TrilithIC ${ }^{\text {TM }}$

Data Sheet

1 Overview

1.1 Features

- Quad D-MOS switch
- Free configurable as bridge or quad-switch
- Optimized for DC motor management applications
- Low $R_{\text {Ds on }}$: $26 \mathrm{~m} \Omega$ high-side switch, $14 \mathrm{~m} \Omega$ low-side switch (typical values @ $25{ }^{\circ} \mathrm{C}$)
- Maximum peak current: typ. 42 A @ $25^{\circ} \mathrm{C}$

- Very low quiescent current: typ. $4 \mu \mathrm{~A} @ 25^{\circ} \mathrm{C}$
- Small outline, thermal optimized PowerPak
- Load and GND-short-circuit-protection
- Operates up to 40 V
- Status flag for over temperature
- Open load detection in Off-mode
- Overtemperature shut down with hysteresis
- Internal clamp diodes
- PWM capability up to 25 kHz
- Cross current free operation up to 13 A load current (typ. value @ $12 \mathrm{~V} / 150^{\circ} \mathrm{C}$)
- Under-voltage detection with hysteresis

Type	Package
BTS 7811K	P-TO263-15-1

1.2 Description

The BTS 7811K is part of the TrilithIC ${ }^{\text {TM }}$ family containing three dies in one package: One double high-side switch and two low-side switches. The drains of these three vertical DMOS chips are mounted on separated leadframes. The sources are connected to individual pins, so the BTS 7811K can be used in H-bridge- as well as in any other configuration. The double high-side is manufactured in SMART SIPMOS ${ }^{\circledR}$ technology which combines low $R_{\text {Ds on }}$ vertical DMOS power stages with CMOS control circuit. The protected high-side switch contains the control and diagnosis circuit. To achieve low $R_{\mathrm{DS} \text { on }}$ and fast switching performance, the low-side switches are manufactured in SFET 2 logic level technology.

1.3 Pin Configuration

(top view)

Figure 1: Pin Assignment

1.4 Pin Definitions and Functions

Pin No.	Symbol	Function
1	NC	Not connected
$\mathbf{2}$	SL1	Source of low-side switch 1
3	IL1	Analog input of low-side switch 1
4	NC	Not connected
5	IH1	Digital input of high-side switch 1
6	ST1	Status of high-side switch 1; open Drain output
$\mathbf{7}$	SH1	Source of high-side switch 1
$\mathbf{8}$	DHVS	Drain of high-side switches and power supply voltage
9	GND	Ground of high-side switches
10	ST2	Digital input of high-side switch 2
11	SH2	Status of high-side switch 2; open Drain output
$\mathbf{1 2}$	SL2	Analog input of low-side switch 2
13	NC	Source of low-side switch 2
$\mathbf{1 4}$	DL2	Dot connected Heain of low-side 3
15	DHVS	Drain of high-side switches 2 Heat-Slug 2
$\mathbf{1 6}$	DL1	Drain of low-side switch 1 Heat-Slug 1
$\mathbf{1 7}$		

Pins written in bold type need power wiring.

BTS 7811K

1.5 Functional Block Diagram

Figure 2: Block Diagram

1.6 Circuit Description

Input Circuit

The control inputs $\mathrm{IH} 1,2$ consist of TTL/CMOS compatible Schmitt-Triggers with hysteresis. Buffer amplifiers are driven by these stages and convert the logic signal into the necessary form for driving the power output stages. The inputs are protected by ESD clamp-diodes. The inputs IL1 and IL2 are connected to the gates of the standard N channel vertical power-MOS-FETs.

Output Stages

The output stages consist of a low $R_{\text {DS on }}$ Power-MOS H-bridge. In H-bridge configuration, the D-MOS body diodes can be used for freewheeling when commutating inductive loads. If the high-side switches are used as single switches, positive and negative voltage spikes which occur when driving inductive loads are limited by integrated power clamp diodes.

Short Circuit Protection

The outputs are protected against

- output short circuit to ground
- overload (load short circuit).

An internal OP-amp controls the Drain-Source-voltage by comparing the DS-voltagedrop with an internal reference voltage. Above this trippoint the OP-Amp reduces the output current depending on the junction temperature and the drop voltage.

Overtemperature Protection

The high-side switches incorporate an overtemperature protection circuit with hysteresis which switches off the output transistors and sets the status output to low.

