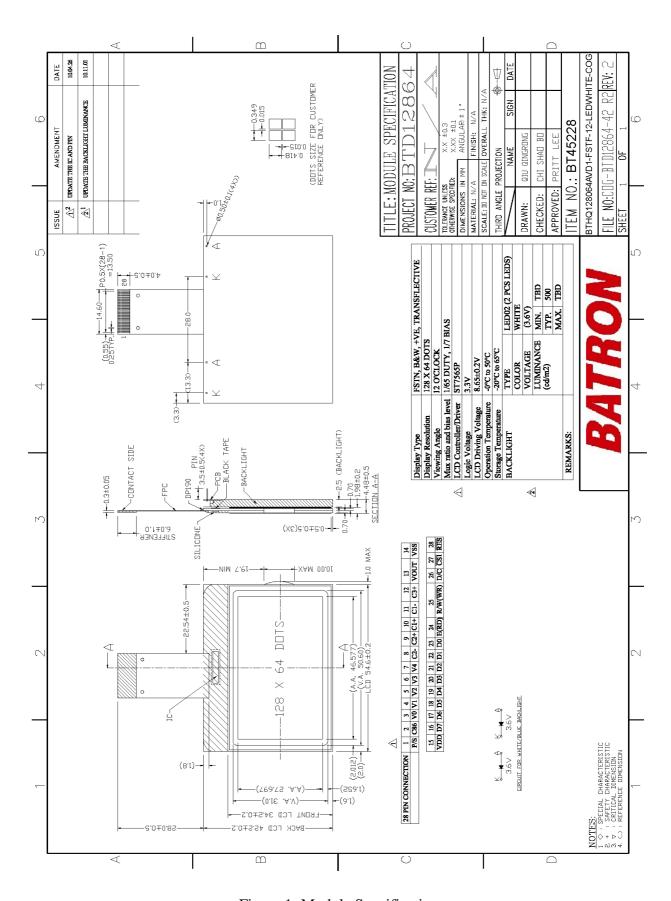


Figure 1: Module Specification

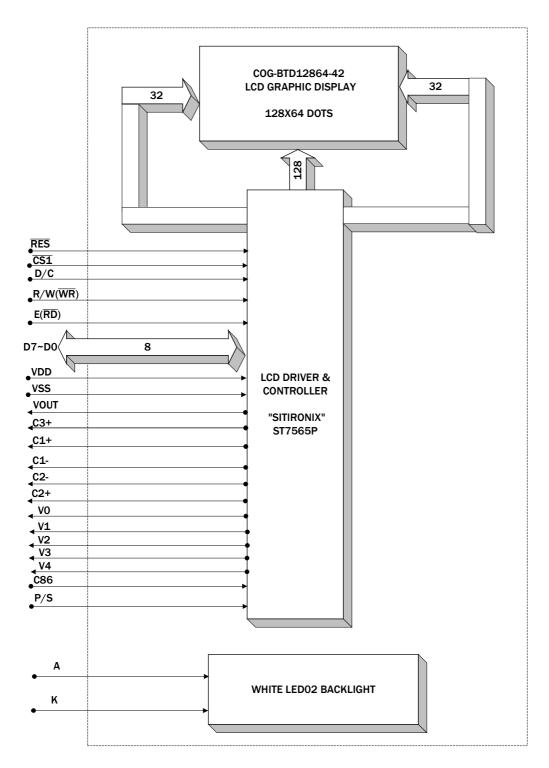


Figure 3: Block Diagram.

3. Interface signals

Table 2(a): Pin Assignment

Pin No.	Symbol	Description								
1	P/S	This pin configures the interface to be parallel mode or serial mode. P/S = "H": Parallel data input/output. P/S = "L": Serial data input. The following applies depending on the P/S status: P/S Data/Command Data Read/Write Serial Clock "H" D/C D0 to D7 RD, WR X "L" D/C D7 Write only D6 When P/S = "L", D0 to D5 must be fixed to "H". RD (E) and WR (R/W) are fixed to either "H" or "L". The serial access mode does NOT support read operation.								
2	C86	This is the MPU interface selection pin. C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 Series MPU interface.								
3	V0	This is a multi-level power supply for the liquid crystal drive. The voltage								
4	V1	supply applied is determined by the liquid crystal cell, and is changed								
5	V2	through the use of a resistive voltage divided or through changing the								
6	V3	impedance using an op. amp. Voltage levels are determined based on VSS,								
7	V4	and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: V1= 6/7 * V0, V2=5/7 * V0, V3=2/7 *V0, V4=1/7 * V0.								
8	C2-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.								
9	C2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.								
10	C1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.								
11	C1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.								
12	C3+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.								
13	VOUT	DC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD.								
14	VSS	Ground.								
15	VDD	Power supply pins for logic.								
		11 / 1								

