BF421, BF423

High Voltage Transistors

PNP Silicon

Features

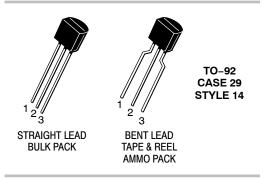
• These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

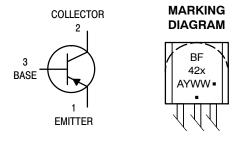
MAXIMUM RATINGS

Rating	Symbol	BF421	BF423	Unit
Collector - Emitter Voltage	V _{CEO}	-300	-250	Vdc
Collector - Base Voltage	V _{CBO}	-300	-250	Vdc
Emitter - Base Voltage	V _{EBO}	-5.0		Vdc
Collector Current – Continuous	Ic	-500		mAdc
Collector Current - Peak	I _{CM}	10	00	mA
Total Device Dissipation (Note 1) @ T _A = 25°C Derate above 25°C	P _D	830 6.6		mW mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–55 to	+150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	150	°C/W
Thermal Resistance, Junction-to-Lead	$R_{ heta JL}$	68	°C/W


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


 Mounted on a FR4 board with 200 mm² of 1 oz copper and lead length of 5 mm.

ON Semiconductor®

http://onsemi.com

BF42x = Device Code x = 1 or 3

A = Assembly Location

Y = Year
WW = Work Week
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
BF421ZL1G	TO-92 (Pb-Free)	2000/Ammo Pack
BF423G	TO-92 (Pb-Free)	5000 Units/Box
BF423ZL1G	TO-92 (Pb-Free)	2000/Ammo Pack

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	1	
Collector – Emitter Breakdown Voltage (Note 1) $(I_C = -1.0 \text{ mAdc}, I_B = 0)$	BF421 BF423	V _{(BR)CEO}	-300 -250	- -	Vdc
Collector – Base Breakdown Voltage (I _C = –100 μAdc, I _E = 0)	BF421 BF423	V _(BR) CBO	-300 -250		Vdc
Emitter – Base Breakdown Voltage ($I_E = -100 \mu Adc$, $I_C = 0$)	BF421 BF423	V _{(BR)EBO}	-5.0 -5.0		Vdc
Collector Cutoff Current (V _{CB} = -200 Vdc, I _E = 0)	BF421 BF423	I _{CBO}	- -	-0.01 -	μAdc
Emitter Cutoff Current $(V_{EB} = -5.0 \text{ Vdc}, I_C = 0)$	BF421 BF423	I _{EBO}	-	-100 -	nAdc
ON CHARACTERISTICS					_
DC Current Gain (I _C = -25 mA, V _{CE} = -20 Vdc)	BF421 BF423	h _{FE}	50 50		-
Collector - Emitter Saturation Voltage (I _C = -20 mAdc, I _B = -2.0 mAdc)		V _{CE(sat)}	-	-0.5	Vdc
Base – Emitter Saturation Voltage (I _C = -20 mA, I _B = -2.0 mA)		V _{BE(sat)}	_	-2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS			•	•	•
Current – Gain – Bandwidth Product ($I_C = -10 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 20 \text{ MHz}$)		f _T	60	_	MHz
Common Emitter Feedback Capacitance (V _{CB} = -30 Vdc, I _E = 0, f = 1.0 MHz)		C _{re}	_	2.8	pF

^{1.} Pulse Test: Pulse Width ≤ 300 μs; Duty Cycle ≤ 2.0%.