Undervoltage-Lockout (UVLO)

When V_{S} reaches the switch-on voltage V_{UVoN} the IC becomes active with a hysteresis. The high-side output transistors are switched off if the supply voltage V_{S} drops below the switch off value $V_{\text {Uvoff }}$

Open Load Detection

The open load detection of the BTS 7811 K works in OFF condition and is based on a voltage measurement at the source of the high side switch. In order to use the open load detection a pull up resistor to 5 V has to be connected to source of one of the high side switches. Because in ON condition this pull up resistor would connect the bridge output to the $\mu \mathrm{C}$ supply it needs to be disconnected by a transistor when the high side switch is
on. In the data sheet application example (Figure 5) the open load detection would be used the following way:

- Set IH1 = IH2 = LOW (both high side switches off)
- Set IL2 = LOW, IL1 = HIGH (only low side switch 1 is on)
- Connect Rol (open load pull up) to 5V via transistor

If the load is connected properly it will pull down the voltage at SH 2 to a value close to 0 V . If the load is disconnected the resistor will pull the voltage at SH 2 to value close to 5 V . If the voltage at SH 2 is higher than the open load detection voltage (VOUT(OL)) then ST2 will be pulled down.

Status Flag

The two status flag outputs are an open drain output with Zener-diode which require a pull-up resistor, c.f. the application circuit on page 16. ST1 and ST2 provide separate diagnosis for each high-side switch. Various errors as listed in the table "Diagnosis" are detected by switching the open drain output ST1/2 to low. Forward current in the integrated body diode of the highside switch may cause undefined voltage levels at the corresponding status output. The open load detection can be used to detect a short to Vs as long as both lowside switches are off and R_{OL} is disconnected from 5 V by BCR192W.

2 Truthtable and Diagnosis (valid only for the High-Side-Switches)

Flag	IH1	IH2	SH1	SH2	ST1	ST2	Remarks
	Inputs		Outputs				
Normal operation;	0	0	L	L	1	1	stand-by mode
	0	1	L	H	1	1	switch2 active switch1 active
	1	0	H	L	1	1	1
	1	1	H	H	1	1	both switches
active							
Open load at high-side switch 1	0	X	Z	X	0	1	detected
	1	X	H	X	1	1	
Open load at high-side switch 2	X	0	X	Z	1	0	detected
	X	1	X	H	1	1	
Overtemperature high-side switch1	0	X	L	X	1	1	
	1	X	L	X	0	1	detected
Overtemperature high-side switch2	X	0	X	L	1	1	
	X	1	X	L	1	0	detected
Overtemperature both high-side	0	0	L	L	1	1	
switches	0	1	L	L	1	0	detected
	1	0	L	L	0	1	detected
	1	1	L	L	0	0	detected
Undervoltage	X	X	L	L	1	1	not detected

Note: * multiple simultaneous errors are not shown in this table

Inputs:
0 = Logic LOW
1 = Logic HIGH
X = don't care

Outputs:
Z = Output in tristate condition
$\mathrm{L}=$ Output in sink condition
$\mathrm{H}=$ Output in source condition
$X=$ Voltage level undefined

Status:
1 = No error
0 = Error

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

$-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

High-Side-Switches (Pins DHVS, IH1,2 and SH1,2)

Supply voltage	V_{S}	-0.3	42	V	-
Supply voltage for full short circuit protection	$V_{\mathrm{S}(\mathrm{SCP})}$		28	V	-
HS-drain current	I_{S}	-14	$*$	A	$T_{\mathrm{C}}=125^{\circ} \mathrm{C} ; \mathrm{DC}$
HS-input current	I_{HH}	-5	5	mA	Pin IH1 and IH2
HS-input voltage	V_{IH}	-10	16	V	Pin IH1 and IH2

Note: * internally limited

Status Output ST (Pins ST1 and ST2)

Status pull up voltage	$V_{\text {ST }}$	-0.3	5.4	V	-
Status Output current	$I_{\text {ST }}$	-5	5	mA	Pin ST1 or ST2

Low-Side-Switches (Pins DL1,2, IL1,2 and SL1,2)

Drain- source break down voltage	$V_{\text {DSL }}$	55	-	V	$\begin{aligned} & V_{\mathrm{L}}=0 \mathrm{~V}, I_{\mathrm{D}} \leq 1 \mathrm{~mA}, \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \end{aligned}$
LS-drain current	$I_{\text {DL }}$	-21	26	A	$T_{\mathrm{C}}=125^{\circ} \mathrm{C}$; DC
LS-drain current$T_{\mathrm{C}}=85^{\circ} \mathrm{C}$	$I_{\text {DL }}$	-	42	A	$t_{\mathrm{p}}<100 \mathrm{~ms} ; \mathrm{v}<0.1$
		-	67	A	$t_{\mathrm{p}}<1 \mathrm{~ms} ; \mathrm{v}<0.1$
LS-input voltage	$V_{\text {IL }}$	-20	20	V	Pin IL1 and IL2