Table 2(b): Pin Assignment

Pin No.	Symbol	Description
16	D7	
17	D6	This is an 8-bit bi-directional data bus that connects to an 8-bit standard MPU
18	D5	data bus.
19	D4	When the serial interface is selected (P/S = LOW), then D7 serves as the serial
20	D3	data input terminal (SI) and D6 serves as the serial clock input terminal (SCL). At this time, D0 to D5 are set to high impedance.
21	D2	When the chip select is inactive, D0 to D7 are set to high impedance.
22	D1	when the emp select is mactive, bo to b' are set to high impedance.
23	D0	
24	E(RD)	When connected to 8080 series MPU, this pin is treated as the "RD" signal of the 8080 MPU and is LOW-active. The data bus is in an output status when this signal is "L". When connected to 6800 series MPU, this pin is treated as the "E" signal of the 6800 MPU and is HIGH-active. This is the enable clock input terminal of the 6800 Series MPU.
25	$R/W(\overline{WR})$	When connected to 8080 series MPU, this pin is treated as the " \overline{WR} " signal of the 8080 MPU and is LOW-active. The signals on the data bus are latched at the rising edge of the \overline{WR} signal. When connected to 6800 series MPU, this pin is treated as the "R/W" signal of the 6800 MPU and decides the access type: When R/W = "H": Read. When R/W = "L": Write.
26	D/C	This is connect to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or command. D/C = "H": Indicates that D0 to D7 are display data. D/C= "L": Indicates that D0 to D7 are control data.
27	CS1	This is the chip select signal. When /CS1 = "L", then the chip select becomes active, and data/command I/O is enabled.
28	RES	When RES is set to "L", the register settings are initialized (cleared). The reset operation is performed by the /RES signal level.

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings – for IC Only

Table 3

Parameter	Symbol	Min.	Max.	Unit
Power Supply voltage (Logic)	VDD	+0.3	+3.6	V
Power Supply voltage (VDD2)	VDD2	+0.3	+3.6	V
Power Supply voltage (V0, VOUT)	V0, VOUT	+0.3	+14.5	V
Power Supply voltage (V1, V2, V3, V4)	V1, V2, V3, V4	V0	+0.3	V

Note:

- 1. The VDD2, V0 to V4 and VOUT are relative to the VSS = 0V reference.
- 2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUT \geq V0 \geq V1 \geq V2 \geq V3 \geq V4.
- 3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI reliability as well.

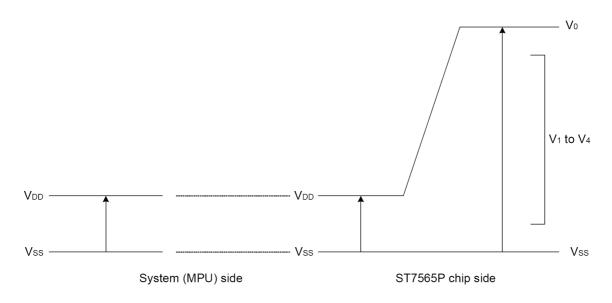


Figure 3

4.2 Environmental Condition

Table 4

	Oper	ating	age					
Item	Tempe	erature	Tempe	erature	Remark			
	(To							
			(Not	te 1)				
	Min.	Max.	Min.	Max.				
Ambient Temperature	0°C	+50°C	-20°C	+65°C	Dry			
	90% max. RI	$H \text{ for Ta} \leq 40$	0°C					
Humidity (Note 1)	< 50% RH fo	No condensation						
	temperature							
Vibration (IEC 68-2-6)	Frequency:	10 ~ 55 Hz						
cells must be mounted on	Amplitude:	0.75 mm			3 directions			
a suitable connector	Duration: 20	cycles in each	direction.					
	Pulse duratio	n: 11 ms						
Shock (IEC 68-2-27)	Peak accelera	3 directions						
Half-sine pulse shape								
	perpendicula							

Note 1: Product cannot sustain at extreme storage conditions for long time.

