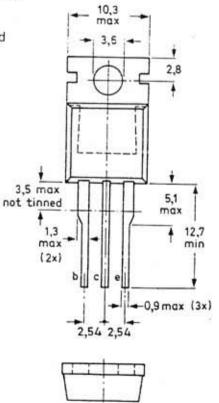
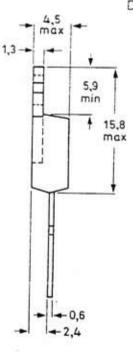


SILICON DARLINGTON POWER TRANSISTORS


N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general purpose amplifier and switching applications. TO-220 plastic envelope. P-N-P complements are BDT64; BDT64A; BDT64B and BDT64C.


QUICK REFERENCE DATA

			BDT65	65A	65B	65C	
Collector-base voltage (open emitter)	V _{CBO}	max.	60	80	100	120	v
Collector-emitter voltage (open base)	VCEO	max.	60	80	100	120	
Emitter-base voltage (open collector)	VEBO	max.	5	5	5		v
Collector current (peak value)	ICM	max.	20				А
Total power dissipation up to Tmb = 25 °C	Ptot	max.	125				W
Junction temperature	тј	max.	150			°C	
D.C. current gain IC = 5 A; VCE = 4 V	hFE	>		100	00		

MECHANICAL DATA

Fig. 1 TO-220AB. Collector connected to mounting base.

Dimensions in mm

CHARACTERISTICS

	K	~	
R/	X	GN	^
100	FR	- 1	3
(CINE)			Ð

$T_j = 25 ^{O}C$, unless otherwise specified				
Collector cut-off current				
V _{CB} = V _{CBOmax} ; I _E = o	СВО	<	0,4	mA
V _{CB} = ½V _{CBOmax} ; I _E = 0; T _j = 150 °C	СВО	<	2	mA
$I_B = 0; V_{CE} = \frac{1}{2}V_{CEOmax}$	ICEO	<	1	mA
Emitter cut-off current				
$I_{C} = 0; V_{EB} = 5 V$	IEBO	<	5	mA
D.C. current gain*				
$I_{C} = 1 A; V_{CE} = 4 V$	hfe	typ.	1500	
$I_{C} = 5 A; V_{CE} = 4 V$	hFE	>	1000	
$I_{C} = 12 \text{ A}; V_{CE} = 4 \text{ V}$	hFE	typ.	1000	
Base-emitter voltage				
$I_{C} = 5 A; V_{CE} = 4 V$	VBE	<	2,5	V
Collector-emitter saturation voltage*				
$I_{C} = 5 A; I_{B} = 20 mA$	V _{CEsat}	<	2	V
I _C = 10 A; I _B = 100 mA	V _{CEsat}	<	3	V
Diode, forward voltage				
IF = 5 A	VF	<	2	V
I _F = 12 A	VF	typ.	2	V
Collector capacitance at f = 1 MHz				
$V_{CB} = 10 \text{ V}; I_{E} = I_{e} = 0$	Cc	typ.	200	pF
Second-breakdown collector current				
non-repetitive; without heatsink $V_{CE} = 60 \text{ V}; t_p = 0,1 \text{ s}$:215
	ISB	>	2	A
Turn-off breakdown energy with inductive load; -1Boff = 0; ICM = 6,3 A				
L = 5 mH (see Fig. 3)	E(BR)	>	100	ml
Switching times (see Figs 4 and 5)	-(BR)	<i></i>	100	1115
I _{Con} = 5 A; I _{Bon} = -I _{Boff} = 20 mA				
turn-on time		typ.	1	μs
torn on time	ton	<	2,5	
turn-off time	toff	typ.	6,0	μs
Small-signal current gain	-011	<	10	μs
$I_C = 5 \text{ A}; V_{CE} = 3 \text{ V}; f = 1 \text{ MHz}$	lhfel	typ.	20	
	inter	(7).	20	

* Measured under pulse conditions $t_p \leqslant 300~\mu s; \, \delta < 2\%.$

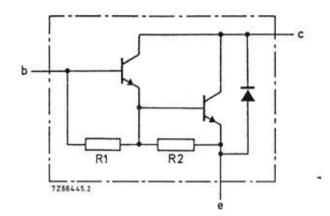


Fig. 2 Circuit diagram. R1 typ. 5 k Ω ; R2 typ. 80 Ω .