Temperatures

Junction temperature	T_{j}	-40	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-55	150	${ }^{\circ} \mathrm{C}$	-

3.1 Absolute Maximum Ratings (cont'd)
 $-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		

Thermal Resistances (one HS-LS-Path active)

LS-junction case	$R_{\mathrm{thj} \mathrm{L}}$	-	1.05	$\mathrm{~K} / \mathrm{W}$	
HS-junction case	$R_{\mathrm{thj} \mathrm{CH}}$	-	1.45	$\mathrm{~K} / \mathrm{W}$	
Junction ambient $R_{\mathrm{thja}}=\mathrm{T}_{\mathrm{j}(\mathrm{HS})} /\left(\mathrm{P}_{(\mathrm{HS})}+\mathrm{P}_{(\mathrm{LS})}\right)$	R_{thja}	-	35	$\mathrm{~K} / \mathrm{W}$	device soldered to reference PCB with $6 \mathrm{~cm}^{2}$ cooling area

ESD Protection (Human Body Model acc. MIL STD 883D, method 3015.7 and EOS/ ESD assn. standard S5.1-1993)

Input LS-Switch	$V_{\text {ESD }}$		0.5	kV	
Input HS-Switch	$V_{\text {ESD }}$		1	kV	
Status HS-Switch	$V_{\text {ESD }}$		2	kV	
Output LS and HS-Switch	$V_{\text {ESD }}$		4	kV	all other pins connected to Ground

Note: Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit.

3.2 Operating Range

$$
-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}
$$

Parameter	Symbol	Limit Values		Unit	Remarks
			min.	max.	
Supply voltage	V_{S}	$V_{\text {UvoFf }}$	42	V	After V_{S} rising above $V_{\text {UVON }}$
Supply voltage for PWM operation	$V_{\text {S(PWM })}$	8	18	V	-
Input voltages HS	$V_{\text {IH }}$	-0.3	15	V	-
Input voltages LS	V_{IL}	-0.3	20	V	-
Status output current	$I_{\text {ST }}$	0	2	mA	-
Junction temperature	$T_{\text {jHS }}$	-40	150	${ }^{\circ} \mathrm{C}$	-

Note: In the operating range the functions given in the circuit description are fulfilled.

3.3 Electrical Characteristics

$I_{\mathrm{SH} 1}=I_{\mathrm{SH} 2}=I_{\mathrm{SL} 1}=I_{\mathrm{SL} 2}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C} ; 8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$
unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Current Consumption HS-switch

Quiescent current	I_{SQ}	-	4	9	$\mu \mathrm{~A}$	$\mathrm{IH} 1=\mathrm{IH} 2=0 \mathrm{~V}$ $T_{\mathrm{j}}=85^{\circ} \mathrm{C}$
		-	-	20	$\mu \mathrm{~A}$	$\mathrm{IH} 1=\mathrm{IH} 2=0 \mathrm{~V}$
Supply current	I_{S}	-	4	8	mA	IH 1 or $\mathrm{IH} 2=5 \mathrm{~V}$
	-	8	16	mA	IH 1 and IH2 $=5 \mathrm{~V}$	
Leakage current of highside switch	I_{SH}	-	-	7	$\mu \mathrm{~A}$	$V_{\mathrm{IH}}=V_{\mathrm{SH}}=0 \mathrm{~V}$ $T_{\mathrm{j}}=85^{\circ} \mathrm{C}, \mathrm{Vs}=12 \mathrm{~V}$
Leakage current through logic GND in free wheeling condition	$I_{\mathrm{LKCL}}=$ $I_{\mathrm{FH}}+I_{\mathrm{SH}}$	-	2.2	10	mA	$I_{\mathrm{FH}}=5 \mathrm{~A}$ $\mathrm{Vs}=12 \mathrm{~V}$

Current Consumption LS-switch

Input current	I_{IL}	-	10	100	nA	$V_{\mathrm{IL}}=20 \mathrm{~V}$ $V_{\mathrm{DSL}}=0 \mathrm{~V}$
Leakage current of lowside switch	$I_{\mathrm{DL} \mathrm{LK}}$	-	-	12	$\mu \mathrm{~A}$	$V_{\mathrm{LL}}=0 \mathrm{~V}$ $V_{\mathrm{DSL}}=40 \mathrm{~V}$ $T_{\mathrm{j}}=85^{\circ} \mathrm{C}$

