

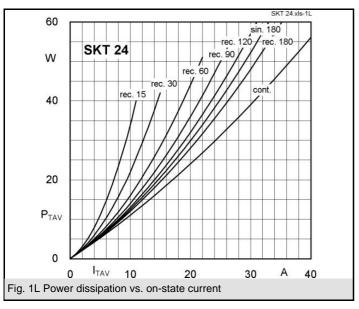
Stud Thyristor

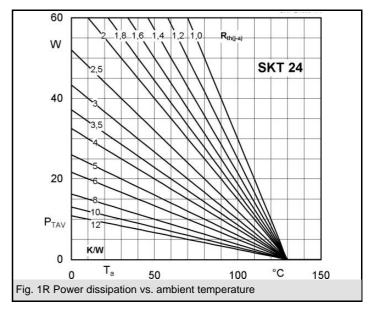
Line Thyristor

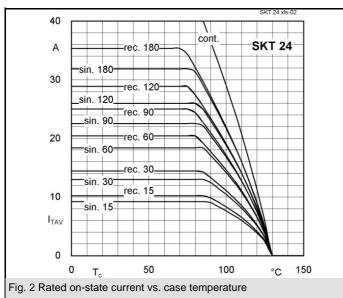
SKT 24

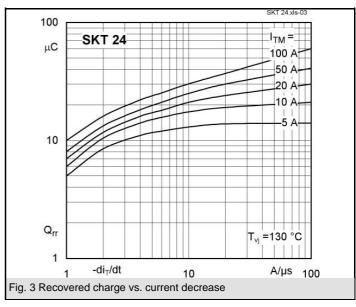
Features

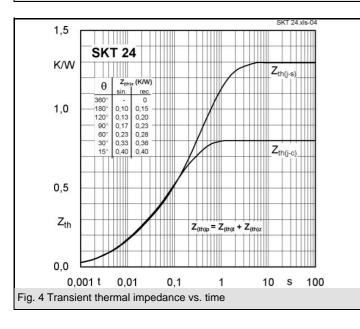
- Hermetic metal case with glass insulator
- Threaded stud ISO M6 or UNF 1/4-28
- · International standard case

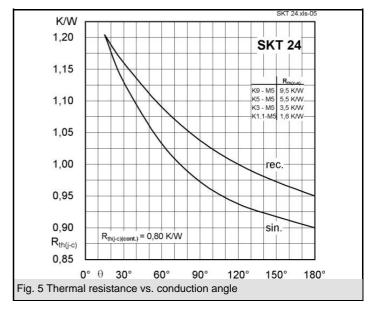

Typical Applications

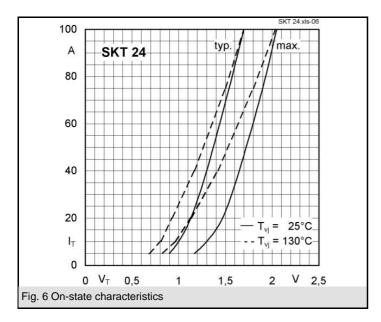

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers(e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 100 $\Omega/5$ W, C = 0,1 μF
- 1) Available with UNF thread 1/4-28 UNF2A, e. g. SKT 24/12E UNF

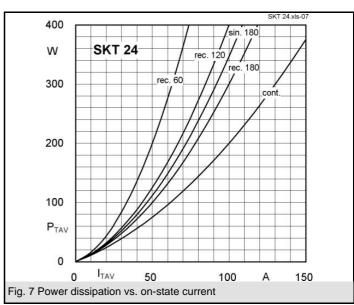

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 50 A (maximum value for continuous operation)		
V	V	I _{TAV} = 24 A (sin. 180; T _c = 95 °C)		
500	400	SKT 24/04D		
900	800	SKT 24/08D		
1300	1200	SKT 24/12E ¹⁾		
1500	1400	SKT 24/14E		
1700	1600	SKT 24/16E ¹⁾		
1900	1800	SKT 24/18E		

