

AMAXIM

800MHz to 1000MHz Transmitter

Abstract

General Description The MAX2402 transmitter integrates a double-balanced mixer, buffered local oscillator (LO) port, variable gain stage, and power amplifier into a single IC. It is intended for use in the 800 MHz to 1000 MHz band, and is compatible with both direct-sequence and frequencyhopping spread-spectrum designs in the 902 MHz to 928 MHz ISM band. In a typical application, a digital baseband signal is mixed with a local oscillator signal to yield a BPSKmodulated carrier at the antenna. Alternatively, the baseband input may be grounded and an FSKmodulated LO signal applied directly to the LO port. The LO port consists of a limiting amplifier that can accept a single-ended or differential signal with input power between -6 dBm and +6 dBm in the 800 MHz to 1000 MHz frequency range. The baseband modulation input is linear over a 2 V range, and limits with larger signal levels within the supply range. The doublebalanced mixer has been optimized for high carrier rejection. The variable gain stage offers typically 40 dB of adjustment range. The power amplifier provides more than 20 dBm output power and has a bias adjustment, which allows adjustment of efficiency and harmonic distortion. A shutdown function reduces the current draw to less than $2 \mu \mathrm{~A}$ in less than $10 \mu \mathrm{~s}$. The MAX2402 comes in a 20 -pin SSOP package to minimize board area.

Applications

Direct-Sequence Spread-Spectrum Transmitter Frequency-Hopping Spread-Spectrum Transmitter
FSK, GMSK, BPSK, and ASK Digital Transmitter AM and FM Analog Transmitter

Functional Diagram

Low-Cost, Flexible Transmitter
Features
More than 100 mW of Output Power into 50Ω
Operates from 800 MHz to 1000 MHz
Single +5V Supply
20-Pin SSOP Package

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX2402EAP ${ }^{*}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 SSOP

* An alternate marking, MAX2402CAP, has been identically tested.

Pin Configuration

MAXIN \qquad Maxim Integrated Products

For free samples \& the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

800MHz to 1000MHz Transmitter

ABSOLUTE MAXIMUM RATINGS

Vcc..-0.3V to +6.5 V
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
SSOP (derate $16.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)
1.33W

Operating Temperature Range \qquad $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10 sec) $+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{BADJ}=$ open, $\overline{\mathrm{SHDN}}=\mathrm{V} C \mathrm{C}-0.5 \mathrm{~V}, \mathrm{VGC}=\mathrm{V}_{\mathrm{CC}}, \mathrm{MOD}=$ open, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
Supply Current	IcC	Not transmitting	105		mA
Shutdown Supply Current	ICCPD	$\overline{\text { SHDN }}=0.5 \mathrm{~V}$	0.15	2	$\mu \mathrm{A}$
Supply Voltage Range	VCC		4.75	5.50	V
VGC Input Bias Current	IvGC	VGC $=$ VCC		115	$\mu \mathrm{A}$
MOD Bias Current	IMOD	MOD $=$ VCC		325	$\mu \mathrm{A}$
		$\mathrm{MOD}=0 \mathrm{~V}$	-320		
SHDN Bias Current	IPD	$\overline{\text { SHDN }}=\mathrm{V}_{\mathrm{CC}}$		10.5	$\mu \mathrm{A}$
SHDN Low Threshold	VSHDN Low			0.5	V
SHDN High Threshold	VSHDN High		VCC - 0.5		V

AC ELECTRICAL CHARACTERISTICS

(MAX2402 evaluation kit, $\mathrm{V}_{C C}=5.0 \mathrm{~V}, \mathrm{BADJ}=2 \mathrm{~V}, \overline{S H D N}=\mathrm{V}_{C C}, \mathrm{MOD}=0 \mathrm{~V}, \mathrm{VGC}=\mathrm{V}_{\mathrm{CC}}, \mathrm{R}_{\mathrm{LOAD}}=35 \Omega, \mathrm{fLO}=900 \mathrm{MHz}$, LO power $=-3 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Current	ICCAC	Pout $=20 \mathrm{dBm}$ (including current to load)		165		mA
Maximum Output Power	Pmax	(Note 1)		21		dBm
Minimum Output Power	Pmin	VGC = OV (Note 1)		-19		dBm
Power Gain from LO	PGAIN			24		dB
LO Input Power Range	Plo	For max power out (50Ω input term) (Note 2)	-6		6	dBm
LO Frequency Range	flo	(Note 2)	800		1000	MHz
MOD Usable Bandwidth	MODBW	(Note 2)			25	MHz
VGC Control Range	VGC	(Note 2)	1.0		2.5	V
Carrier Suppression	CS	MOD = 5Vp-p @ 100kHz		30		dBC
2nd Harmonic Suppression	HS2	(Note 1)		22		dBC
3rd Harmonic Suppression	HS3	(Note 1)		25		dBC
Output IP3 (BADJ = 1.0V)	IP3	$\mathrm{fLO}=900 \mathrm{MHz}+901 \mathrm{MHz}$		28.4		dBm