Under Voltage Lockout (UVLO) HS-switch

Switch-ON voltage	$V_{\text {UVON }}$	-	-	5	V	$V_{\text {S }}$ increasing
Switch-OFF voltage	$V_{\text {UVOFF }}$	1.8	-	4.5	V	$V_{\text {S }}$ decreasing
Switch ON/OFF hysteresis	$V_{\text {UVHY }}$	-	1	-	V	$V_{\text {UVON }}-V_{\text {UVOFF }}$

3.3 Electrical Characteristics (cont'd)

$I_{\mathrm{SH} 1}=I_{\mathrm{SH} 2}=I_{\mathrm{SL} 1}=I_{\mathrm{SL} 2}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C} ; 8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Output Stages

Inverse diode of highside switch; Forwardvoltage	$V_{\text {FH }}$	-	0.8	1.2	V	$I_{\text {FH }}=5 \mathrm{~A}$
Inverse diode of lowside switch; Forward-voltage	V_{FL}	-	0.8	1.2	V	$I_{\text {FL }}=5 \mathrm{~A}$
Static drain-source on-resistance of highside switch	$R_{\text {DS ONH }}$	-	26	35	$\mathrm{m} \Omega$	$\begin{aligned} & I_{\mathrm{SH}}=5 \mathrm{~A} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{Vs}_{\mathrm{s}}=12 \mathrm{~V} \end{aligned}$
Static drain-source on-resistance of lowside switch	$R_{\text {DS ONL }}$	-	14	17	$\mathrm{m} \Omega$	$\begin{aligned} & I_{\mathrm{SL}}=5 \mathrm{~A} ; \\ & V_{\mathrm{IL}}=5 \mathrm{~V} \\ & T_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
Static path on-resistance	$R_{\text {DS ON }}$	-	-	100	$\mathrm{m} \Omega$	$\begin{aligned} & R_{\mathrm{DS} \mathrm{ONH}}+R_{\mathrm{DS} \mathrm{ONL}} \\ & I_{\mathrm{SH}}=5 \mathrm{~A} ; V \mathrm{Vs}=12 \mathrm{~V} \end{aligned}$
Maximum load current for cross current free operation $V_{\mathrm{IL}}=7 \mathrm{~V} ; R_{\text {Gate }}=50 \Omega$	$I_{\text {Lmax ccf }}$	5	8	-	A	$V \mathrm{~s}>8 \mathrm{~V}, T_{\mathrm{j}}=150^{\circ} \mathrm{C}$
		-	10	-	A	$V \mathrm{~s}=10 \mathrm{~V}, T_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$
		-	13	-	A	$V \mathrm{~s}=12 \mathrm{~V}, T_{\mathrm{j}}=150{ }^{\circ} \mathrm{C}$

Note: \quad The device is regarded as cross current free if the reverse flowing charge through the high side switch is less than $1 \mu C$.

Figure 3: Start of Cross Conduction vs. $I_{\mathrm{L}}, V_{\mathrm{S}}$ and junction Temperature T_{j}

3.3 Electrical Characteristics (cont'd)

$I_{\mathrm{SH} 1}=I_{\mathrm{SH} 2}=I_{\mathrm{SL} 1}=I_{\mathrm{SL} 2}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C} ; 8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$
unless otherwise specified

Parameter	Symbol	Limit Values		Unit	Test Condition	
		min.	typ.	max.		

Short Circuit of Highside Switch to GND

Initial peak SC current

$I_{\text {SCP H }}$	35	48	65	A	$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$
	-	42	-	A	$T_{\mathrm{j}}=+25^{\circ} \mathrm{C}$
	25	32	42	A	$T_{\mathrm{j}}=+150^{\circ} \mathrm{C}$

Note: Integrated protection functions are designed to prevent IC destruction under fault conditions. Protection functions are not designed for continuous or repetitive operation.
Peak short circuit current is significantly lower at $V_{S}>18 \mathrm{~V}$.