5. Electrical Specifications

5.1 Typical Electrical Characteristics

At Ta = +25 °C, $VDD = +3.3\pm5\%$, VSS = 0V.

Table 5

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Supply voltage (Logic)	VDD-VSS		3.14	3.3	3.47	V
Supply voltage (LCD) (built-in)	VLCD =V0-VSS	Ta = 0 °C, Character mode, VDD = +3.3V, Note 1	-	8.9	-	V
		Ta = 25 °C, Character mode, VDD = +3.3V, Note 1	8.5	8.8	9.1	V
		Ta = $+50$ °C, Character mode, VDD = $+3.3$ V, Note 1	-	8.5	-	V
Low-level input signal voltage	V _{ILC}	Note 2	VSS	-	0.2xVDD	V
High-level input signal voltage	V_{IHC}	Note 2	0.8xVDD	-	VDD	V
Supply Current (Logic & LCD)	IDD	VDD = +3.3V,Note 1, Character mode	-	0.46	0.69	mA
		VDD = +3.3V,Note 1, Checker board mode	-	0.78	1.2	mA
Supply current of White LED02 backligh	VLED	Forward current = 2 x 15mA	3.2	3.6	4.0	V
Luminance (on the backlight surface) of backlight		Number of LED dice =2dies.	-	495	-	cd/m ²

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Note 2: D/C, D0 to D5, D6, D7, $E(\overline{RD})$, $R/W(\overline{WR})$, $\overline{CS1}$, C86, P/S, \overline{RES} terminals.

Note 3: Do not display a fixed pattern for more than 30 min. because it may cause image sticking due to LCD characteristics. It is recommended to change display pattern frequently. If customer must fix display pattern on the screen, please consider to activate screen saver.

5.2 Appendix - LED Chromatics Coordinates

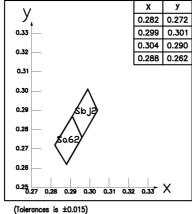


Figure 4

5.3 Timing Specifications

System Bus read/Write Characteristics 1 (For the 8080 Series MPU)

At
$$Ta = 0$$
 °C to +50 °C, $VDD = +3.3V\pm5\%$, $VSS = 0V$.

Table 6

Item	Signal Symbol Co		Condition	Rat	Units	
item			Condition	Min.	Max.	Ullits
Address hold time		tAH8		0	–	
Address setup time	A0	tAW8		0	_	
System cycle time		tcyc8		240	_]
Enable L pulse width (WRITE)	WR	tcclw		80	_]
Enable H pulse width (WRITE)	1 VVK	t CCHW		80	_]
Enable L pulse width (READ)	RD	tCCLR		140	_	Ns
Enable H pulse width (READ)	ן אט	tCCHR		80]
WRITE Data setup time		tDS8		40	_]
WRITE Address hold time	D0 to D7	tDH8		0	_]
READ access time	י וט וט טלי	tACC8	CL = 100 pF	_	70]
READ Output disable time		t OH8	CL = 100 pF	5	50]

^{*1} The input signal rise time and fall time (tr, tr) is specified at 15 ns or less. When the system cycle time is extremely fast, $(tr + tr) \le (tcycs - tcchw - tcchw)$ for $(tr + tr) \le (tcycs - tcchw - tcchw)$ are specified.

^{*3} tcclw and tcclR are specified as the overlap between /CS1 being "L" (CS2 = "H") and /WR and /RD being at the "L" level.

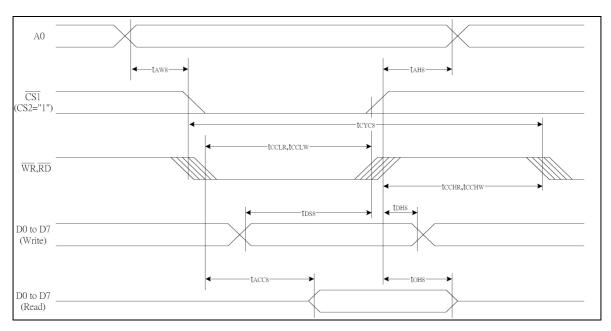


Figure 5: The timing diagram of system bus read/write (For the 8080 Series MPU)

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

System Bus read/Write Characteristics 2 (For the 6800 Series MPU)

At Ta =0 °C to +50 °C, VDD = +3.3 $V\pm5\%$, VSS = 0V.