Note 1: See Typical Operating Characteristics graphs.
Note 2: Guaranteed by design.

800MHz to 1000MHz Transmitter

800MHz to 1000MHz Transmitter

PIN	NAME	FUNCTION
1	VGC	Variable Gain Control Input. Connect to V_{CC} for maximum gain.
2	MOD	Baseband Modulation Input to mixer
$\begin{gathered} 3,5,8, \\ 13,15,17, \\ 18,20 \end{gathered}$	GND	Ground
4, 12, 19	VCC	Supply Voltage, set between 4.75 V and 5.5 V
6	LO+	Local-Oscillator Positive Input
7	LO-	Local-Oscillator Negative Input
9	SHDN	Shutdown Control Input. Low level = off, high level = on.
10	BADJ	Bias Adjustment Control for power amplifier. Connect resistor from BADJ to $\mathrm{V}+$ or GND (see Table 1).
11	LGND	Connect 27 nH inductor from LGND to GND to maximize output power.
14, 16	OUT	Power-Amplifier Output

Detailed Description

The MAX2402 transmitter is a versatile design that integrates several RF functions on a single IC. It has a wide variety of applications in portable and stationary wireless designs. Each of the functional blocks (shown in the Functional Diagram) is described in detail in the following sections.

LO Inputs

The LO inputs are internally capacitively coupled and self biasing. The LO port can be driven differentially or single ended. When terminated at the LO inputs with 50Ω, the transmitter will provide full output power for LO inputs from -6 dBm to +6 dBm with single-ended drive, and -12 dBm to +6 dBm with differential drive. Input power beyond this range may saturate the LO input buffer, while input power below this range may result in less output power. The limiter is two cascaded differential stages, which also isolates the LO input from the mixer. This will help reduce any frequency-pulling effects in an external LO due to mixer loading. The limiter output drives one port of a double-balanced Gilbert mixer.

MOD Input
The mixer's other port, the MOD input, remains linear over a 2 V range from about 1.5 V to 3.5 V at the input. When driven with digital modulation (0 V to 5 V), this port will completely limit, resulting in a hard BPSKmodulated signal. Since this input is self biasing, carrier suppression can be improved by externally capacitively coupling the signal into the port (the MOD input resistance is approximately $10 \mathrm{k} \Omega$). This would compensate for voltage offset or duty-cycle offset at this port, thus increasing carrier suppression. This MOD self bias is designed for very low on-chip offset, resulting in excellent carrier suppression. Since this port self biases when the signal is removed from MOD, the mixer will attenuate the output power by about 40 dB , resulting in further attenuation past that attained from VGC con-trol-a useful feature for ASK modulation.

VGC Stage
The mixer output drives the VGC stage. This stage attenuates through a multiplication technique that does not distort the signal with increased attenuation. VGC control is nonattenuating when connected to the Vcc supply. VGC will attenuate for voltages from 2.5 V to 1.0 V . Most attenuation occurs between 1 V and 2 V . Maximum attenuation is achieved below 0.8 V . Typical maximum attenuation is 40 dB . At or beyond 40 dB of attenuation, the signal may be slightly nonmonotonic. This means that there may be a slight upturn in the signal level at the low end of the VGC control range (typically about 1 dB). Because of the stability implications, we suggest that the user not plan on attenuating past 35 dB within a feedback loop.

Power Amplifier The VGC stage passes the signal to the power amplifier. This class $A B$ stage will produce at least 20 dBm of output power for almost the complete transmit frequency range (with $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$). See Typical Operating Characteristics.