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BDT65	65A	65B	65C	
llector-base voltage (open emitter)	Vсво	max.	60	80	100	120	v
lector-emitter voltage (open base)	VCEO	max.	60	80	100	120	V
itter-base voltage (open collector)	V _{EBO}	max.	5	5	5	5	V
lector current (d.c.)	IC.	max.	12				A
lector current (peak value)	CM	max.	20				A
e current (d.c.)	1B	max.	500				m
tal power dissipation up to T _{mb} = 25 °C	Ptot	max.	125				W
rage temperature	T _{stg}		-65 to + 150				0(
nction temperature	тј	max.	150				0(
ERMAL RESISTANCE							
om junction to mounting base	R _{th} j-mb	=			1		K,
ERMAL RESISTANCE					1		

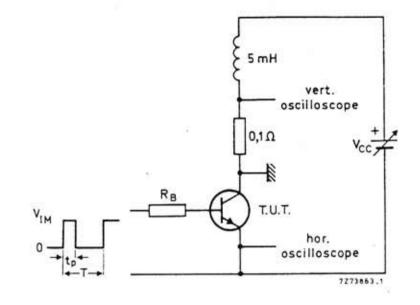


Fig. 3 Test circuit for turn-off breakdown energy. $V_{IM} = 12 \text{ V}; \text{ R}_B = 270 \Omega;$ $t_p = 1 \text{ ms}; \delta = 1\%.$

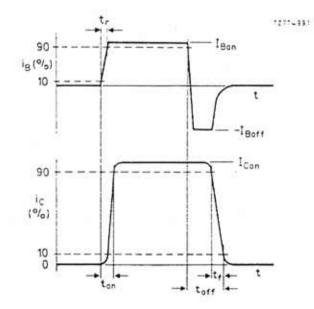
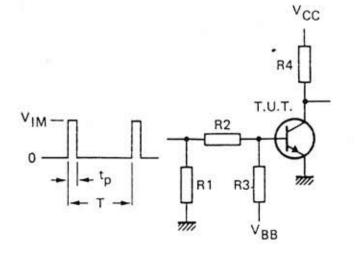



Fig. 4 Switching times waveforms.

 $V_{CC} = 30 V$ 15 V VIM = 4 V -VBB= = 56 Ω R1 **R2** = 410 Ω R3 = 560 Ω R4 = 6Ω $t_r = t_f = 15 \text{ ns}$ = 10 μs tp T = 500 µs

Fig. 5 Switching times test circuit.

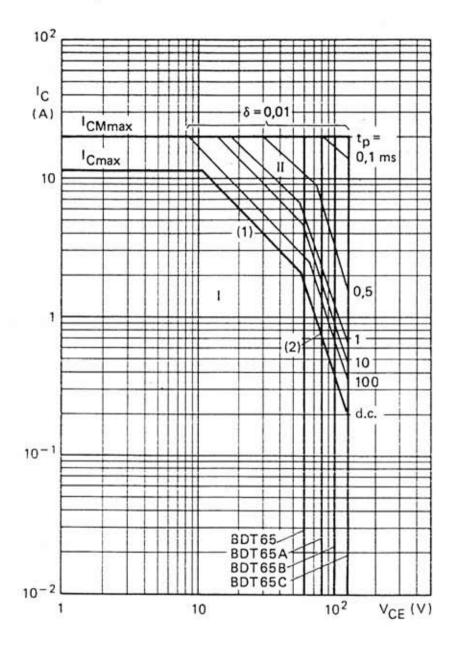


Fig. 6 Safe Operating ARea; Tmb = 25 °C.

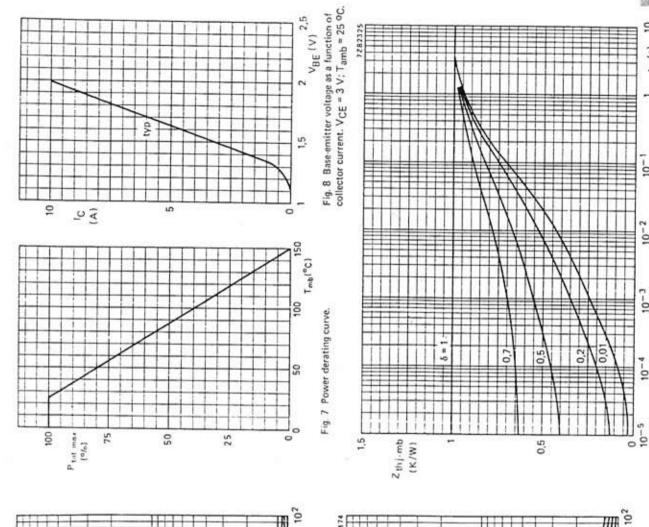
I Region of permissible d.c. operation.II Permissible extension for repetitive pulse operation.