Table 7

Itom	Cianal	Cumbal	Condition	Rat	ing	Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		0	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tcyc6		240	_	
Enable L pulse width (WRITE)	WR	tewlw		80	_	
Enable H pulse width (WRITE)	- VVK	tewhw		80	_	
Enable L pulse width (READ)	RD	tewlr		80	_	ns
Enable H pulse width (READ)	, KD	tewhr		140		
WRITE Data setup time		tDS6		40	_	
WRITE Address hold time	D0 to D7	tDH6		0	_	
READ access time	- D0 to D7	tACC6	CL = 100 pF	_	70]
READ Output disable time	1	t OH6	CL = 100 pF	5	50]

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tcγc6 - tewlw - tewhw) for (tr + tf) ≤ (tcγc6 - tewlr - tewhr) are specified.

^{*3} tewlw and tewlr are specified as the overlap between CS1 being "L" (CS2 = "H") and E.

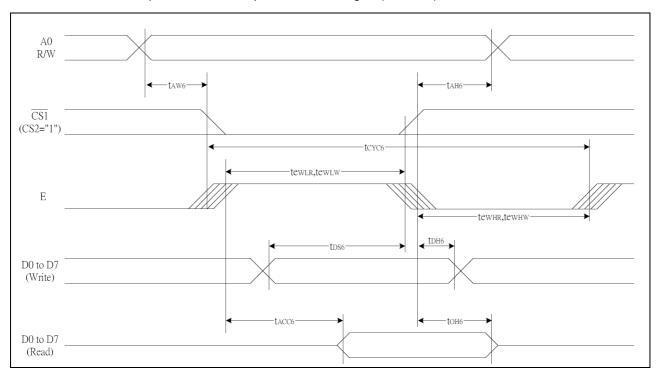


Figure 6: The timing diagram of system bus read/write (For the 6800 Series MPU)

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

Reset Timing

At Ta =0 °C to +50 °C, VDD = +3.3 $V\pm5\%$, VSS = 0V.

Table 8

Item	Signal	Symbol	Condition	,	Rating		Units
item	Sigilal	Symbol	Condition	Min.	Тур.	Max.	Ullits
Reset time		tr		_	_	1.0	us
Reset "L" pulse width	/RES	trw		1.0	_	_	us

^{*1} All timing is specified with 20% and 80% of $\mbox{\em VDD}$ as the standard.

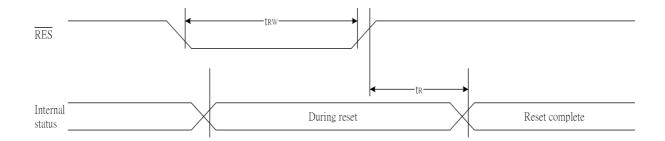
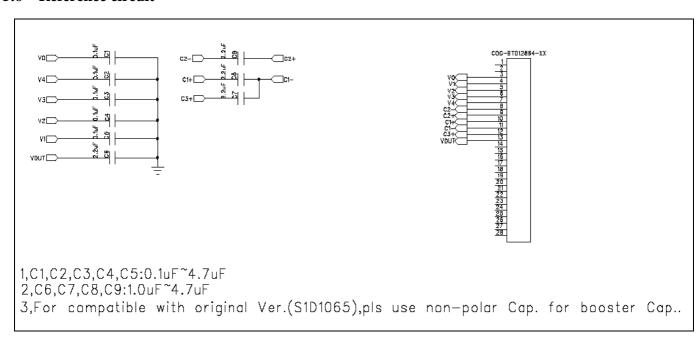


Figure 7: Reset Timing

5.4 Command Table

Table 9


Command				Cor	nma	nd (Code	€				Function
Command	A0	/RD	/WR			D5			D2	D1	D0	
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	D	ispla	ay st	art a	addr		Sets the display RAM display start line address
(3) Page address set	0	1	0	1	0	1	1	Pa	age a	addı	ess	Sets the display RAM page address
(4) Column address set upper bit Column address set	0	1	0	0	0	0	1	col	umn	ado	icant dress ficant	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of
lower bit	Ŭ										dress	the display RAM column address.
(5) Status read	0	0	1		St	atus	;	0	0	0	0	Reads the status data
(6) Display data write	1	1	0			,	Writ	e da	ta			Writes to the display RAM
(7) Display data read	1	0	1				Rea	d da	ta			Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565P)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1		pera ode	iting	Select internal power supply operating mode
(17) V0 voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0		esis atio	tor	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1	0	0 Ele	0 ctro	0 nic \	0 /olur	-	1 /alue	Set the Vo output voltage electronic volume register
(19) Static indicator ON/OFF	0	1	0	1	0	1	0	1	1	0	0	0: OFF, 1: ON
Static indicator register set				0	0	0	0	0	0	0	Mode	Set the flashing mode
(20) Booster ratio set	0	1	0	1 0	1	1	1 0	1	0		0 ep-up alue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