BADJ Input
The BADJ input adjusts the bias of the output stage. Increasing this voltage decreases bias current in the output devices, which increases efficiency, but also increases harmonic distortion (since the stage will be pushed further toward class B operation). Decreasing BADJ's voltage increases bias current in the output devices, resulting in higher output power and less harmonic distortion. Be sure to optimize BADJ for your application.

800MHz to 1000MHz Transmitter

BADJ can be left open or adjusted with a single pullup or pull-down resistor to VCC or GND, respectively. The value of this resistor determines the amount of adjustment applied. A single resistor results in no current flow at BADJ during power-down (whereas a resistor divider always has current flowing through the resistors). Table 1 shows the approximate bias adjust voltage at the pin for different resistor values. At lower LO frequencies, where the transmitter gain and output power is the highest, setting BADJ to a low voltage (maximum bias current) causes excessive current in the output and can cause unstable behavior in the IC. At lower LO frequencies (around 800 MHz), more than 22 dBm of power is easily obtained with BADJ set for 3 V or more. If higher bias current and less distortion is desired in the 800 MHz range, using a lower inductor value on LGND (pin 11) (see the Typical Application Circuit) might make the desired bias level stable. At higher frequencies (near 1000 MHz), a lower bias level voltage results in more power (see the Output Power vs. Bias Control Voltage vs. Frequency graph in the Typical Operating Characteristics).

Table 1. Bias-Adjust Voltage for Various Resistor Values

Resistor Value (Ω)	BADJ with Resistor Connected to GND (V)	BADJ with Resistor Connected to Vcc (V)
10 k	0.36	4.54
20 k	0.63	4.27
30 k	0.84	4.05
40 k	1.00	3.89
50 k	1.13	3.75
100 k	1.54	3.34
200 k	1.89	3.00
300 k	2.05	2.85
400 k	2.13	2.75
500 k	2.20	2.68
1 M	2.31	2.57

[^0]Power Amplifier Output
The power amplifier has an open-collector output that can drive into a load of 30Ω to 50Ω; however, maximum power transfer is obtained at about 35Ω. 27 nH to ground is recommended on LGND (pin 11), as shown in the Typical Application Circuit. This inductor is used as a current source on the base of the output stage to pull stored charge out of the base.

SHDN Input
The $\overline{\text { SHDN }}$ input completely shuts down the current from the supply and all signal pins when switched below 0.5 V . During normal operation, $\overline{\text { SHDN }}$ should remain above Vcc - 0.5 V .
The shutdown control shuts down the total current to below 150nA (typ). Power-up occurs within $10 \mu \mathrm{~s}$.

Applications Information
The MAX2402 transmitter operates within the 800 MHz to 1000 MHz frequency range. Figure 1 shows a typical application circuit. Additional applications information can be obtained from the MAX2402 evaluation kit manual.

Figure 1. Typical Application Circuit

800MHz to 1000MHz Transmitter

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Receiver category:
Click to view products by Maxim manufacturer:
Other Similar products are found below :
MICRF011YN STA8088EXG TDA5235 HMC8100LP6JETR TDA5240 STA8088CFG MAX14736EWLT TQM7M5022 TDA5225 PQJ7911AHN/C0C,515 MAX7036GTP/V+ MAX14737EWL+T SI4705-D62-GM ATA8205P6C-TKQW SI4732-A10-GS B82450A1084C U3741BM-P3FLG3 TDA5225XUMA1 TDA7200XUMA1 ATA8202C-PXQW-1 AD6674-750EBZ AD6674-500EBZ MAX1473ETJ+ MAX7033EUI+T Si4836-A10-GS SI4826-A10-CU SI4825-A10-CS SI4824-A10-CU SI4707-B20-GMR MAX2769BETI/V+ MAX1471ATJ/V+ SI4831-B30-GUR SI4844-B20-GUR SI4704-D60-GU AW13412DNR LT5504EMS8\#PBF ADRV9008BBCZ-1 MRF24J40MAT-I/RM SI4824-A10-CUR T5743P3-TGQ AS3932-BQFT AD6641BCPZ-500 AD6642BBCZ AD6643BCPZ-200 AD6643BCPZ-250 AD6649BCPZ AD6649BCPZRL7 AD6650ABC AD6652BBCZ AD6655ABCPZ-125

[^0]: * Typical variation of BADJ over temperature and process is less than 5\%.