Short Circuit of Highside Switch to V_{s}

Output pull-down-resistor	R_{\circ}	7	14	42	$\mathrm{k} \Omega$	$V_{\mathrm{DSL}}=3 \mathrm{~V}$

Thermal Shutdown

Thermal shutdown junction temperature	T_{jSD}	155	180	190	${ }^{\circ} \mathrm{C}$	-
Thermal switch-on junction temperature	$T_{\mathrm{j} \mathrm{SO}}$	150	170	180	${ }^{\circ} \mathrm{C}$	-
Temperature hysteresis	ΔT	-	10	-	${ }^{\circ} \mathrm{C}$	$\Delta T=T_{\mathrm{jSD}}-T_{\mathrm{jSO}}$

Status Flag Output ST of Highside Switch

Low output voltage	V_{STL}	-	0.2	0.6	V	$I_{\mathrm{ST}}=1.6 \mathrm{~mA}$
Leakage current	$I_{\mathrm{ST} \text { LK }}$	-	-	5	$\mu \mathrm{~A}$	$V_{\mathrm{ST}}=5 \mathrm{~V}$
Zener-limit-voltage	V_{ST}	5.4		-	V	$I_{\mathrm{ST}}=1.6 \mathrm{~mA}$
Status change after positive input slope with open load	$t_{\mathrm{d}\left(\text { SToffo }^{1)}\right.}$					

1)Defined by design. Not subject to production test.

3.3 Electrical Characteristics (cont'd)

$I_{\mathrm{SH} 1}=I_{\mathrm{SH} 2}=I_{\mathrm{SL} 1}=I_{\mathrm{SL} 2}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C} ; 8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$ unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Status change after positive input slope with overtemperature ${ }^{1)}$	$t_{\mathrm{d}(\mathrm{STofft}+)}$	-	1.6	10	$\mu \mathrm{~s}$	$R_{\mathrm{ST}}=47 \mathrm{k} \Omega$
Status change after negative input slope with overtemperature ${ }^{1)}$	$t_{\mathrm{d}(\mathrm{STofft-})}$	-	14	100	$\mu \mathrm{~S}$	$R_{\mathrm{ST}}=47 \mathrm{k} \Omega$

Open Load Detection in Off Condition

Open Load Detection Voltage	$V_{\text {OUT(OL) }}$	2	3	4	V	$V_{\mathrm{S}}=12 \mathrm{~V}$

Switching Times of High Side Switch

Turn-On-Time to $90 \% V_{\mathrm{SH}}$	t_{ON}	-	100	220	$\mu \mathrm{~s}$	$\mathrm{R}_{\mathrm{Load}}=12 \Omega$ $V_{\mathrm{S}}=12 \mathrm{~V}$
Turn-Off-time to $10 \% V_{\mathrm{SH}}$	t_{OFF}	-	120	250	$\mu \mathrm{~s}$	
Slew Rate On 10 to $30 \% V_{\mathrm{SH}}$	$d V / d t_{\mathrm{ON}}$	-	0.5	1.1	$\mathrm{~V} / \mu \mathrm{s}$	
Slew Rate Off 70 to $40 \% V_{\mathrm{SH}}$	$-d V /$ $d t_{\text {OFF }}$	-	0.7	1.3	$\mathrm{~V} / \mu \mathrm{s}$	

Switching Times of Low Side Switch

Turn-ON Delay Time $^{1)}$	$t_{\mathrm{d}(\mathrm{on})}$	-	20	-	ns	resistive load
Rise Time $^{1)}$	t_{r}	-	85	-	ns	$I_{\mathrm{SL}}=10 \mathrm{~A} ; V_{\mathrm{DSL}}=12 \mathrm{~V}$
Switch-Off Delay Time $^{1)}$	$t_{\mathrm{d}(\text { (off })}$	-	60	-	ns	$V_{\mathrm{IL}}=5 \mathrm{~V} ; R_{\text {Gate }}=16 \Omega$
Fall Time $^{1)}$	t_{f}	-	80	-	ns	

1)Defined by design. Not subject to production test.

3.3 Electrical Characteristics (cont'd)

$I_{\mathrm{SH} 1}=I_{\mathrm{SH} 2}=I_{\mathrm{SL} 1}=I_{\mathrm{SL} 2}=0 \mathrm{~A} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C} ; 8 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V}$
unless otherwise specified