5.5 Initial code setting (for reference only)

Table 10

Description	Setting data			
Reset	0xe2			
LCD bias set	0xa3			
ADC select	0xa0			
Common output mode select	0xc8			
V5 voltage regulator internal resistor ratio set	0x25			
Electronic volume mode set	0x81			
Electronic volume	0x13			
Power control set	0x25			
Display start line set	0x40			
Page address set	0xb0			
Column address upper bit set	0x10			
Column address lower bit set	0x04			
Display all point ON/OFF	0xa4			
Display normal or reverse	0xa6			

5.6 Reference circuit

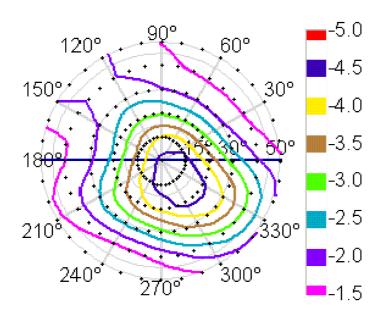
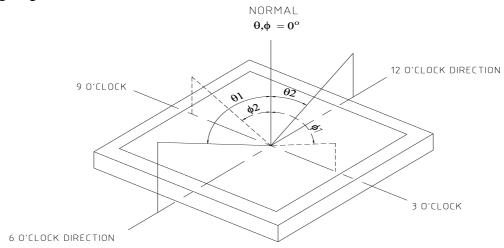

6. Electro-Optical Characteristics

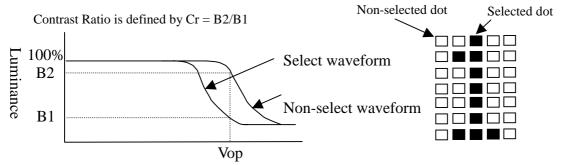
Table 11

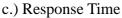
Item	Symbol	Temp.	Value			Unit	Condition	
Itelli	Symbol	°C	Min.	Тур.	Max.	Omi	Collattion	
Driving voltage	Vop	+25	-	8.8	-	V	Vop= optimum voltage	
Response time	Ton	+25	1	202	303	- msec	Vop= Optimum voltage $\theta = 0^{\circ}, \ \phi = 0^{\circ}$	
	Toff		ı	85	128			
Optimum viewing area Cr ≥ 2	θ1(6 o'clock)	+25	27	38	1	DEG	φ = 0°	Vop= Optimum voltage (Remark 1)
	θ2(12 o'clock)		21	30	-			
	\$\phi 1(3 o'clock)		28	40	-		$\theta = 0^{\circ}$	
	φ2(9 o'clock)		31	30	-			
Contrast ratio	Cr +2:	125	-25 3	4.7		-	Vop = Optimum voltage	
		+23			-		$\theta = 0^{\circ}, \phi = 0^{\circ}$	
Transmittance	smittance $+25$ 13% 19% - $ Vop = Optimum$		ptimum voltage					

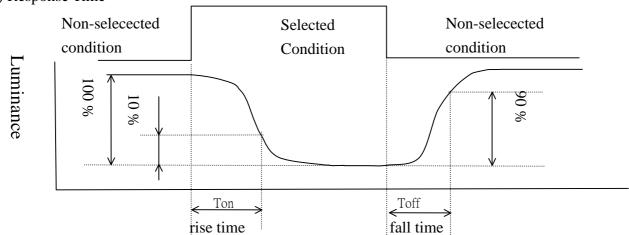

Remark 1: Due to hardware limitation, the maximum measurable angle is 50 $^{\rm O}$

6.1 ISO plot

6.2 Optical Characteristics Definition


a.) Viewing Angle




b.) Contrast Ratio

B1 = segments luminance in case of non-selected waveform

B2 = segments luminance in case of selected waveform

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for batron manufacturer:

Other Similar products are found below:

BTHQ42005VSS-FSTF-LED WHITE BT22008VSMNLEDRED BT96040AV2-COG-FSTF-12-I2C BTHQ21605V-COG-FSRE-I2C