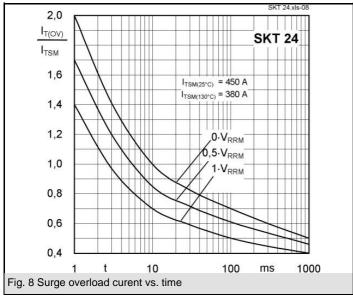

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	22 (29)	Α
I _D	K5; T _a = 45 °C; B2 / B6	22 / 30	Α
	K3; T _a = 45 °C; B2 / B6	28 /40	Α
I_{RMS}	K5; T _a = 45 °C; W1C	24	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	450	Α
	T _{vi} = 130 °C; 10 ms	380	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	1000	A²s
	T _{vj} = 130 °C; 8,35 10 ms	720	A²s
V _T	T _{vi} = 25 °C; I _T = 75 A	max. 1,9	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1	V
r _T	T _{vi} = 130 °C	max. 10	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 130 ^{\circ}\text{C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 8	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_G = 1 \text{A}; di_G/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vi} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	T _{vi} = 130 °C	80	μs
I _H	T_{vi}^{9} = 25 °C; typ. / max.	80 / 150	mA
I_L	T _{vj} = 25 °C; typ. / max.	150 / 300	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I_{GT}	$T_{vj}^{s} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	T_{vj}^{3} = 130 °C; d.c.	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 3	mA
R _{th(j-c)}	cont.	0,8	K/W
R _{th(j-c)}	sin. 180	0,9	K/W
R _{th(j-c)}	rec. 120	0,95	K/W
R _{th(c-s)}		0,5	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 150	°C
V _{isol}		-	V~
M_s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	13	g
Case		B 2	

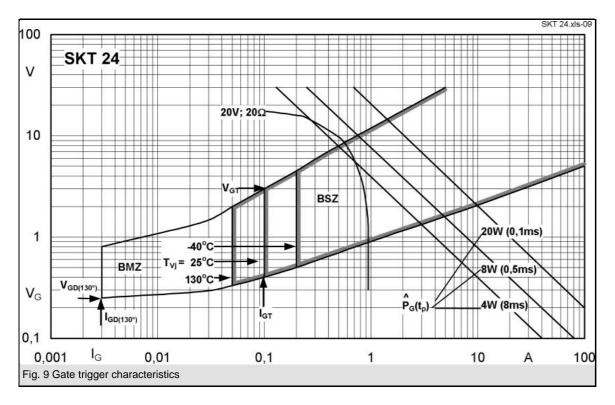


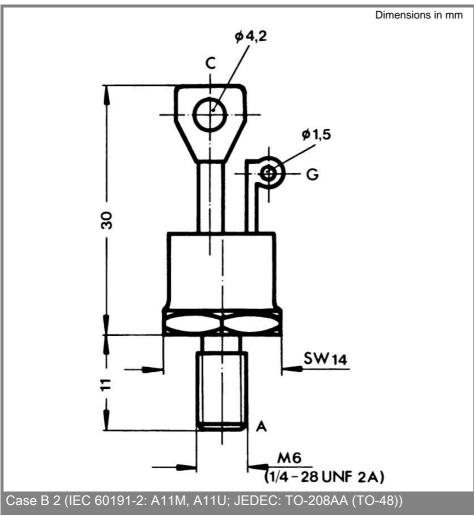











SKT 24

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

X-ON Electronics

Authorized Distributor

Click to view similar products for Semikron manufacturer.

Other Similar products are found below:

ACCKITFOR12XSEMIPACK1DIOD BI2512 BOARD4SSKYPER32PROR DBI2504P

DBI2508P DBI2510P DBI2512P DBI2516P DBI2518P DBI2520P DBI2522P DBI604P

DBI608P DBI616 DBI616P DBI620P P3120 P3300B P6KE39CA SEMIX241DH16S

SEMIX341D16S SEMIX402GAL066HDS SEMIX453GB12E4S SK100KQ08

SK100KQ16