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Gate Charge Characteristics

Input to source charge $^{1)}$	Q_{IS}	-	4.5	-	nC	$I_{\mathrm{SL}}=10 \mathrm{~A} ; V_{\mathrm{S}}=12 \mathrm{~V}$
Input to drain charge $^{1)}$	Q_{ID}	-	12	-	nC	$I_{\mathrm{SL}}=10 \mathrm{~A} ; V_{\mathrm{S}}=12 \mathrm{~V}$
Input charge total $^{1)}$	Q_{I}	-	30	60	nC	$I_{\mathrm{SL}}=10 \mathrm{~A} ; V_{\mathrm{S}}=12 \mathrm{~V}$ $V_{\mathrm{IL}}=0$ to 5 V
Input plateau voltage $^{1)}$	$V_{\text {plateau }}$	-	2.6	-	V	$I_{\mathrm{SL}}=10 \mathrm{~A} ; V_{\mathrm{S}}=12 \mathrm{~V}$

Control Inputs of High Side Switches IH1, IH2

H-input voltage	$V_{\mathrm{IH} \text { High }}$	-	-	3.0	V	-
L-input voltage	$V_{\mathrm{IH} \text { Low }}$	1	-	-	V	-
Input voltage hysterese	$V_{\mathrm{IH} \mathrm{HY}}$	-	0.5	-	V	-
H-input current	$I_{\mathrm{IH} \text { High }}$	5	30	65	$\mu \mathrm{~A}$	$V_{\mathrm{IH}}=5 \mathrm{~V}$
L-input current	$I_{\mathrm{IH} \text { Low }}$	5	14	25	$\mu \mathrm{~A}$	$V_{\mathrm{IH}}=0.4 \mathrm{~V}$
Input series resistance	R_{I}	2.7	4	6	$\mathrm{k} \Omega$	-
Zener limit voltage	V_{IHZ}	5.4	-	-	V	$I_{\mathrm{IH}}=1.6 \mathrm{~mA}$

Control Inputs IL1, IL2

Gate-threshold-voltage	$V_{\text {LL th }}$	-	1.9	3.0	V	$T_{\mathrm{j}}=-40^{\circ} \mathrm{C}$
		-	1.7	-		$T_{\mathrm{j}}=+25^{\circ} \mathrm{C}$
			0.8	1.1	-	
$I_{\mathrm{D}}=+150^{\circ} \mathrm{C}$						

${ }^{1)}$ Defined by design. Not subject to production test.
Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at $T_{A}=25^{\circ} \mathrm{C}$ and $V_{S}=12 \mathrm{~V}$.

Figure 4: Test Circuit

HS-Source-Current	Named during Short Circuit	Named during Leakage- Cond.
$I_{\mathrm{SH} 1,2}$	I_{SCPH}	I_{DLLK}

Figure 5: Application Circuit

4 Package Outlines

P-TO263-15-1

(Plastic

1) Typici

Metal surface min. $\mathrm{X} 1=3.57, \mathrm{X} 2=9.03, \mathrm{Y}=6$.
All metal surfaces tin plated, except area of cut

Footprint

Sorts of Packing

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/packages..

Edition June 2006
 Published by Infineon Technologies AG, Am Campeon 1-12, 87559 Neubiberg, Germany
 © Infineon Technologies AG 2006.
 All Rights Reserved.

Attention please!

The information given in this Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for infineon manufacturer:
Other Similar products are found below :
TLE6209R BTS442E2E3062ABUMA1 EVALM113023645ATOBO1 EVALM11302TOBO1 FD1000R33HE3-K FD300R06KE3
FF1200R17KE3_B2 FF300R06KE3HOSA1 FF600R12ME4P FF600R17ME4_B11 FP25R12KT4_B11 FS150R12KE3G
FS600R07A2E3_B31 FZ1600R17HP4_B2 FZ1800R17KF4 FZ2400R17HE4_B9 FZ600R65KE3 DD261N22K DF1000R17IE4 BAT 165
E6327 BCR 141W H6327 BCR 533 E6327 BDP950H6327XTSA1 BSC093N04LSGATMA1 BSM50GB60DLC BSO080P03NS3EGXUMA
BSR802NL6327HTSA1 BSR92PH6327XTSA1 BSS806NEH6327XTSA1 BSZ086P03NS3EGATMA BTF3050TE BTM7811KAUMA1
IPD50N04S4-08 IPW60R190E6FKSA1 IRPLHID2A KIT_TC1791_SK KIT_XMC45_AE4_002 KIT_XMC4x_COM_ETH-001
EVALM10565DTOBO1 EVALM113020584DTOBO1 FF300R17KE3_S4 FF450R12ME4_B11 FF600R17ME4 T1401N42TOH
T1500N16TOF VT T1851N60TOH T901N36TOF FS300R12KE4 FS450R17KE4 FZ1500R33HE3