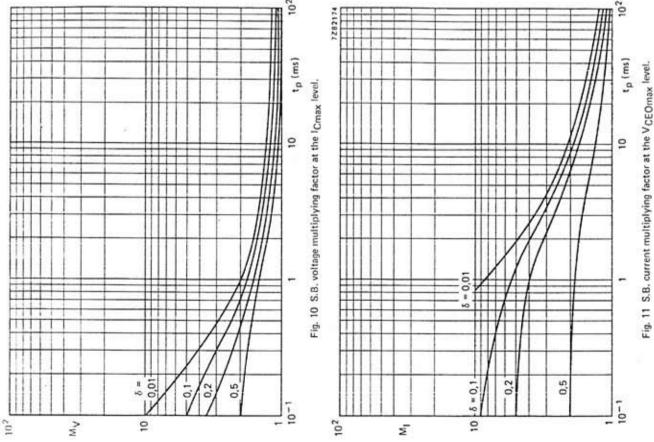
Ptot max and Ppeak max lines.
Second-breakdown limits (independent of temperature).

2

t_p (s)

-


10-1


10-2

10-3

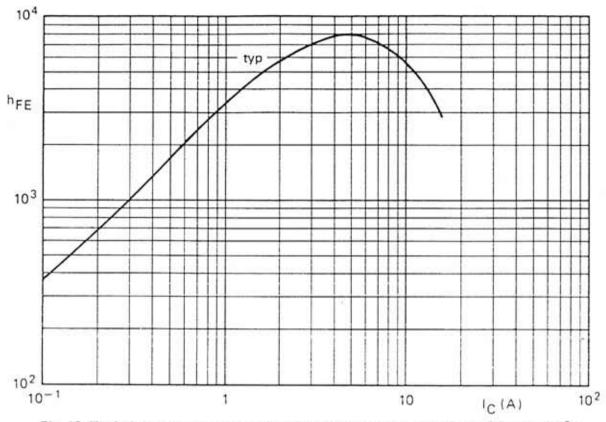
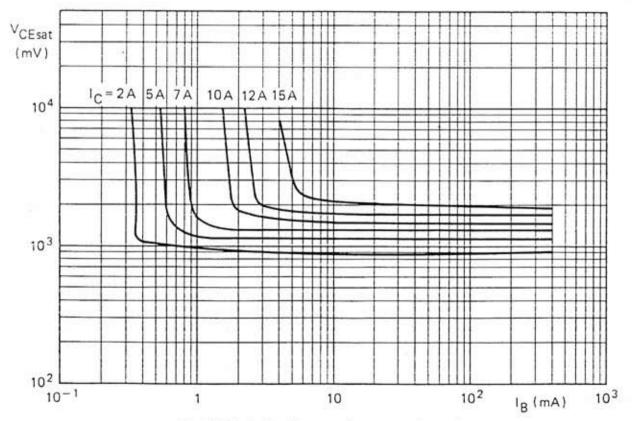

10-4

Fig. 9 Pulse power rating chart.



X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for tt electronics manufacturer:

Other Similar products are found below :

L083S392LF L061S391LF L091S224LF L061S220LF BCN164A562J7 62PR25KLF CHP1501R00FLF BCN164AB470J7 898-3-R150K 66XR10 66XR200K 66XR2K 66XR50 67WR1MEG 67WR200KLFTB 67ZR200 68WR5K 68XR2MEG 72PXR10K 72XR2.5K 8109 82PR25K 84WR10KTR PWC2512-330RJI OPB660N OPB748WZ OPB842W51Z OPB870T55 OPF430 P110KV1-0Y20BR50K P170SP1-FC15AR10K 89XHR10K L083C101 91XR5K SML100M12MSF PFC-W0805LF-03-2870-B 2627 CR200L.5 RC07GF220J RC55LF-D-196R-B-B 3371R5KL.5 HM00-01800 HM71-10220LFTR 3371R5KL.25 L083C122 WH25-47RJI WH5-100RJI 040585XM 6679-420-0 CHP1-100-1R00-F