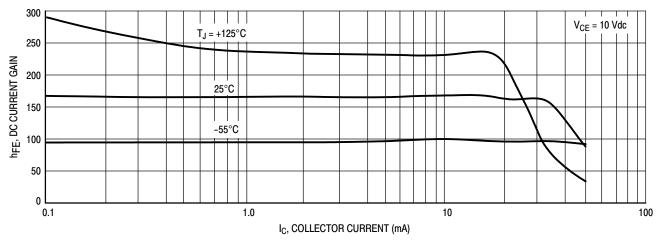
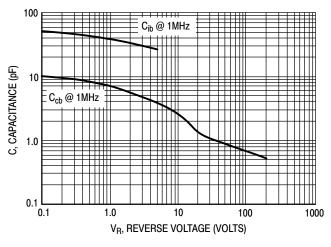



Figure 1. DC Current Gain

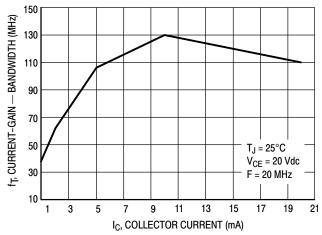
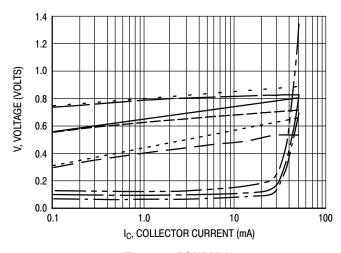



Figure 2. Capacitance

Figure 3. Current-Gain - Bandwidth

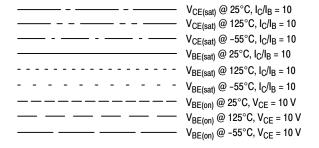


Figure 4. "ON" Voltages

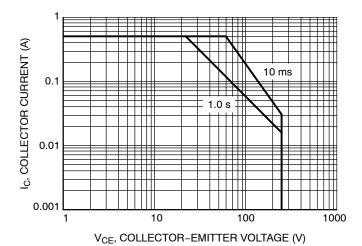
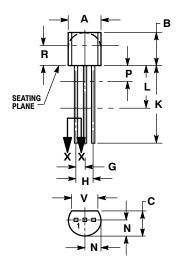
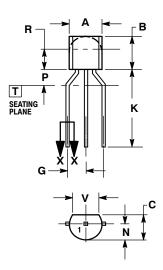



Figure 5. Safe Operating Area


PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 029-11 **ISSUE AM**

STRAIGHT LEAD **BULK PACK**

BENT LEAD TAPE & REEL AMMO PACK

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
- IS UNCONTROLLED.
 LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
٧	0.135		3.43	

STYLE 14:

- PIN 1. EMITTER
 - 2. COLLECTOR
 - BASE 3.

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.45	5.20	
В	4.32	5.33	
С	3.18	4.19	
D	0.40	0.54	
G	2.40	2.80	
J	0.39	0.50	
K	12.70		
N	2.04	2.66	
P	1.50	4.00	
R	2.93		
٧	3.43		

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its partner rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Bipolar Transistors - BJT category:

Click to view products by ON Semiconductor manufacturer:

Other Similar products are found below:

619691C MCH4017-TL-H MJ15024/WS MJ15025/WS BC546/116 BC556/FSC BC557/116 BSW67A HN7G01FU-A(T5L,F,T NJVMJD148T4G NSVMMBT6520LT1G NTE187A NTE195A NTE2302 NTE2302 NTE2330 NTE2353 NTE316 IMX9T110 NTE63 NTE65 C4460 SBC846BLT3G 2SA1419T-TD-H 2SA1721-O(TE85L,F) 2SA1727TLP 2SA2126-E 2SB1202T-TL-E 2SB1204S-TL-E 2SC5488A-TL-H 2SD2150T100R SP000011176 FMC5AT148 2N2369ADCSM 2SB1202S-TL-E 2SC2412KT146S 2SC4618TLN 2SC5490A-TL-H 2SD1816S-TL-E 2SD1816T-TL-E CMXT2207 TR CPH6501-TL-E MCH4021-TL-E BC557B TTC012(Q) BULD128DT4 JANTX2N3810 Jantx2N5416 US6T6TR KSF350 068071B