

Stud Thyristor

Line Thyristor

SKT 10

Features

- Hermetic metal case with glass insulator
- Threaded stud ISO M5
- · International standard case

Typical Applications

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)
- Recommended snubber network e.g. for $V_{VRMS} \le 400 \text{ V}$: R = 100 $\Omega/5$ W, C = 0,1 μ F

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 30 A (maximum value for continuous operation)		
V	V	I _{TAV} = 10 A (sin. 180; T _c = 111 °C)		
700	600	SKT 10/06D		
900	800	SKT 10/08D		
1300	1200	SKT 10/12E		

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	14 (19)	Α
I _D	K9; T _a = 45 °C; B2 / B6	12 / 16,5	Α
	K5; T _a = 45 °C; B2 / B6	17 /24	Α
I _{RMS}	K9; T _a = 45 °C; W1C	13	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	250	Α
	T _{vj} = 130 °C; 10 ms	210	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	310	A²s
	T _{vj} = 130 °C; 8,35 10 ms	220	A²s
V _T	T _{vi} = 25 °C; I _T = 30 A	max. 1,6	V
$V_{T(TO)}$	T _{vi} = 130 °C	max. 1	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 18	mΩ
$I_{DD}; I_{RD}$	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 4	mA
t _{gd}	$T_{vj} = 25 ^{\circ}\text{C}; I_{G} = 1 \text{A}; di_{G}/dt = 1 \text{A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t_q	$T_{vj} = 130 ^{\circ}\text{C}$	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	80 / 150	mA
I_{L}	T_{vj} = 25 °C; typ. / max.	150 / 300	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T _{vj} = 130 °C; d.c.	max. 3	mA
R _{th(j-c)}	cont.	1,2	K/W
R _{th(j-c)}	sin. 180	1,3	K/W
$R_{th(j-c)}$	rec. 120	1,35	K/W
$R_{th(c-s)}$		1	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	2,0	Nm
а		5 * 9,81	m/s²
m	approx.	7	g
Case		B 1	

SKT 10

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

X-ON Electronics

Authorized Distributor

Click to view similar products for Semikron manufacturer.

Other Similar products are found below:

ACCKITFOR12XSEMIPACK1DIOD BI2512 BOARD4SSKYPER32PROR DBI2504P

DBI2508P DBI2510P DBI2512P DBI2516P DBI2518P DBI2520P DBI2522P DBI604P

DBI608P DBI616 DBI616P DBI620P P3120 P3300B P6KE39CA SEMIX241DH16S

SEMIX341D16S SEMIX402GAL066HDS SEMIX453GB12E4S SK100KQ08

SK100KQ16